Defining parameters
Level: | \( N \) | = | \( 138 = 2 \cdot 3 \cdot 23 \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 4 \) | ||
Sturm bound: | \(8448\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(138))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3784 | 922 | 2862 |
Cusp forms | 3608 | 922 | 2686 |
Eisenstein series | 176 | 0 | 176 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(138))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
138.8.a | \(\chi_{138}(1, \cdot)\) | 138.8.a.a | 1 | 1 |
138.8.a.b | 3 | |||
138.8.a.c | 3 | |||
138.8.a.d | 3 | |||
138.8.a.e | 4 | |||
138.8.a.f | 4 | |||
138.8.a.g | 4 | |||
138.8.a.h | 4 | |||
138.8.d | \(\chi_{138}(137, \cdot)\) | 138.8.d.a | 56 | 1 |
138.8.e | \(\chi_{138}(13, \cdot)\) | n/a | 280 | 10 |
138.8.f | \(\chi_{138}(5, \cdot)\) | n/a | 560 | 10 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(138))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(138)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)