Properties

Label 138.2.f
Level $138$
Weight $2$
Character orbit 138.f
Rep. character $\chi_{138}(5,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $80$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 138.f (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 69 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(138, [\chi])\).

Total New Old
Modular forms 280 80 200
Cusp forms 200 80 120
Eisenstein series 80 0 80

Trace form

\( 80q + 4q^{3} + 8q^{4} + 4q^{6} + O(q^{10}) \) \( 80q + 4q^{3} + 8q^{4} + 4q^{6} - 4q^{12} + 8q^{13} - 22q^{15} - 8q^{16} - 28q^{18} - 66q^{21} - 4q^{24} - 48q^{25} - 38q^{27} - 44q^{30} - 16q^{31} - 22q^{33} - 44q^{37} - 24q^{39} - 44q^{43} - 16q^{46} + 4q^{48} - 76q^{49} - 8q^{52} - 6q^{54} + 64q^{55} + 66q^{57} + 36q^{58} + 22q^{60} + 88q^{61} + 110q^{63} + 8q^{64} + 88q^{66} + 44q^{67} + 82q^{69} + 112q^{70} + 28q^{72} + 52q^{73} + 136q^{75} + 82q^{78} + 88q^{79} + 36q^{81} + 44q^{82} + 22q^{84} + 20q^{85} - 10q^{87} + 8q^{93} - 56q^{94} + 4q^{96} - 132q^{97} - 66q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(138, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
138.2.f.a \(80\) \(1.102\) None \(0\) \(4\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(138, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(138, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 2}\)