Properties

Label 1380.2.a.a.1.1
Level $1380$
Weight $2$
Character 1380.1
Self dual yes
Analytic conductor $11.019$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1380.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(11.0193554789\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1380.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} -5.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -1.00000 q^{5} -5.00000 q^{7} +1.00000 q^{9} +4.00000 q^{13} +1.00000 q^{15} -3.00000 q^{17} -4.00000 q^{19} +5.00000 q^{21} -1.00000 q^{23} +1.00000 q^{25} -1.00000 q^{27} +1.00000 q^{29} +1.00000 q^{31} +5.00000 q^{35} -1.00000 q^{37} -4.00000 q^{39} +11.0000 q^{41} +4.00000 q^{43} -1.00000 q^{45} +6.00000 q^{47} +18.0000 q^{49} +3.00000 q^{51} +1.00000 q^{53} +4.00000 q^{57} -1.00000 q^{59} +6.00000 q^{61} -5.00000 q^{63} -4.00000 q^{65} -9.00000 q^{67} +1.00000 q^{69} +13.0000 q^{71} -1.00000 q^{75} +16.0000 q^{79} +1.00000 q^{81} +9.00000 q^{83} +3.00000 q^{85} -1.00000 q^{87} +8.00000 q^{89} -20.0000 q^{91} -1.00000 q^{93} +4.00000 q^{95} +2.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −5.00000 −1.88982 −0.944911 0.327327i \(-0.893852\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 5.00000 1.09109
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.00000 0.845154
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 11.0000 1.71791 0.858956 0.512050i \(-0.171114\pi\)
0.858956 + 0.512050i \(0.171114\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) 18.0000 2.57143
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 0 0
\(53\) 1.00000 0.137361 0.0686803 0.997639i \(-0.478121\pi\)
0.0686803 + 0.997639i \(0.478121\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) −1.00000 −0.130189 −0.0650945 0.997879i \(-0.520735\pi\)
−0.0650945 + 0.997879i \(0.520735\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) −5.00000 −0.629941
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −9.00000 −1.09952 −0.549762 0.835321i \(-0.685282\pi\)
−0.549762 + 0.835321i \(0.685282\pi\)
\(68\) 0 0
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) 13.0000 1.54282 0.771408 0.636341i \(-0.219553\pi\)
0.771408 + 0.636341i \(0.219553\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) −1.00000 −0.107211
\(88\) 0 0
\(89\) 8.00000 0.847998 0.423999 0.905663i \(-0.360626\pi\)
0.423999 + 0.905663i \(0.360626\pi\)
\(90\) 0 0
\(91\) −20.0000 −2.09657
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.00000 −0.696526 −0.348263 0.937397i \(-0.613228\pi\)
−0.348263 + 0.937397i \(0.613228\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) −5.00000 −0.487950
\(106\) 0 0
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) 1.00000 0.0949158
\(112\) 0 0
\(113\) 1.00000 0.0940721 0.0470360 0.998893i \(-0.485022\pi\)
0.0470360 + 0.998893i \(0.485022\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 4.00000 0.369800
\(118\) 0 0
\(119\) 15.0000 1.37505
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) −11.0000 −0.991837
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −18.0000 −1.59724 −0.798621 0.601834i \(-0.794437\pi\)
−0.798621 + 0.601834i \(0.794437\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 20.0000 1.74741 0.873704 0.486458i \(-0.161711\pi\)
0.873704 + 0.486458i \(0.161711\pi\)
\(132\) 0 0
\(133\) 20.0000 1.73422
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 0 0
\(139\) 11.0000 0.933008 0.466504 0.884519i \(-0.345513\pi\)
0.466504 + 0.884519i \(0.345513\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) −18.0000 −1.48461
\(148\) 0 0
\(149\) 22.0000 1.80231 0.901155 0.433497i \(-0.142720\pi\)
0.901155 + 0.433497i \(0.142720\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) −3.00000 −0.242536
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) 0 0
\(159\) −1.00000 −0.0793052
\(160\) 0 0
\(161\) 5.00000 0.394055
\(162\) 0 0
\(163\) 18.0000 1.40987 0.704934 0.709273i \(-0.250976\pi\)
0.704934 + 0.709273i \(0.250976\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.00000 −0.464294 −0.232147 0.972681i \(-0.574575\pi\)
−0.232147 + 0.972681i \(0.574575\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) −5.00000 −0.377964
\(176\) 0 0
\(177\) 1.00000 0.0751646
\(178\) 0 0
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) 0 0
\(183\) −6.00000 −0.443533
\(184\) 0 0
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) −10.0000 −0.723575 −0.361787 0.932261i \(-0.617833\pi\)
−0.361787 + 0.932261i \(0.617833\pi\)
\(192\) 0 0
\(193\) 12.0000 0.863779 0.431889 0.901927i \(-0.357847\pi\)
0.431889 + 0.901927i \(0.357847\pi\)
\(194\) 0 0
\(195\) 4.00000 0.286446
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 2.00000 0.141776 0.0708881 0.997484i \(-0.477417\pi\)
0.0708881 + 0.997484i \(0.477417\pi\)
\(200\) 0 0
\(201\) 9.00000 0.634811
\(202\) 0 0
\(203\) −5.00000 −0.350931
\(204\) 0 0
\(205\) −11.0000 −0.768273
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −23.0000 −1.58339 −0.791693 0.610920i \(-0.790800\pi\)
−0.791693 + 0.610920i \(0.790800\pi\)
\(212\) 0 0
\(213\) −13.0000 −0.890745
\(214\) 0 0
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) −5.00000 −0.339422
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) 14.0000 0.937509 0.468755 0.883328i \(-0.344703\pi\)
0.468755 + 0.883328i \(0.344703\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 28.0000 1.85843 0.929213 0.369546i \(-0.120487\pi\)
0.929213 + 0.369546i \(0.120487\pi\)
\(228\) 0 0
\(229\) −20.0000 −1.32164 −0.660819 0.750546i \(-0.729791\pi\)
−0.660819 + 0.750546i \(0.729791\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.00000 0.524097 0.262049 0.965055i \(-0.415602\pi\)
0.262049 + 0.965055i \(0.415602\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 0 0
\(237\) −16.0000 −1.03931
\(238\) 0 0
\(239\) −21.0000 −1.35838 −0.679189 0.733964i \(-0.737668\pi\)
−0.679189 + 0.733964i \(0.737668\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −18.0000 −1.14998
\(246\) 0 0
\(247\) −16.0000 −1.01806
\(248\) 0 0
\(249\) −9.00000 −0.570352
\(250\) 0 0
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.00000 −0.187867
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) 5.00000 0.310685
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 0 0
\(263\) −29.0000 −1.78822 −0.894108 0.447851i \(-0.852190\pi\)
−0.894108 + 0.447851i \(0.852190\pi\)
\(264\) 0 0
\(265\) −1.00000 −0.0614295
\(266\) 0 0
\(267\) −8.00000 −0.489592
\(268\) 0 0
\(269\) 15.0000 0.914566 0.457283 0.889321i \(-0.348823\pi\)
0.457283 + 0.889321i \(0.348823\pi\)
\(270\) 0 0
\(271\) −13.0000 −0.789694 −0.394847 0.918747i \(-0.629202\pi\)
−0.394847 + 0.918747i \(0.629202\pi\)
\(272\) 0 0
\(273\) 20.0000 1.21046
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) 1.00000 0.0594438 0.0297219 0.999558i \(-0.490538\pi\)
0.0297219 + 0.999558i \(0.490538\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 0 0
\(287\) −55.0000 −3.24655
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −2.00000 −0.117242
\(292\) 0 0
\(293\) 7.00000 0.408944 0.204472 0.978872i \(-0.434452\pi\)
0.204472 + 0.978872i \(0.434452\pi\)
\(294\) 0 0
\(295\) 1.00000 0.0582223
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.00000 −0.231326
\(300\) 0 0
\(301\) −20.0000 −1.15278
\(302\) 0 0
\(303\) 7.00000 0.402139
\(304\) 0 0
\(305\) −6.00000 −0.343559
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) −32.0000 −1.81455 −0.907277 0.420534i \(-0.861843\pi\)
−0.907277 + 0.420534i \(0.861843\pi\)
\(312\) 0 0
\(313\) 21.0000 1.18699 0.593495 0.804838i \(-0.297748\pi\)
0.593495 + 0.804838i \(0.297748\pi\)
\(314\) 0 0
\(315\) 5.00000 0.281718
\(316\) 0 0
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 3.00000 0.167444
\(322\) 0 0
\(323\) 12.0000 0.667698
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 0 0
\(327\) 12.0000 0.663602
\(328\) 0 0
\(329\) −30.0000 −1.65395
\(330\) 0 0
\(331\) 25.0000 1.37412 0.687062 0.726599i \(-0.258900\pi\)
0.687062 + 0.726599i \(0.258900\pi\)
\(332\) 0 0
\(333\) −1.00000 −0.0547997
\(334\) 0 0
\(335\) 9.00000 0.491723
\(336\) 0 0
\(337\) 10.0000 0.544735 0.272367 0.962193i \(-0.412193\pi\)
0.272367 + 0.962193i \(0.412193\pi\)
\(338\) 0 0
\(339\) −1.00000 −0.0543125
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −55.0000 −2.96972
\(344\) 0 0
\(345\) −1.00000 −0.0538382
\(346\) 0 0
\(347\) −8.00000 −0.429463 −0.214731 0.976673i \(-0.568888\pi\)
−0.214731 + 0.976673i \(0.568888\pi\)
\(348\) 0 0
\(349\) 19.0000 1.01705 0.508523 0.861048i \(-0.330192\pi\)
0.508523 + 0.861048i \(0.330192\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) −13.0000 −0.689968
\(356\) 0 0
\(357\) −15.0000 −0.793884
\(358\) 0 0
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 11.0000 0.577350
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −7.00000 −0.365397 −0.182699 0.983169i \(-0.558483\pi\)
−0.182699 + 0.983169i \(0.558483\pi\)
\(368\) 0 0
\(369\) 11.0000 0.572637
\(370\) 0 0
\(371\) −5.00000 −0.259587
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) −24.0000 −1.23280 −0.616399 0.787434i \(-0.711409\pi\)
−0.616399 + 0.787434i \(0.711409\pi\)
\(380\) 0 0
\(381\) 18.0000 0.922168
\(382\) 0 0
\(383\) 27.0000 1.37964 0.689818 0.723983i \(-0.257691\pi\)
0.689818 + 0.723983i \(0.257691\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) 3.00000 0.151717
\(392\) 0 0
\(393\) −20.0000 −1.00887
\(394\) 0 0
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) 32.0000 1.60603 0.803017 0.595956i \(-0.203227\pi\)
0.803017 + 0.595956i \(0.203227\pi\)
\(398\) 0 0
\(399\) −20.0000 −1.00125
\(400\) 0 0
\(401\) 38.0000 1.89763 0.948815 0.315833i \(-0.102284\pi\)
0.948815 + 0.315833i \(0.102284\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −7.00000 −0.346128 −0.173064 0.984911i \(-0.555367\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) 0 0
\(411\) −2.00000 −0.0986527
\(412\) 0 0
\(413\) 5.00000 0.246034
\(414\) 0 0
\(415\) −9.00000 −0.441793
\(416\) 0 0
\(417\) −11.0000 −0.538672
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 6.00000 0.291730
\(424\) 0 0
\(425\) −3.00000 −0.145521
\(426\) 0 0
\(427\) −30.0000 −1.45180
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) −17.0000 −0.816968 −0.408484 0.912766i \(-0.633942\pi\)
−0.408484 + 0.912766i \(0.633942\pi\)
\(434\) 0 0
\(435\) 1.00000 0.0479463
\(436\) 0 0
\(437\) 4.00000 0.191346
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) 0 0
\(443\) −2.00000 −0.0950229 −0.0475114 0.998871i \(-0.515129\pi\)
−0.0475114 + 0.998871i \(0.515129\pi\)
\(444\) 0 0
\(445\) −8.00000 −0.379236
\(446\) 0 0
\(447\) −22.0000 −1.04056
\(448\) 0 0
\(449\) 1.00000 0.0471929 0.0235965 0.999722i \(-0.492488\pi\)
0.0235965 + 0.999722i \(0.492488\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 16.0000 0.751746
\(454\) 0 0
\(455\) 20.0000 0.937614
\(456\) 0 0
\(457\) 9.00000 0.421002 0.210501 0.977594i \(-0.432490\pi\)
0.210501 + 0.977594i \(0.432490\pi\)
\(458\) 0 0
\(459\) 3.00000 0.140028
\(460\) 0 0
\(461\) 34.0000 1.58354 0.791769 0.610821i \(-0.209160\pi\)
0.791769 + 0.610821i \(0.209160\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 0 0
\(465\) 1.00000 0.0463739
\(466\) 0 0
\(467\) −3.00000 −0.138823 −0.0694117 0.997588i \(-0.522112\pi\)
−0.0694117 + 0.997588i \(0.522112\pi\)
\(468\) 0 0
\(469\) 45.0000 2.07791
\(470\) 0 0
\(471\) −5.00000 −0.230388
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 1.00000 0.0457869
\(478\) 0 0
\(479\) 38.0000 1.73626 0.868132 0.496333i \(-0.165321\pi\)
0.868132 + 0.496333i \(0.165321\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 0 0
\(483\) −5.00000 −0.227508
\(484\) 0 0
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) −14.0000 −0.634401 −0.317200 0.948359i \(-0.602743\pi\)
−0.317200 + 0.948359i \(0.602743\pi\)
\(488\) 0 0
\(489\) −18.0000 −0.813988
\(490\) 0 0
\(491\) 1.00000 0.0451294 0.0225647 0.999745i \(-0.492817\pi\)
0.0225647 + 0.999745i \(0.492817\pi\)
\(492\) 0 0
\(493\) −3.00000 −0.135113
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −65.0000 −2.91565
\(498\) 0 0
\(499\) 3.00000 0.134298 0.0671492 0.997743i \(-0.478610\pi\)
0.0671492 + 0.997743i \(0.478610\pi\)
\(500\) 0 0
\(501\) 6.00000 0.268060
\(502\) 0 0
\(503\) 31.0000 1.38222 0.691111 0.722749i \(-0.257122\pi\)
0.691111 + 0.722749i \(0.257122\pi\)
\(504\) 0 0
\(505\) 7.00000 0.311496
\(506\) 0 0
\(507\) −3.00000 −0.133235
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.00000 0.176604
\(514\) 0 0
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 32.0000 1.40195 0.700973 0.713188i \(-0.252749\pi\)
0.700973 + 0.713188i \(0.252749\pi\)
\(522\) 0 0
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) 0 0
\(525\) 5.00000 0.218218
\(526\) 0 0
\(527\) −3.00000 −0.130682
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −1.00000 −0.0433963
\(532\) 0 0
\(533\) 44.0000 1.90585
\(534\) 0 0
\(535\) 3.00000 0.129701
\(536\) 0 0
\(537\) −24.0000 −1.03568
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) 0 0
\(543\) 8.00000 0.343313
\(544\) 0 0
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 0 0
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) −4.00000 −0.170406
\(552\) 0 0
\(553\) −80.0000 −3.40195
\(554\) 0 0
\(555\) −1.00000 −0.0424476
\(556\) 0 0
\(557\) −23.0000 −0.974541 −0.487271 0.873251i \(-0.662007\pi\)
−0.487271 + 0.873251i \(0.662007\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 27.0000 1.13791 0.568957 0.822367i \(-0.307347\pi\)
0.568957 + 0.822367i \(0.307347\pi\)
\(564\) 0 0
\(565\) −1.00000 −0.0420703
\(566\) 0 0
\(567\) −5.00000 −0.209980
\(568\) 0 0
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) 10.0000 0.418487 0.209243 0.977864i \(-0.432900\pi\)
0.209243 + 0.977864i \(0.432900\pi\)
\(572\) 0 0
\(573\) 10.0000 0.417756
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) 4.00000 0.166522 0.0832611 0.996528i \(-0.473466\pi\)
0.0832611 + 0.996528i \(0.473466\pi\)
\(578\) 0 0
\(579\) −12.0000 −0.498703
\(580\) 0 0
\(581\) −45.0000 −1.86691
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −4.00000 −0.165380
\(586\) 0 0
\(587\) −6.00000 −0.247647 −0.123823 0.992304i \(-0.539516\pi\)
−0.123823 + 0.992304i \(0.539516\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) −2.00000 −0.0822690
\(592\) 0 0
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) −15.0000 −0.614940
\(596\) 0 0
\(597\) −2.00000 −0.0818546
\(598\) 0 0
\(599\) −44.0000 −1.79779 −0.898896 0.438163i \(-0.855629\pi\)
−0.898896 + 0.438163i \(0.855629\pi\)
\(600\) 0 0
\(601\) 7.00000 0.285536 0.142768 0.989756i \(-0.454400\pi\)
0.142768 + 0.989756i \(0.454400\pi\)
\(602\) 0 0
\(603\) −9.00000 −0.366508
\(604\) 0 0
\(605\) 11.0000 0.447214
\(606\) 0 0
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 0 0
\(609\) 5.00000 0.202610
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) 0 0
\(615\) 11.0000 0.443563
\(616\) 0 0
\(617\) −1.00000 −0.0402585 −0.0201292 0.999797i \(-0.506408\pi\)
−0.0201292 + 0.999797i \(0.506408\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 0 0
\(623\) −40.0000 −1.60257
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) 0 0
\(633\) 23.0000 0.914168
\(634\) 0 0
\(635\) 18.0000 0.714308
\(636\) 0 0
\(637\) 72.0000 2.85274
\(638\) 0 0
\(639\) 13.0000 0.514272
\(640\) 0 0
\(641\) 24.0000 0.947943 0.473972 0.880540i \(-0.342820\pi\)
0.473972 + 0.880540i \(0.342820\pi\)
\(642\) 0 0
\(643\) −1.00000 −0.0394362 −0.0197181 0.999806i \(-0.506277\pi\)
−0.0197181 + 0.999806i \(0.506277\pi\)
\(644\) 0 0
\(645\) 4.00000 0.157500
\(646\) 0 0
\(647\) −48.0000 −1.88707 −0.943537 0.331266i \(-0.892524\pi\)
−0.943537 + 0.331266i \(0.892524\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 5.00000 0.195965
\(652\) 0 0
\(653\) −44.0000 −1.72185 −0.860927 0.508729i \(-0.830115\pi\)
−0.860927 + 0.508729i \(0.830115\pi\)
\(654\) 0 0
\(655\) −20.0000 −0.781465
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) 0 0
\(663\) 12.0000 0.466041
\(664\) 0 0
\(665\) −20.0000 −0.775567
\(666\) 0 0
\(667\) −1.00000 −0.0387202
\(668\) 0 0
\(669\) −14.0000 −0.541271
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −6.00000 −0.231283 −0.115642 0.993291i \(-0.536892\pi\)
−0.115642 + 0.993291i \(0.536892\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 39.0000 1.49889 0.749446 0.662066i \(-0.230320\pi\)
0.749446 + 0.662066i \(0.230320\pi\)
\(678\) 0 0
\(679\) −10.0000 −0.383765
\(680\) 0 0
\(681\) −28.0000 −1.07296
\(682\) 0 0
\(683\) 34.0000 1.30097 0.650487 0.759517i \(-0.274565\pi\)
0.650487 + 0.759517i \(0.274565\pi\)
\(684\) 0 0
\(685\) −2.00000 −0.0764161
\(686\) 0 0
\(687\) 20.0000 0.763048
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.0000 −0.417254
\(696\) 0 0
\(697\) −33.0000 −1.24996
\(698\) 0 0
\(699\) −8.00000 −0.302588
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) 0 0
\(705\) 6.00000 0.225973
\(706\) 0 0
\(707\) 35.0000 1.31631
\(708\) 0 0
\(709\) 18.0000 0.676004 0.338002 0.941145i \(-0.390249\pi\)
0.338002 + 0.941145i \(0.390249\pi\)
\(710\) 0 0
\(711\) 16.0000 0.600047
\(712\) 0 0
\(713\) −1.00000 −0.0374503
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 21.0000 0.784259
\(718\) 0 0
\(719\) −25.0000 −0.932343 −0.466171 0.884694i \(-0.654367\pi\)
−0.466171 + 0.884694i \(0.654367\pi\)
\(720\) 0 0
\(721\) 80.0000 2.97936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) 13.0000 0.482143 0.241072 0.970507i \(-0.422501\pi\)
0.241072 + 0.970507i \(0.422501\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.0000 −0.443836
\(732\) 0 0
\(733\) −21.0000 −0.775653 −0.387826 0.921732i \(-0.626774\pi\)
−0.387826 + 0.921732i \(0.626774\pi\)
\(734\) 0 0
\(735\) 18.0000 0.663940
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 45.0000 1.65535 0.827676 0.561206i \(-0.189663\pi\)
0.827676 + 0.561206i \(0.189663\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) 0 0
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 0 0
\(745\) −22.0000 −0.806018
\(746\) 0 0
\(747\) 9.00000 0.329293
\(748\) 0 0
\(749\) 15.0000 0.548088
\(750\) 0 0
\(751\) 20.0000 0.729810 0.364905 0.931045i \(-0.381101\pi\)
0.364905 + 0.931045i \(0.381101\pi\)
\(752\) 0 0
\(753\) −6.00000 −0.218652
\(754\) 0 0
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) 29.0000 1.05402 0.527011 0.849858i \(-0.323312\pi\)
0.527011 + 0.849858i \(0.323312\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −45.0000 −1.63125 −0.815624 0.578582i \(-0.803606\pi\)
−0.815624 + 0.578582i \(0.803606\pi\)
\(762\) 0 0
\(763\) 60.0000 2.17215
\(764\) 0 0
\(765\) 3.00000 0.108465
\(766\) 0 0
\(767\) −4.00000 −0.144432
\(768\) 0 0
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 0 0
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) −5.00000 −0.179374
\(778\) 0 0
\(779\) −44.0000 −1.57646
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1.00000 −0.0357371
\(784\) 0 0
\(785\) −5.00000 −0.178458
\(786\) 0 0
\(787\) 23.0000 0.819861 0.409931 0.912117i \(-0.365553\pi\)
0.409931 + 0.912117i \(0.365553\pi\)
\(788\) 0 0
\(789\) 29.0000 1.03243
\(790\) 0 0
\(791\) −5.00000 −0.177780
\(792\) 0 0
\(793\) 24.0000 0.852265
\(794\) 0 0
\(795\) 1.00000 0.0354663
\(796\) 0 0
\(797\) 15.0000 0.531327 0.265664 0.964066i \(-0.414409\pi\)
0.265664 + 0.964066i \(0.414409\pi\)
\(798\) 0 0
\(799\) −18.0000 −0.636794
\(800\) 0 0
\(801\) 8.00000 0.282666
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −5.00000 −0.176227
\(806\) 0 0
\(807\) −15.0000 −0.528025
\(808\) 0 0
\(809\) 13.0000 0.457056 0.228528 0.973537i \(-0.426609\pi\)
0.228528 + 0.973537i \(0.426609\pi\)
\(810\) 0 0
\(811\) −39.0000 −1.36948 −0.684738 0.728790i \(-0.740083\pi\)
−0.684738 + 0.728790i \(0.740083\pi\)
\(812\) 0 0
\(813\) 13.0000 0.455930
\(814\) 0 0
\(815\) −18.0000 −0.630512
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 0 0
\(819\) −20.0000 −0.698857
\(820\) 0 0
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 0 0
\(823\) 40.0000 1.39431 0.697156 0.716919i \(-0.254448\pi\)
0.697156 + 0.716919i \(0.254448\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.0000 0.938882 0.469441 0.882964i \(-0.344455\pi\)
0.469441 + 0.882964i \(0.344455\pi\)
\(828\) 0 0
\(829\) 17.0000 0.590434 0.295217 0.955430i \(-0.404608\pi\)
0.295217 + 0.955430i \(0.404608\pi\)
\(830\) 0 0
\(831\) −10.0000 −0.346896
\(832\) 0 0
\(833\) −54.0000 −1.87099
\(834\) 0 0
\(835\) 6.00000 0.207639
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 0 0
\(839\) −26.0000 −0.897620 −0.448810 0.893627i \(-0.648152\pi\)
−0.448810 + 0.893627i \(0.648152\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 0 0
\(843\) −20.0000 −0.688837
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) 55.0000 1.88982
\(848\) 0 0
\(849\) −1.00000 −0.0343199
\(850\) 0 0
\(851\) 1.00000 0.0342796
\(852\) 0 0
\(853\) −54.0000 −1.84892 −0.924462 0.381273i \(-0.875486\pi\)
−0.924462 + 0.381273i \(0.875486\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) −2.00000 −0.0683187 −0.0341593 0.999416i \(-0.510875\pi\)
−0.0341593 + 0.999416i \(0.510875\pi\)
\(858\) 0 0
\(859\) −27.0000 −0.921228 −0.460614 0.887601i \(-0.652371\pi\)
−0.460614 + 0.887601i \(0.652371\pi\)
\(860\) 0 0
\(861\) 55.0000 1.87439
\(862\) 0 0
\(863\) 42.0000 1.42970 0.714848 0.699280i \(-0.246496\pi\)
0.714848 + 0.699280i \(0.246496\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 8.00000 0.271694
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −36.0000 −1.21981
\(872\) 0 0
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) 5.00000 0.169031
\(876\) 0 0
\(877\) 42.0000 1.41824 0.709120 0.705088i \(-0.249093\pi\)
0.709120 + 0.705088i \(0.249093\pi\)
\(878\) 0 0
\(879\) −7.00000 −0.236104
\(880\) 0 0
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) 46.0000 1.54802 0.774012 0.633171i \(-0.218247\pi\)
0.774012 + 0.633171i \(0.218247\pi\)
\(884\) 0 0
\(885\) −1.00000 −0.0336146
\(886\) 0 0
\(887\) 38.0000 1.27592 0.637958 0.770072i \(-0.279780\pi\)
0.637958 + 0.770072i \(0.279780\pi\)
\(888\) 0 0
\(889\) 90.0000 3.01850
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −24.0000 −0.803129
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 0 0
\(897\) 4.00000 0.133556
\(898\) 0 0
\(899\) 1.00000 0.0333519
\(900\) 0 0
\(901\) −3.00000 −0.0999445
\(902\) 0 0
\(903\) 20.0000 0.665558
\(904\) 0 0
\(905\) 8.00000 0.265929
\(906\) 0 0
\(907\) −17.0000 −0.564476 −0.282238 0.959344i \(-0.591077\pi\)
−0.282238 + 0.959344i \(0.591077\pi\)
\(908\) 0 0
\(909\) −7.00000 −0.232175
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 6.00000 0.198354
\(916\) 0 0
\(917\) −100.000 −3.30229
\(918\) 0 0
\(919\) 48.0000 1.58337 0.791687 0.610927i \(-0.209203\pi\)
0.791687 + 0.610927i \(0.209203\pi\)
\(920\) 0 0
\(921\) −12.0000 −0.395413
\(922\) 0 0
\(923\) 52.0000 1.71160
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) 5.00000 0.164045 0.0820223 0.996630i \(-0.473862\pi\)
0.0820223 + 0.996630i \(0.473862\pi\)
\(930\) 0 0
\(931\) −72.0000 −2.35970
\(932\) 0 0
\(933\) 32.0000 1.04763
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) −21.0000 −0.685309
\(940\) 0 0
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) −11.0000 −0.358209
\(944\) 0 0
\(945\) −5.00000 −0.162650
\(946\) 0 0
\(947\) −8.00000 −0.259965 −0.129983 0.991516i \(-0.541492\pi\)
−0.129983 + 0.991516i \(0.541492\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 6.00000 0.194563
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 10.0000 0.323592
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.0000 −0.322917
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) −3.00000 −0.0966736
\(964\) 0 0
\(965\) −12.0000 −0.386294
\(966\) 0 0
\(967\) 2.00000 0.0643157 0.0321578 0.999483i \(-0.489762\pi\)
0.0321578 + 0.999483i \(0.489762\pi\)
\(968\) 0 0
\(969\) −12.0000 −0.385496
\(970\) 0 0
\(971\) 20.0000 0.641831 0.320915 0.947108i \(-0.396010\pi\)
0.320915 + 0.947108i \(0.396010\pi\)
\(972\) 0 0
\(973\) −55.0000 −1.76322
\(974\) 0 0
\(975\) −4.00000 −0.128103
\(976\) 0 0
\(977\) 31.0000 0.991778 0.495889 0.868386i \(-0.334842\pi\)
0.495889 + 0.868386i \(0.334842\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −12.0000 −0.383131
\(982\) 0 0
\(983\) −11.0000 −0.350846 −0.175423 0.984493i \(-0.556129\pi\)
−0.175423 + 0.984493i \(0.556129\pi\)
\(984\) 0 0
\(985\) −2.00000 −0.0637253
\(986\) 0 0
\(987\) 30.0000 0.954911
\(988\) 0 0
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) −35.0000 −1.11181 −0.555906 0.831245i \(-0.687628\pi\)
−0.555906 + 0.831245i \(0.687628\pi\)
\(992\) 0 0
\(993\) −25.0000 −0.793351
\(994\) 0 0
\(995\) −2.00000 −0.0634043
\(996\) 0 0
\(997\) 40.0000 1.26681 0.633406 0.773819i \(-0.281656\pi\)
0.633406 + 0.773819i \(0.281656\pi\)
\(998\) 0 0
\(999\) 1.00000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1380.2.a.a.1.1 1
3.2 odd 2 4140.2.a.e.1.1 1
4.3 odd 2 5520.2.a.ba.1.1 1
5.2 odd 4 6900.2.f.f.6349.2 2
5.3 odd 4 6900.2.f.f.6349.1 2
5.4 even 2 6900.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1380.2.a.a.1.1 1 1.1 even 1 trivial
4140.2.a.e.1.1 1 3.2 odd 2
5520.2.a.ba.1.1 1 4.3 odd 2
6900.2.a.i.1.1 1 5.4 even 2
6900.2.f.f.6349.1 2 5.3 odd 4
6900.2.f.f.6349.2 2 5.2 odd 4