Properties

Label 138.4.a.e.1.1
Level $138$
Weight $4$
Character 138.1
Self dual yes
Analytic conductor $8.142$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [138,4,Mod(1,138)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(138, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("138.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 138.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.14226358079\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 138.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} -7.31371 q^{5} -6.00000 q^{6} +17.3137 q^{7} +8.00000 q^{8} +9.00000 q^{9} -14.6274 q^{10} +69.2548 q^{11} -12.0000 q^{12} -3.25483 q^{13} +34.6274 q^{14} +21.9411 q^{15} +16.0000 q^{16} +85.9411 q^{17} +18.0000 q^{18} -19.9411 q^{19} -29.2548 q^{20} -51.9411 q^{21} +138.510 q^{22} +23.0000 q^{23} -24.0000 q^{24} -71.5097 q^{25} -6.50967 q^{26} -27.0000 q^{27} +69.2548 q^{28} -47.1371 q^{29} +43.8823 q^{30} +109.137 q^{31} +32.0000 q^{32} -207.765 q^{33} +171.882 q^{34} -126.627 q^{35} +36.0000 q^{36} +86.9016 q^{37} -39.8823 q^{38} +9.76450 q^{39} -58.5097 q^{40} +65.7645 q^{41} -103.882 q^{42} -398.451 q^{43} +277.019 q^{44} -65.8234 q^{45} +46.0000 q^{46} -164.118 q^{47} -48.0000 q^{48} -43.2355 q^{49} -143.019 q^{50} -257.823 q^{51} -13.0193 q^{52} +631.862 q^{53} -54.0000 q^{54} -506.510 q^{55} +138.510 q^{56} +59.8234 q^{57} -94.2742 q^{58} -665.450 q^{59} +87.7645 q^{60} -490.431 q^{61} +218.274 q^{62} +155.823 q^{63} +64.0000 q^{64} +23.8049 q^{65} -415.529 q^{66} +83.4701 q^{67} +343.765 q^{68} -69.0000 q^{69} -253.255 q^{70} +969.568 q^{71} +72.0000 q^{72} +462.313 q^{73} +173.803 q^{74} +214.529 q^{75} -79.7645 q^{76} +1199.06 q^{77} +19.5290 q^{78} -857.314 q^{79} -117.019 q^{80} +81.0000 q^{81} +131.529 q^{82} -1195.61 q^{83} -207.765 q^{84} -628.548 q^{85} -796.902 q^{86} +141.411 q^{87} +554.039 q^{88} -382.960 q^{89} -131.647 q^{90} -56.3532 q^{91} +92.0000 q^{92} -327.411 q^{93} -328.235 q^{94} +145.844 q^{95} -96.0000 q^{96} -817.724 q^{97} -86.4710 q^{98} +623.294 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 6 q^{3} + 8 q^{4} + 8 q^{5} - 12 q^{6} + 12 q^{7} + 16 q^{8} + 18 q^{9} + 16 q^{10} + 48 q^{11} - 24 q^{12} + 84 q^{13} + 24 q^{14} - 24 q^{15} + 32 q^{16} + 104 q^{17} + 36 q^{18} + 28 q^{19}+ \cdots + 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) −7.31371 −0.654158 −0.327079 0.944997i \(-0.606064\pi\)
−0.327079 + 0.944997i \(0.606064\pi\)
\(6\) −6.00000 −0.408248
\(7\) 17.3137 0.934852 0.467426 0.884032i \(-0.345181\pi\)
0.467426 + 0.884032i \(0.345181\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) −14.6274 −0.462560
\(11\) 69.2548 1.89828 0.949142 0.314849i \(-0.101954\pi\)
0.949142 + 0.314849i \(0.101954\pi\)
\(12\) −12.0000 −0.288675
\(13\) −3.25483 −0.0694407 −0.0347203 0.999397i \(-0.511054\pi\)
−0.0347203 + 0.999397i \(0.511054\pi\)
\(14\) 34.6274 0.661040
\(15\) 21.9411 0.377678
\(16\) 16.0000 0.250000
\(17\) 85.9411 1.22610 0.613052 0.790042i \(-0.289941\pi\)
0.613052 + 0.790042i \(0.289941\pi\)
\(18\) 18.0000 0.235702
\(19\) −19.9411 −0.240779 −0.120390 0.992727i \(-0.538414\pi\)
−0.120390 + 0.992727i \(0.538414\pi\)
\(20\) −29.2548 −0.327079
\(21\) −51.9411 −0.539737
\(22\) 138.510 1.34229
\(23\) 23.0000 0.208514
\(24\) −24.0000 −0.204124
\(25\) −71.5097 −0.572077
\(26\) −6.50967 −0.0491020
\(27\) −27.0000 −0.192450
\(28\) 69.2548 0.467426
\(29\) −47.1371 −0.301832 −0.150916 0.988547i \(-0.548222\pi\)
−0.150916 + 0.988547i \(0.548222\pi\)
\(30\) 43.8823 0.267059
\(31\) 109.137 0.632310 0.316155 0.948708i \(-0.397608\pi\)
0.316155 + 0.948708i \(0.397608\pi\)
\(32\) 32.0000 0.176777
\(33\) −207.765 −1.09597
\(34\) 171.882 0.866987
\(35\) −126.627 −0.611541
\(36\) 36.0000 0.166667
\(37\) 86.9016 0.386123 0.193061 0.981187i \(-0.438158\pi\)
0.193061 + 0.981187i \(0.438158\pi\)
\(38\) −39.8823 −0.170257
\(39\) 9.76450 0.0400916
\(40\) −58.5097 −0.231280
\(41\) 65.7645 0.250505 0.125252 0.992125i \(-0.460026\pi\)
0.125252 + 0.992125i \(0.460026\pi\)
\(42\) −103.882 −0.381652
\(43\) −398.451 −1.41310 −0.706549 0.707665i \(-0.749749\pi\)
−0.706549 + 0.707665i \(0.749749\pi\)
\(44\) 277.019 0.949142
\(45\) −65.8234 −0.218053
\(46\) 46.0000 0.147442
\(47\) −164.118 −0.509341 −0.254671 0.967028i \(-0.581967\pi\)
−0.254671 + 0.967028i \(0.581967\pi\)
\(48\) −48.0000 −0.144338
\(49\) −43.2355 −0.126051
\(50\) −143.019 −0.404520
\(51\) −257.823 −0.707892
\(52\) −13.0193 −0.0347203
\(53\) 631.862 1.63760 0.818801 0.574077i \(-0.194639\pi\)
0.818801 + 0.574077i \(0.194639\pi\)
\(54\) −54.0000 −0.136083
\(55\) −506.510 −1.24178
\(56\) 138.510 0.330520
\(57\) 59.8234 0.139014
\(58\) −94.2742 −0.213428
\(59\) −665.450 −1.46838 −0.734188 0.678946i \(-0.762437\pi\)
−0.734188 + 0.678946i \(0.762437\pi\)
\(60\) 87.7645 0.188839
\(61\) −490.431 −1.02940 −0.514698 0.857371i \(-0.672096\pi\)
−0.514698 + 0.857371i \(0.672096\pi\)
\(62\) 218.274 0.447110
\(63\) 155.823 0.311617
\(64\) 64.0000 0.125000
\(65\) 23.8049 0.0454252
\(66\) −415.529 −0.774971
\(67\) 83.4701 0.152201 0.0761007 0.997100i \(-0.475753\pi\)
0.0761007 + 0.997100i \(0.475753\pi\)
\(68\) 343.765 0.613052
\(69\) −69.0000 −0.120386
\(70\) −253.255 −0.432425
\(71\) 969.568 1.62066 0.810328 0.585977i \(-0.199289\pi\)
0.810328 + 0.585977i \(0.199289\pi\)
\(72\) 72.0000 0.117851
\(73\) 462.313 0.741228 0.370614 0.928787i \(-0.379147\pi\)
0.370614 + 0.928787i \(0.379147\pi\)
\(74\) 173.803 0.273030
\(75\) 214.529 0.330289
\(76\) −79.7645 −0.120390
\(77\) 1199.06 1.77461
\(78\) 19.5290 0.0283490
\(79\) −857.314 −1.22095 −0.610477 0.792034i \(-0.709022\pi\)
−0.610477 + 0.792034i \(0.709022\pi\)
\(80\) −117.019 −0.163539
\(81\) 81.0000 0.111111
\(82\) 131.529 0.177134
\(83\) −1195.61 −1.58114 −0.790571 0.612370i \(-0.790216\pi\)
−0.790571 + 0.612370i \(0.790216\pi\)
\(84\) −207.765 −0.269869
\(85\) −628.548 −0.802066
\(86\) −796.902 −0.999211
\(87\) 141.411 0.174263
\(88\) 554.039 0.671145
\(89\) −382.960 −0.456109 −0.228055 0.973648i \(-0.573236\pi\)
−0.228055 + 0.973648i \(0.573236\pi\)
\(90\) −131.647 −0.154187
\(91\) −56.3532 −0.0649168
\(92\) 92.0000 0.104257
\(93\) −327.411 −0.365064
\(94\) −328.235 −0.360159
\(95\) 145.844 0.157508
\(96\) −96.0000 −0.102062
\(97\) −817.724 −0.855952 −0.427976 0.903790i \(-0.640773\pi\)
−0.427976 + 0.903790i \(0.640773\pi\)
\(98\) −86.4710 −0.0891315
\(99\) 623.294 0.632761
\(100\) −286.039 −0.286039
\(101\) 530.548 0.522688 0.261344 0.965246i \(-0.415834\pi\)
0.261344 + 0.965246i \(0.415834\pi\)
\(102\) −515.647 −0.500555
\(103\) −1427.12 −1.36522 −0.682612 0.730781i \(-0.739156\pi\)
−0.682612 + 0.730781i \(0.739156\pi\)
\(104\) −26.0387 −0.0245510
\(105\) 379.882 0.353073
\(106\) 1263.72 1.15796
\(107\) 1085.49 0.980732 0.490366 0.871517i \(-0.336863\pi\)
0.490366 + 0.871517i \(0.336863\pi\)
\(108\) −108.000 −0.0962250
\(109\) −100.432 −0.0882539 −0.0441269 0.999026i \(-0.514051\pi\)
−0.0441269 + 0.999026i \(0.514051\pi\)
\(110\) −1013.02 −0.878069
\(111\) −260.705 −0.222928
\(112\) 277.019 0.233713
\(113\) 2289.43 1.90594 0.952971 0.303062i \(-0.0980088\pi\)
0.952971 + 0.303062i \(0.0980088\pi\)
\(114\) 119.647 0.0982978
\(115\) −168.215 −0.136401
\(116\) −188.548 −0.150916
\(117\) −29.2935 −0.0231469
\(118\) −1330.90 −1.03830
\(119\) 1487.96 1.14623
\(120\) 175.529 0.133529
\(121\) 3465.23 2.60348
\(122\) −980.861 −0.727893
\(123\) −197.294 −0.144629
\(124\) 436.548 0.316155
\(125\) 1437.21 1.02839
\(126\) 311.647 0.220347
\(127\) 313.531 0.219066 0.109533 0.993983i \(-0.465065\pi\)
0.109533 + 0.993983i \(0.465065\pi\)
\(128\) 128.000 0.0883883
\(129\) 1195.35 0.815852
\(130\) 47.6098 0.0321204
\(131\) −517.568 −0.345192 −0.172596 0.984993i \(-0.555215\pi\)
−0.172596 + 0.984993i \(0.555215\pi\)
\(132\) −831.058 −0.547987
\(133\) −345.255 −0.225093
\(134\) 166.940 0.107623
\(135\) 197.470 0.125893
\(136\) 687.529 0.433494
\(137\) −435.038 −0.271298 −0.135649 0.990757i \(-0.543312\pi\)
−0.135649 + 0.990757i \(0.543312\pi\)
\(138\) −138.000 −0.0851257
\(139\) 124.626 0.0760476 0.0380238 0.999277i \(-0.487894\pi\)
0.0380238 + 0.999277i \(0.487894\pi\)
\(140\) −506.510 −0.305771
\(141\) 492.353 0.294068
\(142\) 1939.14 1.14598
\(143\) −225.413 −0.131818
\(144\) 144.000 0.0833333
\(145\) 344.747 0.197446
\(146\) 924.626 0.524127
\(147\) 129.706 0.0727756
\(148\) 347.606 0.193061
\(149\) −2790.29 −1.53416 −0.767079 0.641553i \(-0.778291\pi\)
−0.767079 + 0.641553i \(0.778291\pi\)
\(150\) 429.058 0.233550
\(151\) 2883.14 1.55382 0.776908 0.629614i \(-0.216787\pi\)
0.776908 + 0.629614i \(0.216787\pi\)
\(152\) −159.529 −0.0851284
\(153\) 773.470 0.408702
\(154\) 2398.12 1.25484
\(155\) −798.197 −0.413630
\(156\) 39.0580 0.0200458
\(157\) 1524.86 0.775142 0.387571 0.921840i \(-0.373314\pi\)
0.387571 + 0.921840i \(0.373314\pi\)
\(158\) −1714.63 −0.863345
\(159\) −1895.59 −0.945470
\(160\) −234.039 −0.115640
\(161\) 398.215 0.194930
\(162\) 162.000 0.0785674
\(163\) −1796.74 −0.863385 −0.431693 0.902021i \(-0.642083\pi\)
−0.431693 + 0.902021i \(0.642083\pi\)
\(164\) 263.058 0.125252
\(165\) 1519.53 0.716940
\(166\) −2391.21 −1.11804
\(167\) −1339.61 −0.620730 −0.310365 0.950618i \(-0.600451\pi\)
−0.310365 + 0.950618i \(0.600451\pi\)
\(168\) −415.529 −0.190826
\(169\) −2186.41 −0.995178
\(170\) −1257.10 −0.567147
\(171\) −179.470 −0.0802598
\(172\) −1593.80 −0.706549
\(173\) −1753.65 −0.770678 −0.385339 0.922775i \(-0.625915\pi\)
−0.385339 + 0.922775i \(0.625915\pi\)
\(174\) 282.823 0.123223
\(175\) −1238.10 −0.534808
\(176\) 1108.08 0.474571
\(177\) 1996.35 0.847767
\(178\) −765.921 −0.322518
\(179\) −4375.18 −1.82690 −0.913452 0.406945i \(-0.866594\pi\)
−0.913452 + 0.406945i \(0.866594\pi\)
\(180\) −263.294 −0.109026
\(181\) −3619.02 −1.48619 −0.743093 0.669188i \(-0.766642\pi\)
−0.743093 + 0.669188i \(0.766642\pi\)
\(182\) −112.706 −0.0459031
\(183\) 1471.29 0.594322
\(184\) 184.000 0.0737210
\(185\) −635.573 −0.252585
\(186\) −654.823 −0.258139
\(187\) 5951.84 2.32749
\(188\) −656.471 −0.254671
\(189\) −467.470 −0.179912
\(190\) 291.687 0.111375
\(191\) 537.369 0.203574 0.101787 0.994806i \(-0.467544\pi\)
0.101787 + 0.994806i \(0.467544\pi\)
\(192\) −192.000 −0.0721688
\(193\) −334.784 −0.124861 −0.0624307 0.998049i \(-0.519885\pi\)
−0.0624307 + 0.998049i \(0.519885\pi\)
\(194\) −1635.45 −0.605249
\(195\) −71.4147 −0.0262262
\(196\) −172.942 −0.0630255
\(197\) −1674.19 −0.605488 −0.302744 0.953072i \(-0.597903\pi\)
−0.302744 + 0.953072i \(0.597903\pi\)
\(198\) 1246.59 0.447430
\(199\) 767.231 0.273304 0.136652 0.990619i \(-0.456366\pi\)
0.136652 + 0.990619i \(0.456366\pi\)
\(200\) −572.077 −0.202260
\(201\) −250.410 −0.0878736
\(202\) 1061.10 0.369597
\(203\) −816.118 −0.282169
\(204\) −1031.29 −0.353946
\(205\) −480.982 −0.163870
\(206\) −2854.23 −0.965359
\(207\) 207.000 0.0695048
\(208\) −52.0773 −0.0173602
\(209\) −1381.02 −0.457067
\(210\) 759.765 0.249661
\(211\) −4779.40 −1.55937 −0.779687 0.626170i \(-0.784622\pi\)
−0.779687 + 0.626170i \(0.784622\pi\)
\(212\) 2527.45 0.818801
\(213\) −2908.70 −0.935686
\(214\) 2170.98 0.693482
\(215\) 2914.15 0.924389
\(216\) −216.000 −0.0680414
\(217\) 1889.57 0.591116
\(218\) −200.865 −0.0624049
\(219\) −1386.94 −0.427948
\(220\) −2026.04 −0.620889
\(221\) −279.724 −0.0851415
\(222\) −521.410 −0.157634
\(223\) −797.410 −0.239455 −0.119728 0.992807i \(-0.538202\pi\)
−0.119728 + 0.992807i \(0.538202\pi\)
\(224\) 554.039 0.165260
\(225\) −643.587 −0.190692
\(226\) 4578.86 1.34770
\(227\) −5898.63 −1.72469 −0.862347 0.506317i \(-0.831006\pi\)
−0.862347 + 0.506317i \(0.831006\pi\)
\(228\) 239.294 0.0695070
\(229\) −168.826 −0.0487176 −0.0243588 0.999703i \(-0.507754\pi\)
−0.0243588 + 0.999703i \(0.507754\pi\)
\(230\) −336.431 −0.0964503
\(231\) −3597.17 −1.02457
\(232\) −377.097 −0.106714
\(233\) 4184.67 1.17660 0.588298 0.808644i \(-0.299798\pi\)
0.588298 + 0.808644i \(0.299798\pi\)
\(234\) −58.5870 −0.0163673
\(235\) 1200.31 0.333190
\(236\) −2661.80 −0.734188
\(237\) 2571.94 0.704918
\(238\) 2975.92 0.810505
\(239\) 2573.96 0.696635 0.348317 0.937377i \(-0.386753\pi\)
0.348317 + 0.937377i \(0.386753\pi\)
\(240\) 351.058 0.0944196
\(241\) −1092.40 −0.291981 −0.145990 0.989286i \(-0.546637\pi\)
−0.145990 + 0.989286i \(0.546637\pi\)
\(242\) 6930.46 1.84094
\(243\) −243.000 −0.0641500
\(244\) −1961.72 −0.514698
\(245\) 316.212 0.0824573
\(246\) −394.587 −0.102268
\(247\) 64.9051 0.0167199
\(248\) 873.097 0.223555
\(249\) 3586.82 0.912873
\(250\) 2874.43 0.727179
\(251\) −5504.11 −1.38413 −0.692065 0.721836i \(-0.743299\pi\)
−0.692065 + 0.721836i \(0.743299\pi\)
\(252\) 623.294 0.155809
\(253\) 1592.86 0.395819
\(254\) 627.061 0.154903
\(255\) 1885.65 0.463073
\(256\) 256.000 0.0625000
\(257\) 3654.39 0.886984 0.443492 0.896278i \(-0.353740\pi\)
0.443492 + 0.896278i \(0.353740\pi\)
\(258\) 2390.70 0.576894
\(259\) 1504.59 0.360968
\(260\) 95.2196 0.0227126
\(261\) −424.234 −0.100611
\(262\) −1035.14 −0.244087
\(263\) −5352.43 −1.25492 −0.627462 0.778648i \(-0.715906\pi\)
−0.627462 + 0.778648i \(0.715906\pi\)
\(264\) −1662.12 −0.387485
\(265\) −4621.25 −1.07125
\(266\) −690.510 −0.159165
\(267\) 1148.88 0.263335
\(268\) 333.881 0.0761007
\(269\) 4423.21 1.00256 0.501279 0.865286i \(-0.332863\pi\)
0.501279 + 0.865286i \(0.332863\pi\)
\(270\) 394.940 0.0890196
\(271\) −3179.72 −0.712747 −0.356374 0.934344i \(-0.615987\pi\)
−0.356374 + 0.934344i \(0.615987\pi\)
\(272\) 1375.06 0.306526
\(273\) 169.060 0.0374797
\(274\) −870.076 −0.191836
\(275\) −4952.39 −1.08596
\(276\) −276.000 −0.0601929
\(277\) 1135.26 0.246249 0.123125 0.992391i \(-0.460708\pi\)
0.123125 + 0.992391i \(0.460708\pi\)
\(278\) 249.251 0.0537738
\(279\) 982.234 0.210770
\(280\) −1013.02 −0.216212
\(281\) −2869.86 −0.609257 −0.304629 0.952471i \(-0.598532\pi\)
−0.304629 + 0.952471i \(0.598532\pi\)
\(282\) 984.706 0.207938
\(283\) 857.505 0.180118 0.0900590 0.995936i \(-0.471294\pi\)
0.0900590 + 0.995936i \(0.471294\pi\)
\(284\) 3878.27 0.810328
\(285\) −437.531 −0.0909371
\(286\) −450.826 −0.0932094
\(287\) 1138.63 0.234185
\(288\) 288.000 0.0589256
\(289\) 2472.88 0.503333
\(290\) 689.494 0.139615
\(291\) 2453.17 0.494184
\(292\) 1849.25 0.370614
\(293\) 8823.46 1.75929 0.879645 0.475631i \(-0.157780\pi\)
0.879645 + 0.475631i \(0.157780\pi\)
\(294\) 259.413 0.0514601
\(295\) 4866.91 0.960550
\(296\) 695.213 0.136515
\(297\) −1869.88 −0.365325
\(298\) −5580.58 −1.08481
\(299\) −74.8612 −0.0144794
\(300\) 858.116 0.165145
\(301\) −6898.66 −1.32104
\(302\) 5766.27 1.09871
\(303\) −1591.65 −0.301774
\(304\) −319.058 −0.0601948
\(305\) 3586.87 0.673388
\(306\) 1546.94 0.288996
\(307\) 8123.41 1.51019 0.755094 0.655617i \(-0.227591\pi\)
0.755094 + 0.655617i \(0.227591\pi\)
\(308\) 4796.23 0.887307
\(309\) 4281.35 0.788212
\(310\) −1596.39 −0.292481
\(311\) 3416.66 0.622961 0.311481 0.950252i \(-0.399175\pi\)
0.311481 + 0.950252i \(0.399175\pi\)
\(312\) 78.1160 0.0141745
\(313\) 5325.14 0.961644 0.480822 0.876818i \(-0.340338\pi\)
0.480822 + 0.876818i \(0.340338\pi\)
\(314\) 3049.73 0.548108
\(315\) −1139.65 −0.203847
\(316\) −3429.25 −0.610477
\(317\) −952.315 −0.168730 −0.0843649 0.996435i \(-0.526886\pi\)
−0.0843649 + 0.996435i \(0.526886\pi\)
\(318\) −3791.17 −0.668548
\(319\) −3264.47 −0.572963
\(320\) −468.077 −0.0817697
\(321\) −3256.47 −0.566226
\(322\) 796.431 0.137836
\(323\) −1713.76 −0.295221
\(324\) 324.000 0.0555556
\(325\) 232.752 0.0397254
\(326\) −3593.49 −0.610506
\(327\) 301.297 0.0509534
\(328\) 526.116 0.0885668
\(329\) −2841.49 −0.476159
\(330\) 3039.06 0.506953
\(331\) 5728.43 0.951248 0.475624 0.879649i \(-0.342222\pi\)
0.475624 + 0.879649i \(0.342222\pi\)
\(332\) −4782.43 −0.790571
\(333\) 782.114 0.128708
\(334\) −2679.21 −0.438922
\(335\) −610.476 −0.0995638
\(336\) −831.058 −0.134934
\(337\) −6304.39 −1.01906 −0.509528 0.860454i \(-0.670180\pi\)
−0.509528 + 0.860454i \(0.670180\pi\)
\(338\) −4372.81 −0.703697
\(339\) −6868.29 −1.10040
\(340\) −2514.19 −0.401033
\(341\) 7558.27 1.20030
\(342\) −358.940 −0.0567522
\(343\) −6687.17 −1.05269
\(344\) −3187.61 −0.499605
\(345\) 504.646 0.0787514
\(346\) −3507.29 −0.544952
\(347\) 9338.30 1.44469 0.722344 0.691534i \(-0.243065\pi\)
0.722344 + 0.691534i \(0.243065\pi\)
\(348\) 565.645 0.0871315
\(349\) 4224.27 0.647908 0.323954 0.946073i \(-0.394988\pi\)
0.323954 + 0.946073i \(0.394988\pi\)
\(350\) −2476.20 −0.378166
\(351\) 87.8805 0.0133639
\(352\) 2216.15 0.335572
\(353\) −6291.13 −0.948564 −0.474282 0.880373i \(-0.657292\pi\)
−0.474282 + 0.880373i \(0.657292\pi\)
\(354\) 3992.70 0.599462
\(355\) −7091.14 −1.06016
\(356\) −1531.84 −0.228055
\(357\) −4463.88 −0.661775
\(358\) −8750.35 −1.29182
\(359\) 12068.0 1.77416 0.887079 0.461618i \(-0.152731\pi\)
0.887079 + 0.461618i \(0.152731\pi\)
\(360\) −526.587 −0.0770933
\(361\) −6461.35 −0.942025
\(362\) −7238.04 −1.05089
\(363\) −10395.7 −1.50312
\(364\) −225.413 −0.0324584
\(365\) −3381.22 −0.484880
\(366\) 2942.58 0.420249
\(367\) 8119.00 1.15479 0.577395 0.816465i \(-0.304069\pi\)
0.577395 + 0.816465i \(0.304069\pi\)
\(368\) 368.000 0.0521286
\(369\) 591.881 0.0835015
\(370\) −1271.15 −0.178605
\(371\) 10939.9 1.53092
\(372\) −1309.65 −0.182532
\(373\) 5256.30 0.729654 0.364827 0.931075i \(-0.381128\pi\)
0.364827 + 0.931075i \(0.381128\pi\)
\(374\) 11903.7 1.64579
\(375\) −4311.64 −0.593739
\(376\) −1312.94 −0.180079
\(377\) 153.423 0.0209594
\(378\) −934.940 −0.127217
\(379\) 3375.35 0.457467 0.228734 0.973489i \(-0.426542\pi\)
0.228734 + 0.973489i \(0.426542\pi\)
\(380\) 583.374 0.0787539
\(381\) −940.592 −0.126478
\(382\) 1074.74 0.143949
\(383\) −8034.61 −1.07193 −0.535966 0.844240i \(-0.680052\pi\)
−0.535966 + 0.844240i \(0.680052\pi\)
\(384\) −384.000 −0.0510310
\(385\) −8769.56 −1.16088
\(386\) −669.568 −0.0882904
\(387\) −3586.06 −0.471032
\(388\) −3270.90 −0.427976
\(389\) 26.5264 0.00345743 0.00172872 0.999999i \(-0.499450\pi\)
0.00172872 + 0.999999i \(0.499450\pi\)
\(390\) −142.829 −0.0185447
\(391\) 1976.65 0.255661
\(392\) −345.884 −0.0445658
\(393\) 1552.70 0.199296
\(394\) −3348.38 −0.428145
\(395\) 6270.14 0.798696
\(396\) 2493.17 0.316381
\(397\) 9160.19 1.15803 0.579014 0.815318i \(-0.303438\pi\)
0.579014 + 0.815318i \(0.303438\pi\)
\(398\) 1534.46 0.193255
\(399\) 1035.76 0.129958
\(400\) −1144.15 −0.143019
\(401\) 4494.80 0.559750 0.279875 0.960036i \(-0.409707\pi\)
0.279875 + 0.960036i \(0.409707\pi\)
\(402\) −500.821 −0.0621360
\(403\) −355.223 −0.0439080
\(404\) 2122.19 0.261344
\(405\) −592.410 −0.0726842
\(406\) −1632.24 −0.199523
\(407\) 6018.35 0.732970
\(408\) −2062.59 −0.250278
\(409\) −7988.04 −0.965729 −0.482864 0.875695i \(-0.660404\pi\)
−0.482864 + 0.875695i \(0.660404\pi\)
\(410\) −961.965 −0.115873
\(411\) 1305.11 0.156634
\(412\) −5708.47 −0.682612
\(413\) −11521.4 −1.37272
\(414\) 414.000 0.0491473
\(415\) 8744.32 1.03432
\(416\) −104.155 −0.0122755
\(417\) −373.877 −0.0439061
\(418\) −2762.04 −0.323196
\(419\) −12558.9 −1.46430 −0.732150 0.681143i \(-0.761483\pi\)
−0.732150 + 0.681143i \(0.761483\pi\)
\(420\) 1519.53 0.176537
\(421\) −12609.7 −1.45976 −0.729879 0.683577i \(-0.760423\pi\)
−0.729879 + 0.683577i \(0.760423\pi\)
\(422\) −9558.81 −1.10264
\(423\) −1477.06 −0.169780
\(424\) 5054.90 0.578980
\(425\) −6145.62 −0.701427
\(426\) −5817.41 −0.661630
\(427\) −8491.17 −0.962334
\(428\) 4341.96 0.490366
\(429\) 676.239 0.0761052
\(430\) 5828.31 0.653642
\(431\) −1715.05 −0.191673 −0.0958364 0.995397i \(-0.530553\pi\)
−0.0958364 + 0.995397i \(0.530553\pi\)
\(432\) −432.000 −0.0481125
\(433\) 16686.2 1.85194 0.925969 0.377601i \(-0.123251\pi\)
0.925969 + 0.377601i \(0.123251\pi\)
\(434\) 3779.14 0.417982
\(435\) −1034.24 −0.113996
\(436\) −401.729 −0.0441269
\(437\) −458.646 −0.0502060
\(438\) −2773.88 −0.302605
\(439\) 11447.0 1.24450 0.622249 0.782819i \(-0.286219\pi\)
0.622249 + 0.782819i \(0.286219\pi\)
\(440\) −4052.08 −0.439035
\(441\) −389.119 −0.0420170
\(442\) −559.448 −0.0602042
\(443\) 12008.1 1.28786 0.643932 0.765082i \(-0.277302\pi\)
0.643932 + 0.765082i \(0.277302\pi\)
\(444\) −1042.82 −0.111464
\(445\) 2800.86 0.298368
\(446\) −1594.82 −0.169320
\(447\) 8370.87 0.885747
\(448\) 1108.08 0.116857
\(449\) 3225.83 0.339057 0.169528 0.985525i \(-0.445776\pi\)
0.169528 + 0.985525i \(0.445776\pi\)
\(450\) −1287.17 −0.134840
\(451\) 4554.51 0.475529
\(452\) 9157.72 0.952971
\(453\) −8649.41 −0.897096
\(454\) −11797.3 −1.21954
\(455\) 412.151 0.0424658
\(456\) 478.587 0.0491489
\(457\) 1318.20 0.134929 0.0674645 0.997722i \(-0.478509\pi\)
0.0674645 + 0.997722i \(0.478509\pi\)
\(458\) −337.652 −0.0344486
\(459\) −2320.41 −0.235964
\(460\) −672.861 −0.0682007
\(461\) −7837.18 −0.791787 −0.395894 0.918296i \(-0.629565\pi\)
−0.395894 + 0.918296i \(0.629565\pi\)
\(462\) −7194.35 −0.724483
\(463\) 15812.5 1.58719 0.793594 0.608448i \(-0.208208\pi\)
0.793594 + 0.608448i \(0.208208\pi\)
\(464\) −754.193 −0.0754581
\(465\) 2394.59 0.238810
\(466\) 8369.34 0.831979
\(467\) −8142.16 −0.806797 −0.403399 0.915024i \(-0.632171\pi\)
−0.403399 + 0.915024i \(0.632171\pi\)
\(468\) −117.174 −0.0115734
\(469\) 1445.18 0.142286
\(470\) 2400.62 0.235601
\(471\) −4574.59 −0.447528
\(472\) −5323.60 −0.519149
\(473\) −27594.6 −2.68246
\(474\) 5143.88 0.498452
\(475\) 1425.98 0.137744
\(476\) 5951.84 0.573114
\(477\) 5686.76 0.545867
\(478\) 5147.92 0.492595
\(479\) −2216.85 −0.211463 −0.105731 0.994395i \(-0.533718\pi\)
−0.105731 + 0.994395i \(0.533718\pi\)
\(480\) 702.116 0.0667647
\(481\) −282.850 −0.0268126
\(482\) −2184.79 −0.206462
\(483\) −1194.65 −0.112543
\(484\) 13860.9 1.30174
\(485\) 5980.60 0.559928
\(486\) −486.000 −0.0453609
\(487\) −85.0055 −0.00790958 −0.00395479 0.999992i \(-0.501259\pi\)
−0.00395479 + 0.999992i \(0.501259\pi\)
\(488\) −3923.44 −0.363947
\(489\) 5390.23 0.498476
\(490\) 632.424 0.0583061
\(491\) −1200.29 −0.110322 −0.0551611 0.998477i \(-0.517567\pi\)
−0.0551611 + 0.998477i \(0.517567\pi\)
\(492\) −789.174 −0.0723145
\(493\) −4051.01 −0.370078
\(494\) 129.810 0.0118227
\(495\) −4558.59 −0.413926
\(496\) 1746.19 0.158077
\(497\) 16786.8 1.51507
\(498\) 7173.64 0.645499
\(499\) −18846.0 −1.69071 −0.845353 0.534208i \(-0.820610\pi\)
−0.845353 + 0.534208i \(0.820610\pi\)
\(500\) 5748.86 0.514193
\(501\) 4018.82 0.358378
\(502\) −11008.2 −0.978727
\(503\) −8489.56 −0.752546 −0.376273 0.926509i \(-0.622795\pi\)
−0.376273 + 0.926509i \(0.622795\pi\)
\(504\) 1246.59 0.110173
\(505\) −3880.28 −0.341921
\(506\) 3185.72 0.279887
\(507\) 6559.22 0.574566
\(508\) 1254.12 0.109533
\(509\) 7158.36 0.623357 0.311679 0.950188i \(-0.399109\pi\)
0.311679 + 0.950188i \(0.399109\pi\)
\(510\) 3771.29 0.327442
\(511\) 8004.35 0.692939
\(512\) 512.000 0.0441942
\(513\) 538.410 0.0463380
\(514\) 7308.79 0.627192
\(515\) 10437.5 0.893072
\(516\) 4781.41 0.407926
\(517\) −11365.9 −0.966874
\(518\) 3009.18 0.255243
\(519\) 5260.94 0.444951
\(520\) 190.439 0.0160602
\(521\) −4283.35 −0.360186 −0.180093 0.983650i \(-0.557640\pi\)
−0.180093 + 0.983650i \(0.557640\pi\)
\(522\) −848.468 −0.0711426
\(523\) 19831.0 1.65803 0.829014 0.559228i \(-0.188902\pi\)
0.829014 + 0.559228i \(0.188902\pi\)
\(524\) −2070.27 −0.172596
\(525\) 3714.29 0.308771
\(526\) −10704.9 −0.887365
\(527\) 9379.36 0.775278
\(528\) −3324.23 −0.273994
\(529\) 529.000 0.0434783
\(530\) −9242.51 −0.757489
\(531\) −5989.05 −0.489459
\(532\) −1381.02 −0.112547
\(533\) −214.053 −0.0173952
\(534\) 2297.76 0.186206
\(535\) −7938.96 −0.641554
\(536\) 667.761 0.0538114
\(537\) 13125.5 1.05476
\(538\) 8846.43 0.708916
\(539\) −2994.27 −0.239281
\(540\) 789.881 0.0629464
\(541\) −15713.7 −1.24877 −0.624384 0.781117i \(-0.714650\pi\)
−0.624384 + 0.781117i \(0.714650\pi\)
\(542\) −6359.45 −0.503988
\(543\) 10857.1 0.858050
\(544\) 2750.12 0.216747
\(545\) 734.533 0.0577320
\(546\) 338.119 0.0265022
\(547\) 21143.1 1.65267 0.826337 0.563176i \(-0.190421\pi\)
0.826337 + 0.563176i \(0.190421\pi\)
\(548\) −1740.15 −0.135649
\(549\) −4413.88 −0.343132
\(550\) −9904.78 −0.767893
\(551\) 939.967 0.0726750
\(552\) −552.000 −0.0425628
\(553\) −14843.3 −1.14141
\(554\) 2270.52 0.174125
\(555\) 1906.72 0.145830
\(556\) 498.503 0.0380238
\(557\) 3746.75 0.285018 0.142509 0.989794i \(-0.454483\pi\)
0.142509 + 0.989794i \(0.454483\pi\)
\(558\) 1964.47 0.149037
\(559\) 1296.89 0.0981264
\(560\) −2026.04 −0.152885
\(561\) −17855.5 −1.34378
\(562\) −5739.71 −0.430810
\(563\) −16060.2 −1.20223 −0.601116 0.799162i \(-0.705277\pi\)
−0.601116 + 0.799162i \(0.705277\pi\)
\(564\) 1969.41 0.147034
\(565\) −16744.2 −1.24679
\(566\) 1715.01 0.127363
\(567\) 1402.41 0.103872
\(568\) 7756.54 0.572988
\(569\) 17547.1 1.29282 0.646409 0.762991i \(-0.276270\pi\)
0.646409 + 0.762991i \(0.276270\pi\)
\(570\) −875.061 −0.0643023
\(571\) −5551.81 −0.406893 −0.203446 0.979086i \(-0.565214\pi\)
−0.203446 + 0.979086i \(0.565214\pi\)
\(572\) −901.652 −0.0659090
\(573\) −1612.11 −0.117534
\(574\) 2277.25 0.165594
\(575\) −1644.72 −0.119286
\(576\) 576.000 0.0416667
\(577\) 1394.14 0.100587 0.0502937 0.998734i \(-0.483984\pi\)
0.0502937 + 0.998734i \(0.483984\pi\)
\(578\) 4945.75 0.355910
\(579\) 1004.35 0.0720888
\(580\) 1378.99 0.0987230
\(581\) −20700.4 −1.47814
\(582\) 4906.34 0.349441
\(583\) 43759.5 3.10863
\(584\) 3698.50 0.262064
\(585\) 214.244 0.0151417
\(586\) 17646.9 1.24401
\(587\) −26307.6 −1.84980 −0.924900 0.380210i \(-0.875852\pi\)
−0.924900 + 0.380210i \(0.875852\pi\)
\(588\) 518.826 0.0363878
\(589\) −2176.32 −0.152247
\(590\) 9733.81 0.679211
\(591\) 5022.57 0.349579
\(592\) 1390.43 0.0965306
\(593\) 10657.9 0.738056 0.369028 0.929418i \(-0.379691\pi\)
0.369028 + 0.929418i \(0.379691\pi\)
\(594\) −3739.76 −0.258324
\(595\) −10882.5 −0.749814
\(596\) −11161.2 −0.767079
\(597\) −2301.69 −0.157792
\(598\) −149.722 −0.0102385
\(599\) 5018.67 0.342333 0.171166 0.985242i \(-0.445246\pi\)
0.171166 + 0.985242i \(0.445246\pi\)
\(600\) 1716.23 0.116775
\(601\) 7715.55 0.523667 0.261833 0.965113i \(-0.415673\pi\)
0.261833 + 0.965113i \(0.415673\pi\)
\(602\) −13797.3 −0.934114
\(603\) 751.231 0.0507338
\(604\) 11532.5 0.776908
\(605\) −25343.7 −1.70309
\(606\) −3183.29 −0.213387
\(607\) 26998.5 1.80533 0.902664 0.430346i \(-0.141608\pi\)
0.902664 + 0.430346i \(0.141608\pi\)
\(608\) −638.116 −0.0425642
\(609\) 2448.35 0.162910
\(610\) 7173.73 0.476157
\(611\) 534.176 0.0353690
\(612\) 3093.88 0.204351
\(613\) 3756.96 0.247540 0.123770 0.992311i \(-0.460501\pi\)
0.123770 + 0.992311i \(0.460501\pi\)
\(614\) 16246.8 1.06786
\(615\) 1442.95 0.0946102
\(616\) 9592.46 0.627421
\(617\) 14186.2 0.925632 0.462816 0.886454i \(-0.346839\pi\)
0.462816 + 0.886454i \(0.346839\pi\)
\(618\) 8562.70 0.557350
\(619\) −25670.2 −1.66684 −0.833418 0.552643i \(-0.813619\pi\)
−0.833418 + 0.552643i \(0.813619\pi\)
\(620\) −3192.79 −0.206815
\(621\) −621.000 −0.0401286
\(622\) 6833.32 0.440500
\(623\) −6630.47 −0.426395
\(624\) 156.232 0.0100229
\(625\) −1572.66 −0.100650
\(626\) 10650.3 0.679985
\(627\) 4143.06 0.263888
\(628\) 6099.45 0.387571
\(629\) 7468.42 0.473427
\(630\) −2279.29 −0.144142
\(631\) −948.530 −0.0598421 −0.0299211 0.999552i \(-0.509526\pi\)
−0.0299211 + 0.999552i \(0.509526\pi\)
\(632\) −6858.51 −0.431672
\(633\) 14338.2 0.900305
\(634\) −1904.63 −0.119310
\(635\) −2293.07 −0.143304
\(636\) −7582.34 −0.472735
\(637\) 140.724 0.00875307
\(638\) −6528.94 −0.405146
\(639\) 8726.11 0.540218
\(640\) −936.155 −0.0578199
\(641\) −28678.3 −1.76712 −0.883560 0.468318i \(-0.844860\pi\)
−0.883560 + 0.468318i \(0.844860\pi\)
\(642\) −6512.94 −0.400382
\(643\) 7606.41 0.466513 0.233256 0.972415i \(-0.425062\pi\)
0.233256 + 0.972415i \(0.425062\pi\)
\(644\) 1592.86 0.0974651
\(645\) −8742.46 −0.533696
\(646\) −3427.53 −0.208753
\(647\) 546.880 0.0332304 0.0166152 0.999862i \(-0.494711\pi\)
0.0166152 + 0.999862i \(0.494711\pi\)
\(648\) 648.000 0.0392837
\(649\) −46085.6 −2.78739
\(650\) 465.504 0.0280901
\(651\) −5668.70 −0.341281
\(652\) −7186.97 −0.431693
\(653\) 2615.66 0.156751 0.0783756 0.996924i \(-0.475027\pi\)
0.0783756 + 0.996924i \(0.475027\pi\)
\(654\) 602.594 0.0360295
\(655\) 3785.34 0.225810
\(656\) 1052.23 0.0626262
\(657\) 4160.82 0.247076
\(658\) −5682.97 −0.336695
\(659\) 5101.12 0.301535 0.150767 0.988569i \(-0.451826\pi\)
0.150767 + 0.988569i \(0.451826\pi\)
\(660\) 6078.12 0.358470
\(661\) −33184.1 −1.95267 −0.976334 0.216268i \(-0.930611\pi\)
−0.976334 + 0.216268i \(0.930611\pi\)
\(662\) 11456.9 0.672634
\(663\) 839.172 0.0491565
\(664\) −9564.85 −0.559018
\(665\) 2525.09 0.147246
\(666\) 1564.23 0.0910099
\(667\) −1084.15 −0.0629364
\(668\) −5358.43 −0.310365
\(669\) 2392.23 0.138249
\(670\) −1220.95 −0.0704022
\(671\) −33964.7 −1.95409
\(672\) −1662.12 −0.0954130
\(673\) −22540.9 −1.29107 −0.645533 0.763733i \(-0.723365\pi\)
−0.645533 + 0.763733i \(0.723365\pi\)
\(674\) −12608.8 −0.720582
\(675\) 1930.76 0.110096
\(676\) −8745.62 −0.497589
\(677\) 30165.0 1.71246 0.856229 0.516596i \(-0.172801\pi\)
0.856229 + 0.516596i \(0.172801\pi\)
\(678\) −13736.6 −0.778098
\(679\) −14157.8 −0.800188
\(680\) −5028.39 −0.283573
\(681\) 17695.9 0.995753
\(682\) 15116.5 0.848742
\(683\) 417.726 0.0234024 0.0117012 0.999932i \(-0.496275\pi\)
0.0117012 + 0.999932i \(0.496275\pi\)
\(684\) −717.881 −0.0401299
\(685\) 3181.74 0.177472
\(686\) −13374.3 −0.744365
\(687\) 506.478 0.0281271
\(688\) −6375.21 −0.353274
\(689\) −2056.61 −0.113716
\(690\) 1009.29 0.0556856
\(691\) −5421.98 −0.298498 −0.149249 0.988800i \(-0.547686\pi\)
−0.149249 + 0.988800i \(0.547686\pi\)
\(692\) −7014.59 −0.385339
\(693\) 10791.5 0.591538
\(694\) 18676.6 1.02155
\(695\) −911.476 −0.0497471
\(696\) 1131.29 0.0616113
\(697\) 5651.88 0.307145
\(698\) 8448.54 0.458140
\(699\) −12554.0 −0.679308
\(700\) −4952.39 −0.267404
\(701\) 14840.0 0.799572 0.399786 0.916608i \(-0.369084\pi\)
0.399786 + 0.916608i \(0.369084\pi\)
\(702\) 175.761 0.00944968
\(703\) −1732.92 −0.0929703
\(704\) 4432.31 0.237285
\(705\) −3600.93 −0.192367
\(706\) −12582.3 −0.670736
\(707\) 9185.76 0.488637
\(708\) 7985.40 0.423884
\(709\) 15302.4 0.810569 0.405284 0.914191i \(-0.367173\pi\)
0.405284 + 0.914191i \(0.367173\pi\)
\(710\) −14182.3 −0.749649
\(711\) −7715.82 −0.406985
\(712\) −3063.68 −0.161259
\(713\) 2510.15 0.131846
\(714\) −8927.76 −0.467945
\(715\) 1648.60 0.0862298
\(716\) −17500.7 −0.913452
\(717\) −7721.88 −0.402202
\(718\) 24135.9 1.25452
\(719\) 26125.2 1.35508 0.677542 0.735484i \(-0.263045\pi\)
0.677542 + 0.735484i \(0.263045\pi\)
\(720\) −1053.17 −0.0545132
\(721\) −24708.7 −1.27628
\(722\) −12922.7 −0.666112
\(723\) 3277.19 0.168575
\(724\) −14476.1 −0.743093
\(725\) 3370.76 0.172671
\(726\) −20791.4 −1.06287
\(727\) −4928.32 −0.251419 −0.125709 0.992067i \(-0.540121\pi\)
−0.125709 + 0.992067i \(0.540121\pi\)
\(728\) −450.826 −0.0229515
\(729\) 729.000 0.0370370
\(730\) −6762.44 −0.342862
\(731\) −34243.3 −1.73261
\(732\) 5885.17 0.297161
\(733\) 16142.2 0.813405 0.406703 0.913561i \(-0.366679\pi\)
0.406703 + 0.913561i \(0.366679\pi\)
\(734\) 16238.0 0.816560
\(735\) −948.635 −0.0476067
\(736\) 736.000 0.0368605
\(737\) 5780.71 0.288922
\(738\) 1183.76 0.0590445
\(739\) −1612.09 −0.0802457 −0.0401229 0.999195i \(-0.512775\pi\)
−0.0401229 + 0.999195i \(0.512775\pi\)
\(740\) −2542.29 −0.126293
\(741\) −194.715 −0.00965323
\(742\) 21879.8 1.08252
\(743\) −33768.1 −1.66734 −0.833668 0.552265i \(-0.813764\pi\)
−0.833668 + 0.552265i \(0.813764\pi\)
\(744\) −2619.29 −0.129070
\(745\) 20407.4 1.00358
\(746\) 10512.6 0.515943
\(747\) −10760.5 −0.527048
\(748\) 23807.4 1.16375
\(749\) 18793.9 0.916840
\(750\) −8623.29 −0.419837
\(751\) −12656.6 −0.614977 −0.307488 0.951552i \(-0.599489\pi\)
−0.307488 + 0.951552i \(0.599489\pi\)
\(752\) −2625.88 −0.127335
\(753\) 16512.3 0.799127
\(754\) 306.847 0.0148206
\(755\) −21086.4 −1.01644
\(756\) −1869.88 −0.0899562
\(757\) −35451.3 −1.70211 −0.851056 0.525075i \(-0.824037\pi\)
−0.851056 + 0.525075i \(0.824037\pi\)
\(758\) 6750.70 0.323478
\(759\) −4778.58 −0.228526
\(760\) 1166.75 0.0556874
\(761\) 4234.99 0.201732 0.100866 0.994900i \(-0.467839\pi\)
0.100866 + 0.994900i \(0.467839\pi\)
\(762\) −1881.18 −0.0894332
\(763\) −1738.86 −0.0825043
\(764\) 2149.48 0.101787
\(765\) −5656.94 −0.267355
\(766\) −16069.2 −0.757970
\(767\) 2165.93 0.101965
\(768\) −768.000 −0.0360844
\(769\) 23381.4 1.09643 0.548216 0.836337i \(-0.315307\pi\)
0.548216 + 0.836337i \(0.315307\pi\)
\(770\) −17539.1 −0.820865
\(771\) −10963.2 −0.512100
\(772\) −1339.14 −0.0624307
\(773\) 8976.44 0.417672 0.208836 0.977951i \(-0.433033\pi\)
0.208836 + 0.977951i \(0.433033\pi\)
\(774\) −7172.11 −0.333070
\(775\) −7804.36 −0.361730
\(776\) −6541.79 −0.302625
\(777\) −4513.77 −0.208405
\(778\) 53.0528 0.00244478
\(779\) −1311.42 −0.0603163
\(780\) −285.659 −0.0131131
\(781\) 67147.2 3.07646
\(782\) 3953.29 0.180779
\(783\) 1272.70 0.0580877
\(784\) −691.768 −0.0315128
\(785\) −11152.4 −0.507065
\(786\) 3105.41 0.140924
\(787\) −33632.8 −1.52335 −0.761677 0.647957i \(-0.775624\pi\)
−0.761677 + 0.647957i \(0.775624\pi\)
\(788\) −6696.77 −0.302744
\(789\) 16057.3 0.724530
\(790\) 12540.3 0.564764
\(791\) 39638.5 1.78177
\(792\) 4986.35 0.223715
\(793\) 1596.27 0.0714820
\(794\) 18320.4 0.818849
\(795\) 13863.8 0.618487
\(796\) 3068.92 0.136652
\(797\) 38371.3 1.70537 0.852686 0.522424i \(-0.174972\pi\)
0.852686 + 0.522424i \(0.174972\pi\)
\(798\) 2071.53 0.0918939
\(799\) −14104.5 −0.624506
\(800\) −2288.31 −0.101130
\(801\) −3446.64 −0.152036
\(802\) 8989.60 0.395803
\(803\) 32017.4 1.40706
\(804\) −1001.64 −0.0439368
\(805\) −2912.43 −0.127515
\(806\) −710.446 −0.0310476
\(807\) −13269.6 −0.578827
\(808\) 4244.39 0.184798
\(809\) −15249.5 −0.662722 −0.331361 0.943504i \(-0.607508\pi\)
−0.331361 + 0.943504i \(0.607508\pi\)
\(810\) −1184.82 −0.0513955
\(811\) 9708.02 0.420339 0.210169 0.977665i \(-0.432598\pi\)
0.210169 + 0.977665i \(0.432598\pi\)
\(812\) −3264.47 −0.141084
\(813\) 9539.17 0.411505
\(814\) 12036.7 0.518288
\(815\) 13140.9 0.564790
\(816\) −4125.17 −0.176973
\(817\) 7945.56 0.340245
\(818\) −15976.1 −0.682873
\(819\) −507.179 −0.0216389
\(820\) −1923.93 −0.0819348
\(821\) 9028.52 0.383797 0.191899 0.981415i \(-0.438536\pi\)
0.191899 + 0.981415i \(0.438536\pi\)
\(822\) 2610.23 0.110757
\(823\) 42539.1 1.80172 0.900862 0.434105i \(-0.142935\pi\)
0.900862 + 0.434105i \(0.142935\pi\)
\(824\) −11416.9 −0.482679
\(825\) 14857.2 0.626982
\(826\) −23042.8 −0.970656
\(827\) 21526.4 0.905134 0.452567 0.891730i \(-0.350508\pi\)
0.452567 + 0.891730i \(0.350508\pi\)
\(828\) 828.000 0.0347524
\(829\) 38550.4 1.61509 0.807546 0.589804i \(-0.200795\pi\)
0.807546 + 0.589804i \(0.200795\pi\)
\(830\) 17488.6 0.731373
\(831\) −3405.77 −0.142172
\(832\) −208.309 −0.00868008
\(833\) −3715.71 −0.154552
\(834\) −747.754 −0.0310463
\(835\) 9797.49 0.406055
\(836\) −5524.08 −0.228534
\(837\) −2946.70 −0.121688
\(838\) −25117.8 −1.03542
\(839\) 30566.4 1.25777 0.628884 0.777499i \(-0.283512\pi\)
0.628884 + 0.777499i \(0.283512\pi\)
\(840\) 3039.06 0.124830
\(841\) −22167.1 −0.908897
\(842\) −25219.3 −1.03220
\(843\) 8609.57 0.351755
\(844\) −19117.6 −0.779687
\(845\) 15990.7 0.651004
\(846\) −2954.12 −0.120053
\(847\) 59996.0 2.43387
\(848\) 10109.8 0.409401
\(849\) −2572.52 −0.103991
\(850\) −12291.2 −0.495984
\(851\) 1998.74 0.0805121
\(852\) −11634.8 −0.467843
\(853\) 20617.3 0.827576 0.413788 0.910373i \(-0.364205\pi\)
0.413788 + 0.910373i \(0.364205\pi\)
\(854\) −16982.3 −0.680473
\(855\) 1312.59 0.0525026
\(856\) 8683.92 0.346741
\(857\) 1553.09 0.0619048 0.0309524 0.999521i \(-0.490146\pi\)
0.0309524 + 0.999521i \(0.490146\pi\)
\(858\) 1352.48 0.0538145
\(859\) −34732.9 −1.37959 −0.689797 0.724003i \(-0.742300\pi\)
−0.689797 + 0.724003i \(0.742300\pi\)
\(860\) 11656.6 0.462194
\(861\) −3415.88 −0.135207
\(862\) −3430.10 −0.135533
\(863\) 9162.01 0.361389 0.180694 0.983539i \(-0.442166\pi\)
0.180694 + 0.983539i \(0.442166\pi\)
\(864\) −864.000 −0.0340207
\(865\) 12825.7 0.504145
\(866\) 33372.5 1.30952
\(867\) −7418.63 −0.290600
\(868\) 7558.27 0.295558
\(869\) −59373.1 −2.31772
\(870\) −2068.48 −0.0806070
\(871\) −271.681 −0.0105690
\(872\) −803.459 −0.0312025
\(873\) −7359.52 −0.285317
\(874\) −917.292 −0.0355010
\(875\) 24883.5 0.961390
\(876\) −5547.75 −0.213974
\(877\) −5772.11 −0.222247 −0.111123 0.993807i \(-0.535445\pi\)
−0.111123 + 0.993807i \(0.535445\pi\)
\(878\) 22894.0 0.879993
\(879\) −26470.4 −1.01573
\(880\) −8104.15 −0.310444
\(881\) 9412.65 0.359955 0.179977 0.983671i \(-0.442398\pi\)
0.179977 + 0.983671i \(0.442398\pi\)
\(882\) −778.239 −0.0297105
\(883\) −45232.2 −1.72388 −0.861940 0.507011i \(-0.830750\pi\)
−0.861940 + 0.507011i \(0.830750\pi\)
\(884\) −1118.90 −0.0425708
\(885\) −14600.7 −0.554574
\(886\) 24016.3 0.910658
\(887\) 31353.8 1.18687 0.593437 0.804880i \(-0.297771\pi\)
0.593437 + 0.804880i \(0.297771\pi\)
\(888\) −2085.64 −0.0788169
\(889\) 5428.38 0.204794
\(890\) 5601.72 0.210978
\(891\) 5609.64 0.210920
\(892\) −3189.64 −0.119728
\(893\) 3272.69 0.122639
\(894\) 16741.7 0.626317
\(895\) 31998.8 1.19508
\(896\) 2216.15 0.0826301
\(897\) 224.584 0.00835967
\(898\) 6451.66 0.239749
\(899\) −5144.40 −0.190851
\(900\) −2574.35 −0.0953462
\(901\) 54302.9 2.00787
\(902\) 9109.02 0.336250
\(903\) 20696.0 0.762701
\(904\) 18315.4 0.673852
\(905\) 26468.5 0.972200
\(906\) −17298.8 −0.634343
\(907\) −8652.83 −0.316772 −0.158386 0.987377i \(-0.550629\pi\)
−0.158386 + 0.987377i \(0.550629\pi\)
\(908\) −23594.5 −0.862347
\(909\) 4774.94 0.174229
\(910\) 824.302 0.0300279
\(911\) 23107.3 0.840370 0.420185 0.907438i \(-0.361965\pi\)
0.420185 + 0.907438i \(0.361965\pi\)
\(912\) 957.174 0.0347535
\(913\) −82801.5 −3.00146
\(914\) 2636.39 0.0954092
\(915\) −10760.6 −0.388781
\(916\) −675.304 −0.0243588
\(917\) −8961.02 −0.322703
\(918\) −4640.82 −0.166852
\(919\) −42056.1 −1.50958 −0.754790 0.655966i \(-0.772261\pi\)
−0.754790 + 0.655966i \(0.772261\pi\)
\(920\) −1345.72 −0.0482252
\(921\) −24370.2 −0.871907
\(922\) −15674.4 −0.559878
\(923\) −3155.78 −0.112539
\(924\) −14388.7 −0.512287
\(925\) −6214.30 −0.220892
\(926\) 31624.9 1.12231
\(927\) −12844.1 −0.455074
\(928\) −1508.39 −0.0533569
\(929\) 1263.92 0.0446369 0.0223185 0.999751i \(-0.492895\pi\)
0.0223185 + 0.999751i \(0.492895\pi\)
\(930\) 4789.18 0.168864
\(931\) 862.164 0.0303505
\(932\) 16738.7 0.588298
\(933\) −10250.0 −0.359667
\(934\) −16284.3 −0.570492
\(935\) −43530.0 −1.52255
\(936\) −234.348 −0.00818366
\(937\) −27756.8 −0.967743 −0.483871 0.875139i \(-0.660770\pi\)
−0.483871 + 0.875139i \(0.660770\pi\)
\(938\) 2890.35 0.100611
\(939\) −15975.4 −0.555205
\(940\) 4801.24 0.166595
\(941\) −7081.47 −0.245323 −0.122662 0.992449i \(-0.539143\pi\)
−0.122662 + 0.992449i \(0.539143\pi\)
\(942\) −9149.18 −0.316450
\(943\) 1512.58 0.0522338
\(944\) −10647.2 −0.367094
\(945\) 3418.94 0.117691
\(946\) −55189.3 −1.89678
\(947\) −34048.7 −1.16836 −0.584179 0.811625i \(-0.698583\pi\)
−0.584179 + 0.811625i \(0.698583\pi\)
\(948\) 10287.8 0.352459
\(949\) −1504.75 −0.0514713
\(950\) 2851.97 0.0974000
\(951\) 2856.94 0.0974161
\(952\) 11903.7 0.405252
\(953\) −10453.3 −0.355314 −0.177657 0.984092i \(-0.556852\pi\)
−0.177657 + 0.984092i \(0.556852\pi\)
\(954\) 11373.5 0.385987
\(955\) −3930.16 −0.133170
\(956\) 10295.8 0.348317
\(957\) 9793.41 0.330801
\(958\) −4433.71 −0.149527
\(959\) −7532.12 −0.253623
\(960\) 1404.23 0.0472098
\(961\) −17880.1 −0.600185
\(962\) −565.700 −0.0189594
\(963\) 9769.41 0.326911
\(964\) −4369.58 −0.145990
\(965\) 2448.51 0.0816791
\(966\) −2389.29 −0.0795799
\(967\) −22280.5 −0.740945 −0.370473 0.928843i \(-0.620804\pi\)
−0.370473 + 0.928843i \(0.620804\pi\)
\(968\) 27721.9 0.920469
\(969\) 5141.29 0.170446
\(970\) 11961.2 0.395929
\(971\) −39430.9 −1.30319 −0.651595 0.758567i \(-0.725900\pi\)
−0.651595 + 0.758567i \(0.725900\pi\)
\(972\) −972.000 −0.0320750
\(973\) 2157.73 0.0710933
\(974\) −170.011 −0.00559292
\(975\) −698.256 −0.0229355
\(976\) −7846.89 −0.257349
\(977\) 56586.0 1.85297 0.926483 0.376337i \(-0.122817\pi\)
0.926483 + 0.376337i \(0.122817\pi\)
\(978\) 10780.5 0.352476
\(979\) −26521.9 −0.865825
\(980\) 1264.85 0.0412286
\(981\) −903.891 −0.0294180
\(982\) −2400.57 −0.0780095
\(983\) 42422.5 1.37647 0.688235 0.725488i \(-0.258386\pi\)
0.688235 + 0.725488i \(0.258386\pi\)
\(984\) −1578.35 −0.0511340
\(985\) 12244.5 0.396085
\(986\) −8102.03 −0.261685
\(987\) 8524.46 0.274910
\(988\) 259.620 0.00835994
\(989\) −9164.37 −0.294651
\(990\) −9117.17 −0.292690
\(991\) −23798.6 −0.762853 −0.381426 0.924399i \(-0.624567\pi\)
−0.381426 + 0.924399i \(0.624567\pi\)
\(992\) 3492.39 0.111778
\(993\) −17185.3 −0.549203
\(994\) 33573.6 1.07132
\(995\) −5611.31 −0.178784
\(996\) 14347.3 0.456437
\(997\) −35708.9 −1.13431 −0.567157 0.823610i \(-0.691957\pi\)
−0.567157 + 0.823610i \(0.691957\pi\)
\(998\) −37692.0 −1.19551
\(999\) −2346.34 −0.0743093
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 138.4.a.e.1.1 2
3.2 odd 2 414.4.a.g.1.2 2
4.3 odd 2 1104.4.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
138.4.a.e.1.1 2 1.1 even 1 trivial
414.4.a.g.1.2 2 3.2 odd 2
1104.4.a.p.1.1 2 4.3 odd 2