Properties

Label 138.4.a.e.1.2
Level $138$
Weight $4$
Character 138.1
Self dual yes
Analytic conductor $8.142$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [138,4,Mod(1,138)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(138, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("138.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 138.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.14226358079\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 138.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} +15.3137 q^{5} -6.00000 q^{6} -5.31371 q^{7} +8.00000 q^{8} +9.00000 q^{9} +30.6274 q^{10} -21.2548 q^{11} -12.0000 q^{12} +87.2548 q^{13} -10.6274 q^{14} -45.9411 q^{15} +16.0000 q^{16} +18.0589 q^{17} +18.0000 q^{18} +47.9411 q^{19} +61.2548 q^{20} +15.9411 q^{21} -42.5097 q^{22} +23.0000 q^{23} -24.0000 q^{24} +109.510 q^{25} +174.510 q^{26} -27.0000 q^{27} -21.2548 q^{28} +179.137 q^{29} -91.8823 q^{30} -117.137 q^{31} +32.0000 q^{32} +63.7645 q^{33} +36.1177 q^{34} -81.3726 q^{35} +36.0000 q^{36} -410.902 q^{37} +95.8823 q^{38} -261.765 q^{39} +122.510 q^{40} -205.765 q^{41} +31.8823 q^{42} -149.549 q^{43} -85.0193 q^{44} +137.823 q^{45} +46.0000 q^{46} -299.882 q^{47} -48.0000 q^{48} -314.765 q^{49} +219.019 q^{50} -54.1766 q^{51} +349.019 q^{52} -295.862 q^{53} -54.0000 q^{54} -325.490 q^{55} -42.5097 q^{56} -143.823 q^{57} +358.274 q^{58} +737.450 q^{59} -183.765 q^{60} +550.431 q^{61} -234.274 q^{62} -47.8234 q^{63} +64.0000 q^{64} +1336.20 q^{65} +127.529 q^{66} -527.470 q^{67} +72.2355 q^{68} -69.0000 q^{69} -162.745 q^{70} -297.568 q^{71} +72.0000 q^{72} -714.313 q^{73} -821.803 q^{74} -328.529 q^{75} +191.765 q^{76} +112.942 q^{77} -523.529 q^{78} -834.686 q^{79} +245.019 q^{80} +81.0000 q^{81} -411.529 q^{82} +795.606 q^{83} +63.7645 q^{84} +276.548 q^{85} -299.098 q^{86} -537.411 q^{87} -170.039 q^{88} +46.9605 q^{89} +275.647 q^{90} -463.647 q^{91} +92.0000 q^{92} +351.411 q^{93} -599.765 q^{94} +734.156 q^{95} -96.0000 q^{96} +1037.72 q^{97} -629.529 q^{98} -191.294 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 6 q^{3} + 8 q^{4} + 8 q^{5} - 12 q^{6} + 12 q^{7} + 16 q^{8} + 18 q^{9} + 16 q^{10} + 48 q^{11} - 24 q^{12} + 84 q^{13} + 24 q^{14} - 24 q^{15} + 32 q^{16} + 104 q^{17} + 36 q^{18} + 28 q^{19}+ \cdots + 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) 15.3137 1.36970 0.684850 0.728684i \(-0.259868\pi\)
0.684850 + 0.728684i \(0.259868\pi\)
\(6\) −6.00000 −0.408248
\(7\) −5.31371 −0.286913 −0.143457 0.989657i \(-0.545822\pi\)
−0.143457 + 0.989657i \(0.545822\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) 30.6274 0.968524
\(11\) −21.2548 −0.582598 −0.291299 0.956632i \(-0.594087\pi\)
−0.291299 + 0.956632i \(0.594087\pi\)
\(12\) −12.0000 −0.288675
\(13\) 87.2548 1.86155 0.930774 0.365594i \(-0.119134\pi\)
0.930774 + 0.365594i \(0.119134\pi\)
\(14\) −10.6274 −0.202878
\(15\) −45.9411 −0.790797
\(16\) 16.0000 0.250000
\(17\) 18.0589 0.257642 0.128821 0.991668i \(-0.458881\pi\)
0.128821 + 0.991668i \(0.458881\pi\)
\(18\) 18.0000 0.235702
\(19\) 47.9411 0.578866 0.289433 0.957198i \(-0.406533\pi\)
0.289433 + 0.957198i \(0.406533\pi\)
\(20\) 61.2548 0.684850
\(21\) 15.9411 0.165649
\(22\) −42.5097 −0.411959
\(23\) 23.0000 0.208514
\(24\) −24.0000 −0.204124
\(25\) 109.510 0.876077
\(26\) 174.510 1.31631
\(27\) −27.0000 −0.192450
\(28\) −21.2548 −0.143457
\(29\) 179.137 1.14707 0.573533 0.819182i \(-0.305572\pi\)
0.573533 + 0.819182i \(0.305572\pi\)
\(30\) −91.8823 −0.559178
\(31\) −117.137 −0.678659 −0.339330 0.940668i \(-0.610200\pi\)
−0.339330 + 0.940668i \(0.610200\pi\)
\(32\) 32.0000 0.176777
\(33\) 63.7645 0.336363
\(34\) 36.1177 0.182181
\(35\) −81.3726 −0.392985
\(36\) 36.0000 0.166667
\(37\) −410.902 −1.82572 −0.912862 0.408268i \(-0.866133\pi\)
−0.912862 + 0.408268i \(0.866133\pi\)
\(38\) 95.8823 0.409320
\(39\) −261.765 −1.07477
\(40\) 122.510 0.484262
\(41\) −205.765 −0.783781 −0.391890 0.920012i \(-0.628179\pi\)
−0.391890 + 0.920012i \(0.628179\pi\)
\(42\) 31.8823 0.117132
\(43\) −149.549 −0.530373 −0.265187 0.964197i \(-0.585434\pi\)
−0.265187 + 0.964197i \(0.585434\pi\)
\(44\) −85.0193 −0.291299
\(45\) 137.823 0.456567
\(46\) 46.0000 0.147442
\(47\) −299.882 −0.930688 −0.465344 0.885130i \(-0.654069\pi\)
−0.465344 + 0.885130i \(0.654069\pi\)
\(48\) −48.0000 −0.144338
\(49\) −314.765 −0.917681
\(50\) 219.019 0.619480
\(51\) −54.1766 −0.148750
\(52\) 349.019 0.930774
\(53\) −295.862 −0.766788 −0.383394 0.923585i \(-0.625245\pi\)
−0.383394 + 0.923585i \(0.625245\pi\)
\(54\) −54.0000 −0.136083
\(55\) −325.490 −0.797984
\(56\) −42.5097 −0.101439
\(57\) −143.823 −0.334208
\(58\) 358.274 0.811098
\(59\) 737.450 1.62725 0.813625 0.581389i \(-0.197491\pi\)
0.813625 + 0.581389i \(0.197491\pi\)
\(60\) −183.765 −0.395398
\(61\) 550.431 1.15533 0.577667 0.816272i \(-0.303963\pi\)
0.577667 + 0.816272i \(0.303963\pi\)
\(62\) −234.274 −0.479885
\(63\) −47.8234 −0.0956378
\(64\) 64.0000 0.125000
\(65\) 1336.20 2.54976
\(66\) 127.529 0.237844
\(67\) −527.470 −0.961802 −0.480901 0.876775i \(-0.659690\pi\)
−0.480901 + 0.876775i \(0.659690\pi\)
\(68\) 72.2355 0.128821
\(69\) −69.0000 −0.120386
\(70\) −162.745 −0.277882
\(71\) −297.568 −0.497391 −0.248696 0.968582i \(-0.580002\pi\)
−0.248696 + 0.968582i \(0.580002\pi\)
\(72\) 72.0000 0.117851
\(73\) −714.313 −1.14526 −0.572630 0.819814i \(-0.694077\pi\)
−0.572630 + 0.819814i \(0.694077\pi\)
\(74\) −821.803 −1.29098
\(75\) −328.529 −0.505803
\(76\) 191.765 0.289433
\(77\) 112.942 0.167155
\(78\) −523.529 −0.759974
\(79\) −834.686 −1.18873 −0.594364 0.804196i \(-0.702596\pi\)
−0.594364 + 0.804196i \(0.702596\pi\)
\(80\) 245.019 0.342425
\(81\) 81.0000 0.111111
\(82\) −411.529 −0.554217
\(83\) 795.606 1.05216 0.526079 0.850436i \(-0.323662\pi\)
0.526079 + 0.850436i \(0.323662\pi\)
\(84\) 63.7645 0.0828247
\(85\) 276.548 0.352893
\(86\) −299.098 −0.375030
\(87\) −537.411 −0.662259
\(88\) −170.039 −0.205979
\(89\) 46.9605 0.0559303 0.0279652 0.999609i \(-0.491097\pi\)
0.0279652 + 0.999609i \(0.491097\pi\)
\(90\) 275.647 0.322841
\(91\) −463.647 −0.534103
\(92\) 92.0000 0.104257
\(93\) 351.411 0.391824
\(94\) −599.765 −0.658096
\(95\) 734.156 0.792872
\(96\) −96.0000 −0.102062
\(97\) 1037.72 1.08624 0.543118 0.839656i \(-0.317244\pi\)
0.543118 + 0.839656i \(0.317244\pi\)
\(98\) −629.529 −0.648898
\(99\) −191.294 −0.194199
\(100\) 438.039 0.438039
\(101\) −374.548 −0.369000 −0.184500 0.982833i \(-0.559066\pi\)
−0.184500 + 0.982833i \(0.559066\pi\)
\(102\) −108.353 −0.105182
\(103\) −408.883 −0.391150 −0.195575 0.980689i \(-0.562657\pi\)
−0.195575 + 0.980689i \(0.562657\pi\)
\(104\) 698.039 0.658157
\(105\) 244.118 0.226890
\(106\) −591.724 −0.542201
\(107\) 1266.51 1.14428 0.572141 0.820155i \(-0.306113\pi\)
0.572141 + 0.820155i \(0.306113\pi\)
\(108\) −108.000 −0.0962250
\(109\) −1367.57 −1.20174 −0.600868 0.799348i \(-0.705178\pi\)
−0.600868 + 0.799348i \(0.705178\pi\)
\(110\) −650.981 −0.564260
\(111\) 1232.70 1.05408
\(112\) −85.0193 −0.0717283
\(113\) 94.5703 0.0787294 0.0393647 0.999225i \(-0.487467\pi\)
0.0393647 + 0.999225i \(0.487467\pi\)
\(114\) −287.647 −0.236321
\(115\) 352.215 0.285602
\(116\) 716.548 0.573533
\(117\) 785.294 0.620516
\(118\) 1474.90 1.15064
\(119\) −95.9596 −0.0739210
\(120\) −367.529 −0.279589
\(121\) −879.232 −0.660580
\(122\) 1100.86 0.816945
\(123\) 617.294 0.452516
\(124\) −468.548 −0.339330
\(125\) −237.214 −0.169737
\(126\) −95.6468 −0.0676261
\(127\) 2078.47 1.45224 0.726119 0.687569i \(-0.241322\pi\)
0.726119 + 0.687569i \(0.241322\pi\)
\(128\) 128.000 0.0883883
\(129\) 448.648 0.306211
\(130\) 2672.39 1.80295
\(131\) 749.568 0.499924 0.249962 0.968256i \(-0.419582\pi\)
0.249962 + 0.968256i \(0.419582\pi\)
\(132\) 255.058 0.168181
\(133\) −254.745 −0.166084
\(134\) −1054.94 −0.680097
\(135\) −413.470 −0.263599
\(136\) 144.471 0.0910903
\(137\) 1443.04 0.899905 0.449953 0.893052i \(-0.351441\pi\)
0.449953 + 0.893052i \(0.351441\pi\)
\(138\) −138.000 −0.0851257
\(139\) −2228.63 −1.35992 −0.679962 0.733247i \(-0.738004\pi\)
−0.679962 + 0.733247i \(0.738004\pi\)
\(140\) −325.490 −0.196493
\(141\) 899.647 0.537333
\(142\) −595.135 −0.351709
\(143\) −1854.59 −1.08453
\(144\) 144.000 0.0833333
\(145\) 2743.25 1.57114
\(146\) −1428.63 −0.809821
\(147\) 944.294 0.529823
\(148\) −1643.61 −0.912862
\(149\) 1486.29 0.817193 0.408596 0.912715i \(-0.366018\pi\)
0.408596 + 0.912715i \(0.366018\pi\)
\(150\) −657.058 −0.357657
\(151\) 348.865 0.188015 0.0940073 0.995572i \(-0.470032\pi\)
0.0940073 + 0.995572i \(0.470032\pi\)
\(152\) 383.529 0.204660
\(153\) 162.530 0.0858808
\(154\) 225.884 0.118196
\(155\) −1793.80 −0.929560
\(156\) −1047.06 −0.537383
\(157\) 1751.14 0.890165 0.445083 0.895489i \(-0.353174\pi\)
0.445083 + 0.895489i \(0.353174\pi\)
\(158\) −1669.37 −0.840558
\(159\) 887.586 0.442705
\(160\) 490.039 0.242131
\(161\) −122.215 −0.0598256
\(162\) 162.000 0.0785674
\(163\) 420.743 0.202179 0.101089 0.994877i \(-0.467767\pi\)
0.101089 + 0.994877i \(0.467767\pi\)
\(164\) −823.058 −0.391890
\(165\) 976.471 0.460716
\(166\) 1591.21 0.743988
\(167\) 651.606 0.301933 0.150967 0.988539i \(-0.451761\pi\)
0.150967 + 0.988539i \(0.451761\pi\)
\(168\) 127.529 0.0585659
\(169\) 5416.41 2.46536
\(170\) 553.097 0.249533
\(171\) 431.470 0.192955
\(172\) −598.197 −0.265187
\(173\) −1346.35 −0.591684 −0.295842 0.955237i \(-0.595600\pi\)
−0.295842 + 0.955237i \(0.595600\pi\)
\(174\) −1074.82 −0.468288
\(175\) −581.902 −0.251358
\(176\) −340.077 −0.145649
\(177\) −2212.35 −0.939494
\(178\) 93.9209 0.0395487
\(179\) −3424.82 −1.43007 −0.715037 0.699086i \(-0.753590\pi\)
−0.715037 + 0.699086i \(0.753590\pi\)
\(180\) 551.294 0.228283
\(181\) −3256.98 −1.33751 −0.668755 0.743482i \(-0.733173\pi\)
−0.668755 + 0.743482i \(0.733173\pi\)
\(182\) −927.294 −0.377668
\(183\) −1651.29 −0.667033
\(184\) 184.000 0.0737210
\(185\) −6292.43 −2.50069
\(186\) 702.823 0.277062
\(187\) −383.838 −0.150102
\(188\) −1199.53 −0.465344
\(189\) 143.470 0.0552165
\(190\) 1468.31 0.560645
\(191\) −4033.37 −1.52798 −0.763990 0.645228i \(-0.776763\pi\)
−0.763990 + 0.645228i \(0.776763\pi\)
\(192\) −192.000 −0.0721688
\(193\) 298.784 0.111435 0.0557174 0.998447i \(-0.482255\pi\)
0.0557174 + 0.998447i \(0.482255\pi\)
\(194\) 2075.45 0.768085
\(195\) −4008.59 −1.47211
\(196\) −1259.06 −0.458840
\(197\) 4254.19 1.53857 0.769286 0.638905i \(-0.220612\pi\)
0.769286 + 0.638905i \(0.220612\pi\)
\(198\) −382.587 −0.137320
\(199\) −4731.23 −1.68537 −0.842684 0.538409i \(-0.819026\pi\)
−0.842684 + 0.538409i \(0.819026\pi\)
\(200\) 876.077 0.309740
\(201\) 1582.41 0.555297
\(202\) −749.097 −0.260922
\(203\) −951.882 −0.329109
\(204\) −216.706 −0.0743749
\(205\) −3151.02 −1.07354
\(206\) −817.766 −0.276585
\(207\) 207.000 0.0695048
\(208\) 1396.08 0.465387
\(209\) −1018.98 −0.337246
\(210\) 488.235 0.160435
\(211\) 5131.40 1.67422 0.837110 0.547035i \(-0.184243\pi\)
0.837110 + 0.547035i \(0.184243\pi\)
\(212\) −1183.45 −0.383394
\(213\) 892.703 0.287169
\(214\) 2533.02 0.809129
\(215\) −2290.15 −0.726452
\(216\) −216.000 −0.0680414
\(217\) 622.432 0.194716
\(218\) −2735.14 −0.849756
\(219\) 2142.94 0.661216
\(220\) −1301.96 −0.398992
\(221\) 1575.72 0.479614
\(222\) 2465.41 0.745349
\(223\) 2189.41 0.657461 0.328730 0.944424i \(-0.393379\pi\)
0.328730 + 0.944424i \(0.393379\pi\)
\(224\) −170.039 −0.0507196
\(225\) 985.587 0.292026
\(226\) 189.141 0.0556701
\(227\) −5853.37 −1.71146 −0.855731 0.517421i \(-0.826892\pi\)
−0.855731 + 0.517421i \(0.826892\pi\)
\(228\) −575.294 −0.167104
\(229\) −3427.17 −0.988970 −0.494485 0.869186i \(-0.664643\pi\)
−0.494485 + 0.869186i \(0.664643\pi\)
\(230\) 704.431 0.201951
\(231\) −338.826 −0.0965070
\(232\) 1433.10 0.405549
\(233\) 5723.33 1.60922 0.804609 0.593805i \(-0.202375\pi\)
0.804609 + 0.593805i \(0.202375\pi\)
\(234\) 1570.59 0.438771
\(235\) −4592.31 −1.27476
\(236\) 2949.80 0.813625
\(237\) 2504.06 0.686313
\(238\) −191.919 −0.0522701
\(239\) 3298.04 0.892604 0.446302 0.894882i \(-0.352741\pi\)
0.446302 + 0.894882i \(0.352741\pi\)
\(240\) −735.058 −0.197699
\(241\) −5391.60 −1.44109 −0.720547 0.693406i \(-0.756109\pi\)
−0.720547 + 0.693406i \(0.756109\pi\)
\(242\) −1758.46 −0.467101
\(243\) −243.000 −0.0641500
\(244\) 2201.72 0.577667
\(245\) −4820.21 −1.25695
\(246\) 1234.59 0.319977
\(247\) 4183.09 1.07759
\(248\) −937.097 −0.239942
\(249\) −2386.82 −0.607464
\(250\) −474.429 −0.120022
\(251\) 3592.11 0.903315 0.451657 0.892191i \(-0.350833\pi\)
0.451657 + 0.892191i \(0.350833\pi\)
\(252\) −191.294 −0.0478189
\(253\) −488.861 −0.121480
\(254\) 4156.94 1.02689
\(255\) −829.645 −0.203743
\(256\) 256.000 0.0625000
\(257\) 5645.61 1.37029 0.685143 0.728409i \(-0.259740\pi\)
0.685143 + 0.728409i \(0.259740\pi\)
\(258\) 897.295 0.216524
\(259\) 2183.41 0.523825
\(260\) 5344.78 1.27488
\(261\) 1612.23 0.382355
\(262\) 1499.14 0.353500
\(263\) 304.427 0.0713756 0.0356878 0.999363i \(-0.488638\pi\)
0.0356878 + 0.999363i \(0.488638\pi\)
\(264\) 510.116 0.118922
\(265\) −4530.75 −1.05027
\(266\) −509.490 −0.117439
\(267\) −140.881 −0.0322914
\(268\) −2109.88 −0.480901
\(269\) 2748.79 0.623035 0.311517 0.950240i \(-0.399163\pi\)
0.311517 + 0.950240i \(0.399163\pi\)
\(270\) −826.940 −0.186393
\(271\) −1324.28 −0.296841 −0.148421 0.988924i \(-0.547419\pi\)
−0.148421 + 0.988924i \(0.547419\pi\)
\(272\) 288.942 0.0644106
\(273\) 1390.94 0.308365
\(274\) 2886.08 0.636329
\(275\) −2327.61 −0.510401
\(276\) −276.000 −0.0601929
\(277\) 5660.74 1.22787 0.613937 0.789355i \(-0.289585\pi\)
0.613937 + 0.789355i \(0.289585\pi\)
\(278\) −4457.25 −0.961612
\(279\) −1054.23 −0.226220
\(280\) −650.981 −0.138941
\(281\) 4981.86 1.05763 0.528813 0.848739i \(-0.322637\pi\)
0.528813 + 0.848739i \(0.322637\pi\)
\(282\) 1799.29 0.379952
\(283\) −5093.51 −1.06989 −0.534943 0.844888i \(-0.679667\pi\)
−0.534943 + 0.844888i \(0.679667\pi\)
\(284\) −1190.27 −0.248696
\(285\) −2202.47 −0.457765
\(286\) −3709.17 −0.766881
\(287\) 1093.37 0.224877
\(288\) 288.000 0.0589256
\(289\) −4586.88 −0.933620
\(290\) 5486.51 1.11096
\(291\) −3113.17 −0.627139
\(292\) −2857.25 −0.572630
\(293\) −7943.46 −1.58383 −0.791914 0.610632i \(-0.790915\pi\)
−0.791914 + 0.610632i \(0.790915\pi\)
\(294\) 1888.59 0.374642
\(295\) 11293.1 2.22885
\(296\) −3287.21 −0.645491
\(297\) 573.881 0.112121
\(298\) 2972.58 0.577842
\(299\) 2006.86 0.388160
\(300\) −1314.12 −0.252902
\(301\) 794.661 0.152171
\(302\) 697.729 0.132946
\(303\) 1123.65 0.213042
\(304\) 767.058 0.144716
\(305\) 8429.13 1.58246
\(306\) 325.060 0.0607269
\(307\) 7444.59 1.38399 0.691995 0.721902i \(-0.256732\pi\)
0.691995 + 0.721902i \(0.256732\pi\)
\(308\) 451.768 0.0835775
\(309\) 1226.65 0.225831
\(310\) −3587.61 −0.657298
\(311\) −6584.66 −1.20058 −0.600292 0.799781i \(-0.704949\pi\)
−0.600292 + 0.799781i \(0.704949\pi\)
\(312\) −2094.12 −0.379987
\(313\) 2790.86 0.503990 0.251995 0.967728i \(-0.418913\pi\)
0.251995 + 0.967728i \(0.418913\pi\)
\(314\) 3502.27 0.629442
\(315\) −732.353 −0.130995
\(316\) −3338.75 −0.594364
\(317\) −2083.69 −0.369184 −0.184592 0.982815i \(-0.559096\pi\)
−0.184592 + 0.982815i \(0.559096\pi\)
\(318\) 1775.17 0.313040
\(319\) −3807.53 −0.668278
\(320\) 980.077 0.171212
\(321\) −3799.53 −0.660651
\(322\) −244.431 −0.0423031
\(323\) 865.763 0.149140
\(324\) 324.000 0.0555556
\(325\) 9555.25 1.63086
\(326\) 841.487 0.142962
\(327\) 4102.70 0.693823
\(328\) −1646.12 −0.277108
\(329\) 1593.49 0.267027
\(330\) 1952.94 0.325776
\(331\) 4687.57 0.778405 0.389203 0.921152i \(-0.372751\pi\)
0.389203 + 0.921152i \(0.372751\pi\)
\(332\) 3182.43 0.526079
\(333\) −3698.11 −0.608575
\(334\) 1303.21 0.213499
\(335\) −8077.52 −1.31738
\(336\) 255.058 0.0414124
\(337\) −5987.61 −0.967851 −0.483926 0.875109i \(-0.660789\pi\)
−0.483926 + 0.875109i \(0.660789\pi\)
\(338\) 10832.8 1.74328
\(339\) −283.711 −0.0454544
\(340\) 1106.19 0.176446
\(341\) 2489.73 0.395385
\(342\) 862.940 0.136440
\(343\) 3495.17 0.550208
\(344\) −1196.39 −0.187515
\(345\) −1056.65 −0.164892
\(346\) −2692.71 −0.418384
\(347\) −3378.30 −0.522642 −0.261321 0.965252i \(-0.584158\pi\)
−0.261321 + 0.965252i \(0.584158\pi\)
\(348\) −2149.65 −0.331130
\(349\) −844.271 −0.129492 −0.0647461 0.997902i \(-0.520624\pi\)
−0.0647461 + 0.997902i \(0.520624\pi\)
\(350\) −1163.80 −0.177737
\(351\) −2355.88 −0.358255
\(352\) −680.155 −0.102990
\(353\) 3167.13 0.477534 0.238767 0.971077i \(-0.423257\pi\)
0.238767 + 0.971077i \(0.423257\pi\)
\(354\) −4424.70 −0.664322
\(355\) −4556.86 −0.681277
\(356\) 187.842 0.0279652
\(357\) 287.879 0.0426783
\(358\) −6849.65 −1.01122
\(359\) 10484.0 1.54130 0.770650 0.637259i \(-0.219932\pi\)
0.770650 + 0.637259i \(0.219932\pi\)
\(360\) 1102.59 0.161421
\(361\) −4560.65 −0.664914
\(362\) −6513.96 −0.945763
\(363\) 2637.70 0.381386
\(364\) −1854.59 −0.267052
\(365\) −10938.8 −1.56866
\(366\) −3302.58 −0.471663
\(367\) 2349.00 0.334106 0.167053 0.985948i \(-0.446575\pi\)
0.167053 + 0.985948i \(0.446575\pi\)
\(368\) 368.000 0.0521286
\(369\) −1851.88 −0.261260
\(370\) −12584.9 −1.76826
\(371\) 1572.12 0.220002
\(372\) 1405.65 0.195912
\(373\) −12076.3 −1.67637 −0.838187 0.545384i \(-0.816384\pi\)
−0.838187 + 0.545384i \(0.816384\pi\)
\(374\) −767.677 −0.106138
\(375\) 711.643 0.0979976
\(376\) −2399.06 −0.329048
\(377\) 15630.6 2.13532
\(378\) 286.940 0.0390440
\(379\) −1987.35 −0.269349 −0.134674 0.990890i \(-0.542999\pi\)
−0.134674 + 0.990890i \(0.542999\pi\)
\(380\) 2936.63 0.396436
\(381\) −6235.41 −0.838450
\(382\) −8066.74 −1.08045
\(383\) 10474.6 1.39746 0.698731 0.715385i \(-0.253749\pi\)
0.698731 + 0.715385i \(0.253749\pi\)
\(384\) −384.000 −0.0510310
\(385\) 1729.56 0.228952
\(386\) 597.568 0.0787964
\(387\) −1345.94 −0.176791
\(388\) 4150.90 0.543118
\(389\) −3978.53 −0.518559 −0.259279 0.965802i \(-0.583485\pi\)
−0.259279 + 0.965802i \(0.583485\pi\)
\(390\) −8017.17 −1.04094
\(391\) 415.354 0.0537221
\(392\) −2518.12 −0.324449
\(393\) −2248.70 −0.288631
\(394\) 8508.38 1.08793
\(395\) −12782.1 −1.62820
\(396\) −765.174 −0.0970996
\(397\) 5539.81 0.700340 0.350170 0.936686i \(-0.386124\pi\)
0.350170 + 0.936686i \(0.386124\pi\)
\(398\) −9462.46 −1.19173
\(399\) 764.235 0.0958888
\(400\) 1752.15 0.219019
\(401\) 2345.20 0.292054 0.146027 0.989281i \(-0.453351\pi\)
0.146027 + 0.989281i \(0.453351\pi\)
\(402\) 3164.82 0.392654
\(403\) −10220.8 −1.26336
\(404\) −1498.19 −0.184500
\(405\) 1240.41 0.152189
\(406\) −1903.76 −0.232715
\(407\) 8733.65 1.06366
\(408\) −433.413 −0.0525910
\(409\) −7263.96 −0.878190 −0.439095 0.898441i \(-0.644701\pi\)
−0.439095 + 0.898441i \(0.644701\pi\)
\(410\) −6302.04 −0.759111
\(411\) −4329.11 −0.519561
\(412\) −1635.53 −0.195575
\(413\) −3918.59 −0.466880
\(414\) 414.000 0.0491473
\(415\) 12183.7 1.44114
\(416\) 2792.15 0.329078
\(417\) 6685.88 0.785153
\(418\) −2037.96 −0.238469
\(419\) 4094.89 0.477443 0.238721 0.971088i \(-0.423272\pi\)
0.238721 + 0.971088i \(0.423272\pi\)
\(420\) 976.471 0.113445
\(421\) 4677.67 0.541510 0.270755 0.962648i \(-0.412727\pi\)
0.270755 + 0.962648i \(0.412727\pi\)
\(422\) 10262.8 1.18385
\(423\) −2698.94 −0.310229
\(424\) −2366.90 −0.271101
\(425\) 1977.62 0.225715
\(426\) 1785.41 0.203059
\(427\) −2924.83 −0.331481
\(428\) 5066.04 0.572141
\(429\) 5563.76 0.626156
\(430\) −4580.31 −0.513679
\(431\) 13219.0 1.47735 0.738676 0.674060i \(-0.235451\pi\)
0.738676 + 0.674060i \(0.235451\pi\)
\(432\) −432.000 −0.0481125
\(433\) 3109.77 0.345141 0.172571 0.984997i \(-0.444793\pi\)
0.172571 + 0.984997i \(0.444793\pi\)
\(434\) 1244.86 0.137685
\(435\) −8229.76 −0.907096
\(436\) −5470.27 −0.600868
\(437\) 1102.65 0.120702
\(438\) 4285.88 0.467551
\(439\) 16425.0 1.78570 0.892851 0.450352i \(-0.148702\pi\)
0.892851 + 0.450352i \(0.148702\pi\)
\(440\) −2603.92 −0.282130
\(441\) −2832.88 −0.305894
\(442\) 3151.45 0.339138
\(443\) −4736.14 −0.507948 −0.253974 0.967211i \(-0.581738\pi\)
−0.253974 + 0.967211i \(0.581738\pi\)
\(444\) 4930.82 0.527041
\(445\) 719.139 0.0766078
\(446\) 4378.82 0.464895
\(447\) −4458.87 −0.471806
\(448\) −340.077 −0.0358642
\(449\) −12341.8 −1.29721 −0.648605 0.761125i \(-0.724647\pi\)
−0.648605 + 0.761125i \(0.724647\pi\)
\(450\) 1971.17 0.206493
\(451\) 4373.49 0.456629
\(452\) 378.281 0.0393647
\(453\) −1046.59 −0.108550
\(454\) −11706.7 −1.21019
\(455\) −7100.15 −0.731561
\(456\) −1150.59 −0.118160
\(457\) 5.80491 0.000594184 0 0.000297092 1.00000i \(-0.499905\pi\)
0.000297092 1.00000i \(0.499905\pi\)
\(458\) −6854.35 −0.699307
\(459\) −487.590 −0.0495833
\(460\) 1408.86 0.142801
\(461\) −11502.8 −1.16213 −0.581063 0.813859i \(-0.697363\pi\)
−0.581063 + 0.813859i \(0.697363\pi\)
\(462\) −677.652 −0.0682407
\(463\) 11739.5 1.17836 0.589182 0.808001i \(-0.299450\pi\)
0.589182 + 0.808001i \(0.299450\pi\)
\(464\) 2866.19 0.286767
\(465\) 5381.41 0.536681
\(466\) 11446.7 1.13789
\(467\) −12169.8 −1.20590 −0.602948 0.797781i \(-0.706007\pi\)
−0.602948 + 0.797781i \(0.706007\pi\)
\(468\) 3141.17 0.310258
\(469\) 2802.82 0.275954
\(470\) −9184.62 −0.901393
\(471\) −5253.41 −0.513937
\(472\) 5899.60 0.575320
\(473\) 3178.64 0.308994
\(474\) 5008.12 0.485296
\(475\) 5250.02 0.507131
\(476\) −383.838 −0.0369605
\(477\) −2662.76 −0.255596
\(478\) 6596.08 0.631166
\(479\) 9096.85 0.867737 0.433868 0.900976i \(-0.357148\pi\)
0.433868 + 0.900976i \(0.357148\pi\)
\(480\) −1470.12 −0.139794
\(481\) −35853.1 −3.39868
\(482\) −10783.2 −1.01901
\(483\) 366.646 0.0345403
\(484\) −3516.93 −0.330290
\(485\) 15891.4 1.48782
\(486\) −486.000 −0.0453609
\(487\) 18741.0 1.74381 0.871906 0.489674i \(-0.162884\pi\)
0.871906 + 0.489674i \(0.162884\pi\)
\(488\) 4403.44 0.408472
\(489\) −1262.23 −0.116728
\(490\) −9640.42 −0.888796
\(491\) −16903.7 −1.55367 −0.776837 0.629702i \(-0.783177\pi\)
−0.776837 + 0.629702i \(0.783177\pi\)
\(492\) 2469.17 0.226258
\(493\) 3235.01 0.295533
\(494\) 8366.19 0.761969
\(495\) −2929.41 −0.265995
\(496\) −1874.19 −0.169665
\(497\) 1581.19 0.142708
\(498\) −4773.64 −0.429542
\(499\) −2690.01 −0.241326 −0.120663 0.992694i \(-0.538502\pi\)
−0.120663 + 0.992694i \(0.538502\pi\)
\(500\) −948.858 −0.0848684
\(501\) −1954.82 −0.174321
\(502\) 7184.22 0.638740
\(503\) 2009.56 0.178135 0.0890675 0.996026i \(-0.471611\pi\)
0.0890675 + 0.996026i \(0.471611\pi\)
\(504\) −382.587 −0.0338131
\(505\) −5735.72 −0.505419
\(506\) −977.722 −0.0858993
\(507\) −16249.2 −1.42338
\(508\) 8313.88 0.726119
\(509\) 16797.6 1.46275 0.731377 0.681973i \(-0.238878\pi\)
0.731377 + 0.681973i \(0.238878\pi\)
\(510\) −1659.29 −0.144068
\(511\) 3795.65 0.328590
\(512\) 512.000 0.0441942
\(513\) −1294.41 −0.111403
\(514\) 11291.2 0.968938
\(515\) −6261.52 −0.535758
\(516\) 1794.59 0.153106
\(517\) 6373.95 0.542216
\(518\) 4366.82 0.370400
\(519\) 4039.06 0.341609
\(520\) 10689.6 0.901477
\(521\) 3387.35 0.284841 0.142421 0.989806i \(-0.454511\pi\)
0.142421 + 0.989806i \(0.454511\pi\)
\(522\) 3224.47 0.270366
\(523\) −4402.98 −0.368124 −0.184062 0.982915i \(-0.558925\pi\)
−0.184062 + 0.982915i \(0.558925\pi\)
\(524\) 2998.27 0.249962
\(525\) 1745.71 0.145122
\(526\) 608.854 0.0504702
\(527\) −2115.36 −0.174851
\(528\) 1020.23 0.0840907
\(529\) 529.000 0.0434783
\(530\) −9061.49 −0.742653
\(531\) 6637.05 0.542417
\(532\) −1018.98 −0.0830421
\(533\) −17953.9 −1.45905
\(534\) −281.763 −0.0228335
\(535\) 19395.0 1.56732
\(536\) −4219.76 −0.340048
\(537\) 10274.5 0.825654
\(538\) 5497.57 0.440552
\(539\) 6690.27 0.534639
\(540\) −1653.88 −0.131799
\(541\) −7658.32 −0.608608 −0.304304 0.952575i \(-0.598424\pi\)
−0.304304 + 0.952575i \(0.598424\pi\)
\(542\) −2648.55 −0.209899
\(543\) 9770.94 0.772212
\(544\) 577.884 0.0455452
\(545\) −20942.5 −1.64602
\(546\) 2781.88 0.218047
\(547\) 3176.92 0.248327 0.124164 0.992262i \(-0.460375\pi\)
0.124164 + 0.992262i \(0.460375\pi\)
\(548\) 5772.15 0.449953
\(549\) 4953.88 0.385112
\(550\) −4655.22 −0.360908
\(551\) 8588.03 0.663997
\(552\) −552.000 −0.0425628
\(553\) 4435.28 0.341062
\(554\) 11321.5 0.868238
\(555\) 18877.3 1.44378
\(556\) −8914.50 −0.679962
\(557\) −18450.7 −1.40356 −0.701780 0.712393i \(-0.747611\pi\)
−0.701780 + 0.712393i \(0.747611\pi\)
\(558\) −2108.47 −0.159962
\(559\) −13048.9 −0.987315
\(560\) −1301.96 −0.0982463
\(561\) 1151.52 0.0866613
\(562\) 9963.71 0.747854
\(563\) −5515.81 −0.412902 −0.206451 0.978457i \(-0.566191\pi\)
−0.206451 + 0.978457i \(0.566191\pi\)
\(564\) 3598.59 0.268666
\(565\) 1448.22 0.107836
\(566\) −10187.0 −0.756523
\(567\) −430.410 −0.0318793
\(568\) −2380.54 −0.175854
\(569\) 23452.9 1.72794 0.863968 0.503546i \(-0.167972\pi\)
0.863968 + 0.503546i \(0.167972\pi\)
\(570\) −4404.94 −0.323689
\(571\) 17731.8 1.29957 0.649784 0.760119i \(-0.274859\pi\)
0.649784 + 0.760119i \(0.274859\pi\)
\(572\) −7418.35 −0.542267
\(573\) 12100.1 0.882180
\(574\) 2186.75 0.159012
\(575\) 2518.72 0.182675
\(576\) 576.000 0.0416667
\(577\) −15350.1 −1.10751 −0.553756 0.832679i \(-0.686806\pi\)
−0.553756 + 0.832679i \(0.686806\pi\)
\(578\) −9173.75 −0.660169
\(579\) −896.352 −0.0643370
\(580\) 10973.0 0.785568
\(581\) −4227.62 −0.301878
\(582\) −6226.34 −0.443454
\(583\) 6288.50 0.446729
\(584\) −5714.50 −0.404911
\(585\) 12025.8 0.849921
\(586\) −15886.9 −1.11994
\(587\) 23291.6 1.63773 0.818866 0.573984i \(-0.194603\pi\)
0.818866 + 0.573984i \(0.194603\pi\)
\(588\) 3777.17 0.264912
\(589\) −5615.68 −0.392853
\(590\) 22586.2 1.57603
\(591\) −12762.6 −0.888295
\(592\) −6574.43 −0.456431
\(593\) −20205.9 −1.39925 −0.699626 0.714509i \(-0.746650\pi\)
−0.699626 + 0.714509i \(0.746650\pi\)
\(594\) 1147.76 0.0792815
\(595\) −1469.50 −0.101250
\(596\) 5945.16 0.408596
\(597\) 14193.7 0.973047
\(598\) 4013.72 0.274470
\(599\) 11173.3 0.762153 0.381077 0.924543i \(-0.375553\pi\)
0.381077 + 0.924543i \(0.375553\pi\)
\(600\) −2628.23 −0.178829
\(601\) −16631.6 −1.12881 −0.564405 0.825498i \(-0.690894\pi\)
−0.564405 + 0.825498i \(0.690894\pi\)
\(602\) 1589.32 0.107601
\(603\) −4747.23 −0.320601
\(604\) 1395.46 0.0940073
\(605\) −13464.3 −0.904796
\(606\) 2247.29 0.150643
\(607\) −23958.5 −1.60205 −0.801025 0.598631i \(-0.795712\pi\)
−0.801025 + 0.598631i \(0.795712\pi\)
\(608\) 1534.12 0.102330
\(609\) 2855.65 0.190011
\(610\) 16858.3 1.11897
\(611\) −26166.2 −1.73252
\(612\) 650.119 0.0429404
\(613\) 25615.0 1.68774 0.843868 0.536551i \(-0.180273\pi\)
0.843868 + 0.536551i \(0.180273\pi\)
\(614\) 14889.2 0.978629
\(615\) 9453.05 0.619811
\(616\) 903.536 0.0590982
\(617\) −11722.2 −0.764859 −0.382429 0.923985i \(-0.624912\pi\)
−0.382429 + 0.923985i \(0.624912\pi\)
\(618\) 2453.30 0.159686
\(619\) −18949.8 −1.23047 −0.615233 0.788346i \(-0.710938\pi\)
−0.615233 + 0.788346i \(0.710938\pi\)
\(620\) −7175.21 −0.464780
\(621\) −621.000 −0.0401286
\(622\) −13169.3 −0.848941
\(623\) −249.534 −0.0160472
\(624\) −4188.23 −0.268691
\(625\) −17321.3 −1.10857
\(626\) 5581.73 0.356375
\(627\) 3056.94 0.194709
\(628\) 7004.55 0.445083
\(629\) −7420.42 −0.470384
\(630\) −1464.71 −0.0926275
\(631\) −1559.47 −0.0983859 −0.0491930 0.998789i \(-0.515665\pi\)
−0.0491930 + 0.998789i \(0.515665\pi\)
\(632\) −6677.49 −0.420279
\(633\) −15394.2 −0.966611
\(634\) −4167.37 −0.261053
\(635\) 31829.1 1.98913
\(636\) 3550.34 0.221353
\(637\) −27464.7 −1.70831
\(638\) −7615.06 −0.472544
\(639\) −2678.11 −0.165797
\(640\) 1960.15 0.121065
\(641\) −5937.72 −0.365875 −0.182938 0.983125i \(-0.558561\pi\)
−0.182938 + 0.983125i \(0.558561\pi\)
\(642\) −7599.06 −0.467151
\(643\) 10389.6 0.637209 0.318604 0.947888i \(-0.396786\pi\)
0.318604 + 0.947888i \(0.396786\pi\)
\(644\) −488.861 −0.0299128
\(645\) 6870.46 0.419417
\(646\) 1731.53 0.105458
\(647\) 23853.1 1.44940 0.724701 0.689064i \(-0.241978\pi\)
0.724701 + 0.689064i \(0.241978\pi\)
\(648\) 648.000 0.0392837
\(649\) −15674.4 −0.948032
\(650\) 19110.5 1.15319
\(651\) −1867.30 −0.112420
\(652\) 1682.97 0.101089
\(653\) 13748.3 0.823912 0.411956 0.911204i \(-0.364846\pi\)
0.411956 + 0.911204i \(0.364846\pi\)
\(654\) 8205.41 0.490607
\(655\) 11478.7 0.684746
\(656\) −3292.23 −0.195945
\(657\) −6428.82 −0.381753
\(658\) 3186.97 0.188816
\(659\) −22821.1 −1.34899 −0.674495 0.738279i \(-0.735639\pi\)
−0.674495 + 0.738279i \(0.735639\pi\)
\(660\) 3905.88 0.230358
\(661\) −14131.9 −0.831567 −0.415783 0.909464i \(-0.636493\pi\)
−0.415783 + 0.909464i \(0.636493\pi\)
\(662\) 9375.14 0.550416
\(663\) −4727.17 −0.276905
\(664\) 6364.85 0.371994
\(665\) −3901.09 −0.227486
\(666\) −7396.23 −0.430327
\(667\) 4120.15 0.239180
\(668\) 2606.43 0.150967
\(669\) −6568.23 −0.379585
\(670\) −16155.0 −0.931528
\(671\) −11699.3 −0.673095
\(672\) 510.116 0.0292830
\(673\) 7960.88 0.455972 0.227986 0.973664i \(-0.426786\pi\)
0.227986 + 0.973664i \(0.426786\pi\)
\(674\) −11975.2 −0.684374
\(675\) −2956.76 −0.168601
\(676\) 21665.6 1.23268
\(677\) 10547.0 0.598751 0.299376 0.954135i \(-0.403222\pi\)
0.299376 + 0.954135i \(0.403222\pi\)
\(678\) −567.422 −0.0321411
\(679\) −5514.16 −0.311656
\(680\) 2212.39 0.124766
\(681\) 17560.1 0.988113
\(682\) 4979.46 0.279580
\(683\) 870.274 0.0487557 0.0243778 0.999703i \(-0.492240\pi\)
0.0243778 + 0.999703i \(0.492240\pi\)
\(684\) 1725.88 0.0964776
\(685\) 22098.3 1.23260
\(686\) 6990.34 0.389056
\(687\) 10281.5 0.570982
\(688\) −2392.79 −0.132593
\(689\) −25815.4 −1.42741
\(690\) −2113.29 −0.116597
\(691\) 19966.0 1.09919 0.549596 0.835431i \(-0.314782\pi\)
0.549596 + 0.835431i \(0.314782\pi\)
\(692\) −5385.41 −0.295842
\(693\) 1016.48 0.0557183
\(694\) −6756.61 −0.369564
\(695\) −34128.5 −1.86269
\(696\) −4299.29 −0.234144
\(697\) −3715.88 −0.201935
\(698\) −1688.54 −0.0915648
\(699\) −17170.0 −0.929083
\(700\) −2327.61 −0.125679
\(701\) −28944.0 −1.55949 −0.779744 0.626099i \(-0.784651\pi\)
−0.779744 + 0.626099i \(0.784651\pi\)
\(702\) −4711.76 −0.253325
\(703\) −19699.1 −1.05685
\(704\) −1360.31 −0.0728247
\(705\) 13776.9 0.735985
\(706\) 6334.26 0.337667
\(707\) 1990.24 0.105871
\(708\) −8849.40 −0.469747
\(709\) 8061.61 0.427024 0.213512 0.976940i \(-0.431510\pi\)
0.213512 + 0.976940i \(0.431510\pi\)
\(710\) −9113.73 −0.481735
\(711\) −7512.18 −0.396243
\(712\) 375.684 0.0197744
\(713\) −2694.15 −0.141510
\(714\) 575.758 0.0301781
\(715\) −28400.6 −1.48549
\(716\) −13699.3 −0.715037
\(717\) −9894.12 −0.515345
\(718\) 20968.1 1.08986
\(719\) −21709.2 −1.12603 −0.563015 0.826447i \(-0.690359\pi\)
−0.563015 + 0.826447i \(0.690359\pi\)
\(720\) 2205.17 0.114142
\(721\) 2172.69 0.112226
\(722\) −9121.30 −0.470166
\(723\) 16174.8 0.832016
\(724\) −13027.9 −0.668755
\(725\) 19617.2 1.00492
\(726\) 5275.39 0.269681
\(727\) 11612.3 0.592403 0.296202 0.955125i \(-0.404280\pi\)
0.296202 + 0.955125i \(0.404280\pi\)
\(728\) −3709.17 −0.188834
\(729\) 729.000 0.0370370
\(730\) −21877.6 −1.10921
\(731\) −2700.69 −0.136647
\(732\) −6605.17 −0.333516
\(733\) −25130.2 −1.26631 −0.633155 0.774025i \(-0.718240\pi\)
−0.633155 + 0.774025i \(0.718240\pi\)
\(734\) 4698.01 0.236249
\(735\) 14460.6 0.725699
\(736\) 736.000 0.0368605
\(737\) 11211.3 0.560344
\(738\) −3703.76 −0.184739
\(739\) −14011.9 −0.697478 −0.348739 0.937220i \(-0.613390\pi\)
−0.348739 + 0.937220i \(0.613390\pi\)
\(740\) −25169.7 −1.25035
\(741\) −12549.3 −0.622145
\(742\) 3144.25 0.155565
\(743\) −6207.90 −0.306522 −0.153261 0.988186i \(-0.548978\pi\)
−0.153261 + 0.988186i \(0.548978\pi\)
\(744\) 2811.29 0.138531
\(745\) 22760.6 1.11931
\(746\) −24152.6 −1.18537
\(747\) 7160.46 0.350719
\(748\) −1535.35 −0.0750509
\(749\) −6729.86 −0.328310
\(750\) 1423.29 0.0692948
\(751\) −8787.36 −0.426971 −0.213485 0.976946i \(-0.568482\pi\)
−0.213485 + 0.976946i \(0.568482\pi\)
\(752\) −4798.12 −0.232672
\(753\) −10776.3 −0.521529
\(754\) 31261.2 1.50990
\(755\) 5342.41 0.257524
\(756\) 573.881 0.0276082
\(757\) 35327.3 1.69616 0.848079 0.529870i \(-0.177759\pi\)
0.848079 + 0.529870i \(0.177759\pi\)
\(758\) −3974.70 −0.190458
\(759\) 1466.58 0.0701365
\(760\) 5873.25 0.280323
\(761\) 20753.0 0.988562 0.494281 0.869302i \(-0.335431\pi\)
0.494281 + 0.869302i \(0.335431\pi\)
\(762\) −12470.8 −0.592874
\(763\) 7266.86 0.344794
\(764\) −16133.5 −0.763990
\(765\) 2488.94 0.117631
\(766\) 20949.2 0.988154
\(767\) 64346.1 3.02921
\(768\) −768.000 −0.0360844
\(769\) −3409.43 −0.159879 −0.0799397 0.996800i \(-0.525473\pi\)
−0.0799397 + 0.996800i \(0.525473\pi\)
\(770\) 3459.12 0.161894
\(771\) −16936.8 −0.791134
\(772\) 1195.14 0.0557174
\(773\) −504.444 −0.0234716 −0.0117358 0.999931i \(-0.503736\pi\)
−0.0117358 + 0.999931i \(0.503736\pi\)
\(774\) −2691.89 −0.125010
\(775\) −12827.6 −0.594558
\(776\) 8301.79 0.384043
\(777\) −6550.23 −0.302430
\(778\) −7957.05 −0.366676
\(779\) −9864.58 −0.453704
\(780\) −16034.3 −0.736053
\(781\) 6324.75 0.289779
\(782\) 830.708 0.0379873
\(783\) −4836.70 −0.220753
\(784\) −5036.23 −0.229420
\(785\) 26816.4 1.21926
\(786\) −4497.41 −0.204093
\(787\) −8403.22 −0.380613 −0.190306 0.981725i \(-0.560948\pi\)
−0.190306 + 0.981725i \(0.560948\pi\)
\(788\) 17016.8 0.769286
\(789\) −913.281 −0.0412087
\(790\) −25564.3 −1.15131
\(791\) −502.519 −0.0225885
\(792\) −1530.35 −0.0686598
\(793\) 48027.7 2.15071
\(794\) 11079.6 0.495215
\(795\) 13592.2 0.606373
\(796\) −18924.9 −0.842684
\(797\) 19884.7 0.883754 0.441877 0.897076i \(-0.354313\pi\)
0.441877 + 0.897076i \(0.354313\pi\)
\(798\) 1528.47 0.0678036
\(799\) −5415.54 −0.239785
\(800\) 3504.31 0.154870
\(801\) 422.644 0.0186434
\(802\) 4690.40 0.206513
\(803\) 15182.6 0.667226
\(804\) 6329.64 0.277648
\(805\) −1871.57 −0.0819430
\(806\) −20441.6 −0.893329
\(807\) −8246.36 −0.359709
\(808\) −2996.39 −0.130461
\(809\) 33037.5 1.43577 0.717883 0.696164i \(-0.245111\pi\)
0.717883 + 0.696164i \(0.245111\pi\)
\(810\) 2480.82 0.107614
\(811\) −11788.0 −0.510399 −0.255199 0.966888i \(-0.582141\pi\)
−0.255199 + 0.966888i \(0.582141\pi\)
\(812\) −3807.53 −0.164554
\(813\) 3972.83 0.171381
\(814\) 17467.3 0.752123
\(815\) 6443.14 0.276924
\(816\) −866.826 −0.0371875
\(817\) −7169.56 −0.307015
\(818\) −14527.9 −0.620974
\(819\) −4172.82 −0.178034
\(820\) −12604.1 −0.536772
\(821\) 22695.5 0.964772 0.482386 0.875959i \(-0.339770\pi\)
0.482386 + 0.875959i \(0.339770\pi\)
\(822\) −8658.23 −0.367385
\(823\) 33804.9 1.43179 0.715896 0.698207i \(-0.246018\pi\)
0.715896 + 0.698207i \(0.246018\pi\)
\(824\) −3271.06 −0.138292
\(825\) 6982.83 0.294680
\(826\) −7837.19 −0.330134
\(827\) 25825.6 1.08591 0.542953 0.839763i \(-0.317306\pi\)
0.542953 + 0.839763i \(0.317306\pi\)
\(828\) 828.000 0.0347524
\(829\) −11682.4 −0.489442 −0.244721 0.969594i \(-0.578696\pi\)
−0.244721 + 0.969594i \(0.578696\pi\)
\(830\) 24367.4 1.01904
\(831\) −16982.2 −0.708913
\(832\) 5584.31 0.232694
\(833\) −5684.29 −0.236433
\(834\) 13371.8 0.555187
\(835\) 9978.51 0.413558
\(836\) −4075.92 −0.168623
\(837\) 3162.70 0.130608
\(838\) 8189.78 0.337603
\(839\) −20526.4 −0.844635 −0.422317 0.906448i \(-0.638783\pi\)
−0.422317 + 0.906448i \(0.638783\pi\)
\(840\) 1952.94 0.0802177
\(841\) 7701.10 0.315761
\(842\) 9355.35 0.382906
\(843\) −14945.6 −0.610620
\(844\) 20525.6 0.837110
\(845\) 82945.3 3.37681
\(846\) −5397.88 −0.219365
\(847\) 4671.98 0.189529
\(848\) −4733.79 −0.191697
\(849\) 15280.5 0.617698
\(850\) 3955.24 0.159604
\(851\) −9450.74 −0.380690
\(852\) 3570.81 0.143585
\(853\) 15186.7 0.609593 0.304797 0.952417i \(-0.401412\pi\)
0.304797 + 0.952417i \(0.401412\pi\)
\(854\) −5849.66 −0.234392
\(855\) 6607.41 0.264291
\(856\) 10132.1 0.404565
\(857\) 37394.9 1.49053 0.745266 0.666767i \(-0.232322\pi\)
0.745266 + 0.666767i \(0.232322\pi\)
\(858\) 11127.5 0.442759
\(859\) 19572.9 0.777437 0.388719 0.921356i \(-0.372918\pi\)
0.388719 + 0.921356i \(0.372918\pi\)
\(860\) −9160.61 −0.363226
\(861\) −3280.12 −0.129833
\(862\) 26438.1 1.04465
\(863\) 16086.0 0.634500 0.317250 0.948342i \(-0.397241\pi\)
0.317250 + 0.948342i \(0.397241\pi\)
\(864\) −864.000 −0.0340207
\(865\) −20617.7 −0.810429
\(866\) 6219.55 0.244052
\(867\) 13760.6 0.539026
\(868\) 2489.73 0.0973582
\(869\) 17741.1 0.692550
\(870\) −16459.5 −0.641414
\(871\) −46024.3 −1.79044
\(872\) −10940.5 −0.424878
\(873\) 9339.52 0.362079
\(874\) 2205.29 0.0853491
\(875\) 1260.49 0.0486998
\(876\) 8571.75 0.330608
\(877\) 1016.11 0.0391239 0.0195620 0.999809i \(-0.493773\pi\)
0.0195620 + 0.999809i \(0.493773\pi\)
\(878\) 32850.0 1.26268
\(879\) 23830.4 0.914424
\(880\) −5207.85 −0.199496
\(881\) 7851.35 0.300248 0.150124 0.988667i \(-0.452033\pi\)
0.150124 + 0.988667i \(0.452033\pi\)
\(882\) −5665.76 −0.216299
\(883\) 17536.2 0.668336 0.334168 0.942513i \(-0.391545\pi\)
0.334168 + 0.942513i \(0.391545\pi\)
\(884\) 6302.90 0.239807
\(885\) −33879.3 −1.28682
\(886\) −9472.29 −0.359174
\(887\) −32681.8 −1.23714 −0.618572 0.785728i \(-0.712289\pi\)
−0.618572 + 0.785728i \(0.712289\pi\)
\(888\) 9861.64 0.372674
\(889\) −11044.4 −0.416667
\(890\) 1438.28 0.0541699
\(891\) −1721.64 −0.0647331
\(892\) 8757.64 0.328730
\(893\) −14376.7 −0.538743
\(894\) −8917.75 −0.333617
\(895\) −52446.8 −1.95877
\(896\) −680.155 −0.0253598
\(897\) −6020.58 −0.224104
\(898\) −24683.7 −0.917266
\(899\) −20983.6 −0.778467
\(900\) 3942.35 0.146013
\(901\) −5342.94 −0.197557
\(902\) 8746.98 0.322885
\(903\) −2383.98 −0.0878560
\(904\) 756.562 0.0278350
\(905\) −49876.5 −1.83199
\(906\) −2093.19 −0.0767566
\(907\) 14992.8 0.548874 0.274437 0.961605i \(-0.411509\pi\)
0.274437 + 0.961605i \(0.411509\pi\)
\(908\) −23413.5 −0.855731
\(909\) −3370.94 −0.123000
\(910\) −14200.3 −0.517292
\(911\) −28483.3 −1.03589 −0.517943 0.855415i \(-0.673302\pi\)
−0.517943 + 0.855415i \(0.673302\pi\)
\(912\) −2301.17 −0.0835521
\(913\) −16910.5 −0.612985
\(914\) 11.6098 0.000420152 0
\(915\) −25287.4 −0.913635
\(916\) −13708.7 −0.494485
\(917\) −3982.98 −0.143435
\(918\) −975.179 −0.0350607
\(919\) 48476.1 1.74002 0.870011 0.493032i \(-0.164111\pi\)
0.870011 + 0.493032i \(0.164111\pi\)
\(920\) 2817.72 0.100976
\(921\) −22333.8 −0.799047
\(922\) −23005.6 −0.821747
\(923\) −25964.2 −0.925918
\(924\) −1355.30 −0.0482535
\(925\) −44997.7 −1.59948
\(926\) 23479.1 0.833229
\(927\) −3679.95 −0.130383
\(928\) 5732.39 0.202775
\(929\) 44980.1 1.58853 0.794267 0.607568i \(-0.207855\pi\)
0.794267 + 0.607568i \(0.207855\pi\)
\(930\) 10762.8 0.379491
\(931\) −15090.2 −0.531214
\(932\) 22893.3 0.804609
\(933\) 19754.0 0.693158
\(934\) −24339.7 −0.852697
\(935\) −5877.99 −0.205594
\(936\) 6282.35 0.219386
\(937\) 1296.80 0.0452131 0.0226065 0.999744i \(-0.492804\pi\)
0.0226065 + 0.999744i \(0.492804\pi\)
\(938\) 5605.65 0.195129
\(939\) −8372.59 −0.290979
\(940\) −18369.2 −0.637381
\(941\) 42721.5 1.48000 0.740000 0.672607i \(-0.234825\pi\)
0.740000 + 0.672607i \(0.234825\pi\)
\(942\) −10506.8 −0.363408
\(943\) −4732.58 −0.163430
\(944\) 11799.2 0.406813
\(945\) 2197.06 0.0756300
\(946\) 6357.29 0.218492
\(947\) −13367.3 −0.458688 −0.229344 0.973345i \(-0.573658\pi\)
−0.229344 + 0.973345i \(0.573658\pi\)
\(948\) 10016.2 0.343156
\(949\) −62327.2 −2.13196
\(950\) 10500.0 0.358596
\(951\) 6251.06 0.213149
\(952\) −767.677 −0.0261350
\(953\) 7309.26 0.248447 0.124224 0.992254i \(-0.460356\pi\)
0.124224 + 0.992254i \(0.460356\pi\)
\(954\) −5325.52 −0.180734
\(955\) −61765.8 −2.09287
\(956\) 13192.2 0.446302
\(957\) 11422.6 0.385831
\(958\) 18193.7 0.613583
\(959\) −7667.88 −0.258195
\(960\) −2940.23 −0.0988496
\(961\) −16069.9 −0.539421
\(962\) −71706.3 −2.40323
\(963\) 11398.6 0.381427
\(964\) −21566.4 −0.720547
\(965\) 4575.49 0.152632
\(966\) 733.292 0.0244237
\(967\) 41664.5 1.38556 0.692782 0.721147i \(-0.256385\pi\)
0.692782 + 0.721147i \(0.256385\pi\)
\(968\) −7033.86 −0.233550
\(969\) −2597.29 −0.0861062
\(970\) 31782.8 1.05205
\(971\) 54110.9 1.78836 0.894182 0.447705i \(-0.147758\pi\)
0.894182 + 0.447705i \(0.147758\pi\)
\(972\) −972.000 −0.0320750
\(973\) 11842.3 0.390181
\(974\) 37482.0 1.23306
\(975\) −28665.7 −0.941578
\(976\) 8806.89 0.288834
\(977\) 5877.98 0.192480 0.0962401 0.995358i \(-0.469318\pi\)
0.0962401 + 0.995358i \(0.469318\pi\)
\(978\) −2524.46 −0.0825392
\(979\) −998.137 −0.0325849
\(980\) −19280.8 −0.628474
\(981\) −12308.1 −0.400579
\(982\) −33807.4 −1.09861
\(983\) −14598.5 −0.473674 −0.236837 0.971549i \(-0.576111\pi\)
−0.236837 + 0.971549i \(0.576111\pi\)
\(984\) 4938.35 0.159989
\(985\) 65147.5 2.10738
\(986\) 6470.03 0.208973
\(987\) −4780.46 −0.154168
\(988\) 16732.4 0.538793
\(989\) −3439.63 −0.110590
\(990\) −5858.83 −0.188087
\(991\) 36254.6 1.16212 0.581062 0.813859i \(-0.302637\pi\)
0.581062 + 0.813859i \(0.302637\pi\)
\(992\) −3748.39 −0.119971
\(993\) −14062.7 −0.449412
\(994\) 3162.38 0.100910
\(995\) −72452.7 −2.30845
\(996\) −9547.28 −0.303732
\(997\) 8640.87 0.274483 0.137241 0.990538i \(-0.456176\pi\)
0.137241 + 0.990538i \(0.456176\pi\)
\(998\) −5380.02 −0.170643
\(999\) 11094.3 0.351361
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 138.4.a.e.1.2 2
3.2 odd 2 414.4.a.g.1.1 2
4.3 odd 2 1104.4.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
138.4.a.e.1.2 2 1.1 even 1 trivial
414.4.a.g.1.1 2 3.2 odd 2
1104.4.a.p.1.2 2 4.3 odd 2