Properties

Label 1380.2.r
Level $1380$
Weight $2$
Character orbit 1380.r
Rep. character $\chi_{1380}(737,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $88$
Newform subspaces $3$
Sturm bound $576$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1380.r (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(576\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1380, [\chi])\).

Total New Old
Modular forms 600 88 512
Cusp forms 552 88 464
Eisenstein series 48 0 48

Trace form

\( 88q + 8q^{7} + O(q^{10}) \) \( 88q + 8q^{7} + 16q^{13} + 12q^{15} + 8q^{21} - 36q^{27} - 16q^{31} - 44q^{33} + 16q^{37} + 40q^{45} + 24q^{51} - 8q^{55} + 24q^{57} + 16q^{61} - 4q^{63} + 16q^{67} - 8q^{73} - 28q^{75} - 8q^{81} - 32q^{85} + 16q^{87} - 8q^{93} - 72q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1380, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1380.2.r.a \(4\) \(11.019\) \(\Q(\zeta_{8})\) None \(0\) \(-4\) \(0\) \(-4\) \(q+(-1-\zeta_{8}^{2}+\zeta_{8}^{3})q^{3}+(-2\zeta_{8}+\zeta_{8}^{3})q^{5}+\cdots\)
1380.2.r.b \(4\) \(11.019\) \(\Q(\zeta_{8})\) None \(0\) \(-4\) \(0\) \(12\) \(q+(-1-\zeta_{8}^{2}+\zeta_{8}^{3})q^{3}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+\cdots\)
1380.2.r.c \(80\) \(11.019\) None \(0\) \(8\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(1380, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1380, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(690, [\chi])\)\(^{\oplus 2}\)