Properties

Label 138.4
Level 138
Weight 4
Dimension 394
Nonzero newspaces 4
Newform subspaces 12
Sturm bound 4224
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 12 \)
Sturm bound: \(4224\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(138))\).

Total New Old
Modular forms 1672 394 1278
Cusp forms 1496 394 1102
Eisenstein series 176 0 176

Trace form

\( 394 q + 4 q^{2} + 6 q^{3} - 8 q^{4} - 12 q^{5} - 12 q^{6} + 32 q^{7} + 16 q^{8} - 18 q^{9} + 24 q^{10} - 24 q^{11} + 24 q^{12} - 76 q^{13} - 64 q^{14} - 712 q^{15} - 32 q^{16} - 100 q^{17} + 124 q^{18}+ \cdots - 3450 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(138))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
138.4.a \(\chi_{138}(1, \cdot)\) 138.4.a.a 1 1
138.4.a.b 1
138.4.a.c 1
138.4.a.d 2
138.4.a.e 2
138.4.a.f 3
138.4.d \(\chi_{138}(137, \cdot)\) 138.4.d.a 24 1
138.4.e \(\chi_{138}(13, \cdot)\) 138.4.e.a 30 10
138.4.e.b 30
138.4.e.c 30
138.4.e.d 30
138.4.f \(\chi_{138}(5, \cdot)\) 138.4.f.a 240 10

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(138))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(138)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)