# Properties

 Label 138.2.e.b.49.1 Level $138$ Weight $2$ Character 138.49 Analytic conductor $1.102$ Analytic rank $0$ Dimension $10$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$138 = 2 \cdot 3 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 138.e (of order $$11$$, degree $$10$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.10193554789$$ Analytic rank: $$0$$ Dimension: $$10$$ Coefficient field: $$\Q(\zeta_{22})$$ Defining polynomial: $$x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$$ x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

## Embedding invariants

 Embedding label 49.1 Root $$0.142315 + 0.989821i$$ of defining polynomial Character $$\chi$$ $$=$$ 138.49 Dual form 138.2.e.b.31.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.142315 - 0.989821i) q^{2} +(-0.415415 + 0.909632i) q^{3} +(-0.959493 + 0.281733i) q^{4} +(0.698939 - 0.806618i) q^{5} +(0.959493 + 0.281733i) q^{6} +(3.72270 - 2.39243i) q^{7} +(0.415415 + 0.909632i) q^{8} +(-0.654861 - 0.755750i) q^{9} +O(q^{10})$$ $$q+(-0.142315 - 0.989821i) q^{2} +(-0.415415 + 0.909632i) q^{3} +(-0.959493 + 0.281733i) q^{4} +(0.698939 - 0.806618i) q^{5} +(0.959493 + 0.281733i) q^{6} +(3.72270 - 2.39243i) q^{7} +(0.415415 + 0.909632i) q^{8} +(-0.654861 - 0.755750i) q^{9} +(-0.897877 - 0.577031i) q^{10} +(0.234769 - 1.63285i) q^{11} +(0.142315 - 0.989821i) q^{12} +(4.60260 + 2.95791i) q^{13} +(-2.89788 - 3.34433i) q^{14} +(0.443376 + 0.970858i) q^{15} +(0.841254 - 0.540641i) q^{16} +(-3.76709 - 1.10612i) q^{17} +(-0.654861 + 0.755750i) q^{18} +(-6.33409 + 1.85986i) q^{19} +(-0.443376 + 0.970858i) q^{20} +(0.629769 + 4.38014i) q^{21} -1.64964 q^{22} +(-4.78492 + 0.323343i) q^{23} -1.00000 q^{24} +(0.549456 + 3.82155i) q^{25} +(2.27279 - 4.97671i) q^{26} +(0.959493 - 0.281733i) q^{27} +(-2.89788 + 3.34433i) q^{28} +(6.14024 + 1.80294i) q^{29} +(0.897877 - 0.577031i) q^{30} +(-1.25244 - 2.74246i) q^{31} +(-0.654861 - 0.755750i) q^{32} +(1.38777 + 0.891865i) q^{33} +(-0.558746 + 3.88617i) q^{34} +(0.672158 - 4.67496i) q^{35} +(0.841254 + 0.540641i) q^{36} +(1.44774 + 1.67078i) q^{37} +(2.74236 + 6.00493i) q^{38} +(-4.60260 + 2.95791i) q^{39} +(1.02408 + 0.300696i) q^{40} +(-2.67954 + 3.09235i) q^{41} +(4.24593 - 1.24672i) q^{42} +(-1.21021 + 2.64998i) q^{43} +(0.234769 + 1.63285i) q^{44} -1.06731 q^{45} +(1.00102 + 4.69020i) q^{46} -9.62306 q^{47} +(0.142315 + 0.989821i) q^{48} +(5.22685 - 11.4452i) q^{49} +(3.70446 - 1.08773i) q^{50} +(2.57107 - 2.96717i) q^{51} +(-5.24950 - 1.54139i) q^{52} +(-1.87633 + 1.20584i) q^{53} +(-0.415415 - 0.909632i) q^{54} +(-1.15300 - 1.33063i) q^{55} +(3.72270 + 2.39243i) q^{56} +(0.939490 - 6.53430i) q^{57} +(0.910738 - 6.33432i) q^{58} +(8.20397 + 5.27237i) q^{59} +(-0.698939 - 0.806618i) q^{60} +(-0.647821 - 1.41853i) q^{61} +(-2.53631 + 1.62999i) q^{62} +(-4.24593 - 1.24672i) q^{63} +(-0.654861 + 0.755750i) q^{64} +(5.60284 - 1.64514i) q^{65} +(0.685287 - 1.50057i) q^{66} +(-1.71423 - 11.9227i) q^{67} +3.92613 q^{68} +(1.69360 - 4.48684i) q^{69} -4.72304 q^{70} +(0.749168 + 5.21058i) q^{71} +(0.415415 - 0.909632i) q^{72} +(-6.89449 + 2.02441i) q^{73} +(1.44774 - 1.67078i) q^{74} +(-3.70446 - 1.08773i) q^{75} +(5.55353 - 3.56904i) q^{76} +(-3.03252 - 6.64029i) q^{77} +(3.58282 + 4.13480i) q^{78} +(2.26617 + 1.45638i) q^{79} +(0.151894 - 1.05645i) q^{80} +(-0.142315 + 0.989821i) q^{81} +(3.44222 + 2.21218i) q^{82} +(-3.62690 - 4.18567i) q^{83} +(-1.83829 - 4.02529i) q^{84} +(-3.52518 + 2.26550i) q^{85} +(2.79524 + 0.820757i) q^{86} +(-4.19075 + 4.83639i) q^{87} +(1.58282 - 0.464758i) q^{88} +(4.70504 - 10.3026i) q^{89} +(0.151894 + 1.05645i) q^{90} +24.2107 q^{91} +(4.50000 - 1.65831i) q^{92} +3.01491 q^{93} +(1.36950 + 9.52511i) q^{94} +(-2.92694 + 6.40911i) q^{95} +(0.959493 - 0.281733i) q^{96} +(-7.84485 + 9.05344i) q^{97} +(-12.0726 - 3.54482i) q^{98} +(-1.38777 + 0.891865i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$10 q - q^{2} + q^{3} - q^{4} - 2 q^{5} + q^{6} - q^{8} - q^{9}+O(q^{10})$$ 10 * q - q^2 + q^3 - q^4 - 2 * q^5 + q^6 - q^8 - q^9 $$10 q - q^{2} + q^{3} - q^{4} - 2 q^{5} + q^{6} - q^{8} - q^{9} + 9 q^{10} + 11 q^{11} + q^{12} + 13 q^{13} - 11 q^{14} + 13 q^{15} - q^{16} - 24 q^{17} - q^{18} - 14 q^{19} - 13 q^{20} + 11 q^{21} + 22 q^{22} - 10 q^{23} - 10 q^{24} - 43 q^{25} - 9 q^{26} + q^{27} - 11 q^{28} + 13 q^{29} - 9 q^{30} + 8 q^{31} - q^{32} + 22 q^{33} + 9 q^{34} - q^{36} - 13 q^{37} - 3 q^{38} - 13 q^{39} + 9 q^{40} - 10 q^{41} - 8 q^{43} + 11 q^{44} - 2 q^{45} + q^{46} - 8 q^{47} + q^{48} + 29 q^{49} + 23 q^{50} - 9 q^{51} + 2 q^{52} - 35 q^{53} + q^{54} - 11 q^{55} + 3 q^{57} + 13 q^{58} + 37 q^{59} + 2 q^{60} - 2 q^{61} + 8 q^{62} - q^{64} + 37 q^{65} + 14 q^{67} - 2 q^{68} - q^{69} - 22 q^{70} + 44 q^{71} - q^{72} - 49 q^{73} - 13 q^{74} - 23 q^{75} + 8 q^{76} + 44 q^{77} + 20 q^{78} - 8 q^{79} - 2 q^{80} - q^{81} + 12 q^{82} - 17 q^{83} - 11 q^{84} - 37 q^{85} + 14 q^{86} - 2 q^{87} + 59 q^{89} - 2 q^{90} + 66 q^{91} + 45 q^{92} + 36 q^{93} - 19 q^{94} - 28 q^{95} + q^{96} - 21 q^{97} - 26 q^{98} - 22 q^{99}+O(q^{100})$$ 10 * q - q^2 + q^3 - q^4 - 2 * q^5 + q^6 - q^8 - q^9 + 9 * q^10 + 11 * q^11 + q^12 + 13 * q^13 - 11 * q^14 + 13 * q^15 - q^16 - 24 * q^17 - q^18 - 14 * q^19 - 13 * q^20 + 11 * q^21 + 22 * q^22 - 10 * q^23 - 10 * q^24 - 43 * q^25 - 9 * q^26 + q^27 - 11 * q^28 + 13 * q^29 - 9 * q^30 + 8 * q^31 - q^32 + 22 * q^33 + 9 * q^34 - q^36 - 13 * q^37 - 3 * q^38 - 13 * q^39 + 9 * q^40 - 10 * q^41 - 8 * q^43 + 11 * q^44 - 2 * q^45 + q^46 - 8 * q^47 + q^48 + 29 * q^49 + 23 * q^50 - 9 * q^51 + 2 * q^52 - 35 * q^53 + q^54 - 11 * q^55 + 3 * q^57 + 13 * q^58 + 37 * q^59 + 2 * q^60 - 2 * q^61 + 8 * q^62 - q^64 + 37 * q^65 + 14 * q^67 - 2 * q^68 - q^69 - 22 * q^70 + 44 * q^71 - q^72 - 49 * q^73 - 13 * q^74 - 23 * q^75 + 8 * q^76 + 44 * q^77 + 20 * q^78 - 8 * q^79 - 2 * q^80 - q^81 + 12 * q^82 - 17 * q^83 - 11 * q^84 - 37 * q^85 + 14 * q^86 - 2 * q^87 + 59 * q^89 - 2 * q^90 + 66 * q^91 + 45 * q^92 + 36 * q^93 - 19 * q^94 - 28 * q^95 + q^96 - 21 * q^97 - 26 * q^98 - 22 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/138\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$97$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{8}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.142315 0.989821i −0.100632 0.699909i
$$3$$ −0.415415 + 0.909632i −0.239840 + 0.525176i
$$4$$ −0.959493 + 0.281733i −0.479746 + 0.140866i
$$5$$ 0.698939 0.806618i 0.312575 0.360731i −0.577624 0.816303i $$-0.696020\pi$$
0.890199 + 0.455572i $$0.150565\pi$$
$$6$$ 0.959493 + 0.281733i 0.391711 + 0.115017i
$$7$$ 3.72270 2.39243i 1.40705 0.904255i 0.407090 0.913388i $$-0.366544\pi$$
0.999958 + 0.00913325i $$0.00290725\pi$$
$$8$$ 0.415415 + 0.909632i 0.146871 + 0.321603i
$$9$$ −0.654861 0.755750i −0.218287 0.251917i
$$10$$ −0.897877 0.577031i −0.283934 0.182473i
$$11$$ 0.234769 1.63285i 0.0707855 0.492324i −0.923331 0.384005i $$-0.874544\pi$$
0.994116 0.108318i $$-0.0345465\pi$$
$$12$$ 0.142315 0.989821i 0.0410828 0.285737i
$$13$$ 4.60260 + 2.95791i 1.27653 + 0.820377i 0.990456 0.137830i $$-0.0440128\pi$$
0.286075 + 0.958207i $$0.407649\pi$$
$$14$$ −2.89788 3.34433i −0.774490 0.893809i
$$15$$ 0.443376 + 0.970858i 0.114479 + 0.250675i
$$16$$ 0.841254 0.540641i 0.210313 0.135160i
$$17$$ −3.76709 1.10612i −0.913654 0.268273i −0.209076 0.977899i $$-0.567046\pi$$
−0.704578 + 0.709626i $$0.748864\pi$$
$$18$$ −0.654861 + 0.755750i −0.154352 + 0.178132i
$$19$$ −6.33409 + 1.85986i −1.45314 + 0.426680i −0.910578 0.413337i $$-0.864363\pi$$
−0.542561 + 0.840017i $$0.682545\pi$$
$$20$$ −0.443376 + 0.970858i −0.0991419 + 0.217091i
$$21$$ 0.629769 + 4.38014i 0.137427 + 0.955825i
$$22$$ −1.64964 −0.351705
$$23$$ −4.78492 + 0.323343i −0.997725 + 0.0674216i
$$24$$ −1.00000 −0.204124
$$25$$ 0.549456 + 3.82155i 0.109891 + 0.764311i
$$26$$ 2.27279 4.97671i 0.445730 0.976012i
$$27$$ 0.959493 0.281733i 0.184655 0.0542195i
$$28$$ −2.89788 + 3.34433i −0.547647 + 0.632019i
$$29$$ 6.14024 + 1.80294i 1.14021 + 0.334797i 0.796714 0.604356i $$-0.206570\pi$$
0.343499 + 0.939153i $$0.388388\pi$$
$$30$$ 0.897877 0.577031i 0.163929 0.105351i
$$31$$ −1.25244 2.74246i −0.224945 0.492561i 0.763185 0.646180i $$-0.223634\pi$$
−0.988130 + 0.153619i $$0.950907\pi$$
$$32$$ −0.654861 0.755750i −0.115764 0.133599i
$$33$$ 1.38777 + 0.891865i 0.241580 + 0.155254i
$$34$$ −0.558746 + 3.88617i −0.0958242 + 0.666472i
$$35$$ 0.672158 4.67496i 0.113615 0.790213i
$$36$$ 0.841254 + 0.540641i 0.140209 + 0.0901068i
$$37$$ 1.44774 + 1.67078i 0.238007 + 0.274674i 0.862169 0.506620i $$-0.169105\pi$$
−0.624163 + 0.781294i $$0.714560\pi$$
$$38$$ 2.74236 + 6.00493i 0.444869 + 0.974128i
$$39$$ −4.60260 + 2.95791i −0.737006 + 0.473645i
$$40$$ 1.02408 + 0.300696i 0.161921 + 0.0475442i
$$41$$ −2.67954 + 3.09235i −0.418474 + 0.482945i −0.925371 0.379062i $$-0.876247\pi$$
0.506898 + 0.862006i $$0.330792\pi$$
$$42$$ 4.24593 1.24672i 0.655161 0.192373i
$$43$$ −1.21021 + 2.64998i −0.184555 + 0.404119i −0.979183 0.202977i $$-0.934938\pi$$
0.794629 + 0.607096i $$0.207666\pi$$
$$44$$ 0.234769 + 1.63285i 0.0353927 + 0.246162i
$$45$$ −1.06731 −0.159105
$$46$$ 1.00102 + 4.69020i 0.147592 + 0.691532i
$$47$$ −9.62306 −1.40367 −0.701834 0.712341i $$-0.747635\pi$$
−0.701834 + 0.712341i $$0.747635\pi$$
$$48$$ 0.142315 + 0.989821i 0.0205414 + 0.142868i
$$49$$ 5.22685 11.4452i 0.746692 1.63503i
$$50$$ 3.70446 1.08773i 0.523890 0.153828i
$$51$$ 2.57107 2.96717i 0.360021 0.415487i
$$52$$ −5.24950 1.54139i −0.727975 0.213753i
$$53$$ −1.87633 + 1.20584i −0.257734 + 0.165635i −0.663127 0.748507i $$-0.730771\pi$$
0.405393 + 0.914142i $$0.367135\pi$$
$$54$$ −0.415415 0.909632i −0.0565308 0.123785i
$$55$$ −1.15300 1.33063i −0.155470 0.179422i
$$56$$ 3.72270 + 2.39243i 0.497467 + 0.319702i
$$57$$ 0.939490 6.53430i 0.124439 0.865489i
$$58$$ 0.910738 6.33432i 0.119586 0.831737i
$$59$$ 8.20397 + 5.27237i 1.06807 + 0.686405i 0.951771 0.306810i $$-0.0992616\pi$$
0.116296 + 0.993215i $$0.462898\pi$$
$$60$$ −0.698939 0.806618i −0.0902326 0.104134i
$$61$$ −0.647821 1.41853i −0.0829450 0.181624i 0.863615 0.504152i $$-0.168195\pi$$
−0.946560 + 0.322528i $$0.895468\pi$$
$$62$$ −2.53631 + 1.62999i −0.322111 + 0.207008i
$$63$$ −4.24593 1.24672i −0.534937 0.157072i
$$64$$ −0.654861 + 0.755750i −0.0818576 + 0.0944687i
$$65$$ 5.60284 1.64514i 0.694947 0.204055i
$$66$$ 0.685287 1.50057i 0.0843530 0.184707i
$$67$$ −1.71423 11.9227i −0.209426 1.45659i −0.775036 0.631917i $$-0.782268\pi$$
0.565610 0.824673i $$-0.308641\pi$$
$$68$$ 3.92613 0.476113
$$69$$ 1.69360 4.48684i 0.203886 0.540152i
$$70$$ −4.72304 −0.564511
$$71$$ 0.749168 + 5.21058i 0.0889098 + 0.618382i 0.984746 + 0.173997i $$0.0556684\pi$$
−0.895836 + 0.444384i $$0.853423\pi$$
$$72$$ 0.415415 0.909632i 0.0489571 0.107201i
$$73$$ −6.89449 + 2.02441i −0.806939 + 0.236939i −0.659083 0.752070i $$-0.729055\pi$$
−0.147856 + 0.989009i $$0.547237\pi$$
$$74$$ 1.44774 1.67078i 0.168296 0.194224i
$$75$$ −3.70446 1.08773i −0.427754 0.125600i
$$76$$ 5.55353 3.56904i 0.637034 0.409397i
$$77$$ −3.03252 6.64029i −0.345588 0.756731i
$$78$$ 3.58282 + 4.13480i 0.405675 + 0.468174i
$$79$$ 2.26617 + 1.45638i 0.254964 + 0.163856i 0.661879 0.749610i $$-0.269759\pi$$
−0.406915 + 0.913466i $$0.633395\pi$$
$$80$$ 0.151894 1.05645i 0.0169823 0.118114i
$$81$$ −0.142315 + 0.989821i −0.0158128 + 0.109980i
$$82$$ 3.44222 + 2.21218i 0.380129 + 0.244294i
$$83$$ −3.62690 4.18567i −0.398104 0.459436i 0.520939 0.853594i $$-0.325582\pi$$
−0.919043 + 0.394157i $$0.871036\pi$$
$$84$$ −1.83829 4.02529i −0.200574 0.439195i
$$85$$ −3.52518 + 2.26550i −0.382360 + 0.245728i
$$86$$ 2.79524 + 0.820757i 0.301419 + 0.0885045i
$$87$$ −4.19075 + 4.83639i −0.449296 + 0.518515i
$$88$$ 1.58282 0.464758i 0.168729 0.0495434i
$$89$$ 4.70504 10.3026i 0.498733 1.09207i −0.478146 0.878280i $$-0.658691\pi$$
0.976879 0.213792i $$-0.0685816\pi$$
$$90$$ 0.151894 + 1.05645i 0.0160110 + 0.111359i
$$91$$ 24.2107 2.53797
$$92$$ 4.50000 1.65831i 0.469157 0.172891i
$$93$$ 3.01491 0.312632
$$94$$ 1.36950 + 9.52511i 0.141254 + 0.982440i
$$95$$ −2.92694 + 6.40911i −0.300298 + 0.657561i
$$96$$ 0.959493 0.281733i 0.0979278 0.0287542i
$$97$$ −7.84485 + 9.05344i −0.796524 + 0.919238i −0.998185 0.0602176i $$-0.980821\pi$$
0.201661 + 0.979455i $$0.435366\pi$$
$$98$$ −12.0726 3.54482i −1.21951 0.358081i
$$99$$ −1.38777 + 0.891865i −0.139476 + 0.0896358i
$$100$$ −1.60386 3.51195i −0.160386 0.351195i
$$101$$ 12.0894 + 13.9519i 1.20294 + 1.38826i 0.900365 + 0.435135i $$0.143299\pi$$
0.302570 + 0.953127i $$0.402155\pi$$
$$102$$ −3.30287 2.12262i −0.327033 0.210171i
$$103$$ 1.62633 11.3114i 0.160247 1.11455i −0.737919 0.674889i $$-0.764191\pi$$
0.898166 0.439656i $$-0.144900\pi$$
$$104$$ −0.778622 + 5.41543i −0.0763501 + 0.531027i
$$105$$ 3.97327 + 2.55347i 0.387751 + 0.249193i
$$106$$ 1.46060 + 1.68562i 0.141866 + 0.163722i
$$107$$ 6.17478 + 13.5209i 0.596938 + 1.30711i 0.931157 + 0.364618i $$0.118800\pi$$
−0.334219 + 0.942495i $$0.608472\pi$$
$$108$$ −0.841254 + 0.540641i −0.0809497 + 0.0520232i
$$109$$ −11.7854 3.46052i −1.12884 0.331458i −0.336589 0.941652i $$-0.609273\pi$$
−0.792252 + 0.610194i $$0.791092\pi$$
$$110$$ −1.15300 + 1.33063i −0.109934 + 0.126871i
$$111$$ −2.12121 + 0.622842i −0.201336 + 0.0591176i
$$112$$ 1.83829 4.02529i 0.173702 0.380354i
$$113$$ 0.429025 + 2.98393i 0.0403593 + 0.280705i 1.00000 0.000524443i $$-0.000166935\pi$$
−0.959641 + 0.281229i $$0.909258\pi$$
$$114$$ −6.60149 −0.618286
$$115$$ −3.08355 + 4.08560i −0.287543 + 0.380984i
$$116$$ −6.39946 −0.594175
$$117$$ −0.778622 5.41543i −0.0719836 0.500657i
$$118$$ 4.05116 8.87081i 0.372940 0.816624i
$$119$$ −16.6701 + 4.89477i −1.52814 + 0.448703i
$$120$$ −0.698939 + 0.806618i −0.0638041 + 0.0736338i
$$121$$ 7.94333 + 2.33237i 0.722121 + 0.212034i
$$122$$ −1.31190 + 0.843105i −0.118774 + 0.0763311i
$$123$$ −1.69978 3.72201i −0.153264 0.335602i
$$124$$ 1.97435 + 2.27852i 0.177302 + 0.204617i
$$125$$ 7.95596 + 5.11298i 0.711603 + 0.457319i
$$126$$ −0.629769 + 4.38014i −0.0561043 + 0.390214i
$$127$$ 0.775959 5.39691i 0.0688552 0.478899i −0.925994 0.377537i $$-0.876771\pi$$
0.994850 0.101362i $$-0.0323199\pi$$
$$128$$ 0.841254 + 0.540641i 0.0743570 + 0.0477863i
$$129$$ −1.90777 2.20169i −0.167970 0.193848i
$$130$$ −2.42576 5.31168i −0.212754 0.465865i
$$131$$ −7.29997 + 4.69140i −0.637801 + 0.409890i −0.819190 0.573522i $$-0.805577\pi$$
0.181389 + 0.983411i $$0.441941\pi$$
$$132$$ −1.58282 0.464758i −0.137767 0.0404520i
$$133$$ −19.1303 + 22.0776i −1.65881 + 1.91437i
$$134$$ −11.5574 + 3.39356i −0.998406 + 0.293159i
$$135$$ 0.443376 0.970858i 0.0381597 0.0835582i
$$136$$ −0.558746 3.88617i −0.0479121 0.333236i
$$137$$ 8.98175 0.767363 0.383682 0.923465i $$-0.374656\pi$$
0.383682 + 0.923465i $$0.374656\pi$$
$$138$$ −4.68219 1.03782i −0.398575 0.0883453i
$$139$$ 3.06287 0.259789 0.129895 0.991528i $$-0.458536\pi$$
0.129895 + 0.991528i $$0.458536\pi$$
$$140$$ 0.672158 + 4.67496i 0.0568077 + 0.395106i
$$141$$ 3.99756 8.75344i 0.336656 0.737173i
$$142$$ 5.05092 1.48308i 0.423864 0.124458i
$$143$$ 5.91038 6.82094i 0.494251 0.570396i
$$144$$ −0.959493 0.281733i −0.0799577 0.0234777i
$$145$$ 5.74593 3.69269i 0.477174 0.306661i
$$146$$ 2.98499 + 6.53621i 0.247039 + 0.540941i
$$147$$ 8.23961 + 9.50901i 0.679591 + 0.784290i
$$148$$ −1.85981 1.19523i −0.152875 0.0982470i
$$149$$ 2.90507 20.2052i 0.237993 1.65528i −0.423922 0.905699i $$-0.639347\pi$$
0.661915 0.749579i $$-0.269744\pi$$
$$150$$ −0.549456 + 3.82155i −0.0448629 + 0.312029i
$$151$$ −10.6960 6.87389i −0.870427 0.559390i 0.0274562 0.999623i $$-0.491259\pi$$
−0.897883 + 0.440233i $$0.854896\pi$$
$$152$$ −4.32306 4.98908i −0.350646 0.404667i
$$153$$ 1.63097 + 3.57133i 0.131856 + 0.288725i
$$154$$ −6.14113 + 3.94666i −0.494866 + 0.318031i
$$155$$ −3.08750 0.906571i −0.247994 0.0728176i
$$156$$ 3.58282 4.13480i 0.286855 0.331049i
$$157$$ 1.09842 0.322526i 0.0876638 0.0257404i −0.237607 0.971361i $$-0.576363\pi$$
0.325270 + 0.945621i $$0.394545\pi$$
$$158$$ 1.11905 2.45037i 0.0890266 0.194941i
$$159$$ −0.317418 2.20769i −0.0251729 0.175082i
$$160$$ −1.06731 −0.0843782
$$161$$ −17.0392 + 12.6513i −1.34288 + 0.997063i
$$162$$ 1.00000 0.0785674
$$163$$ −0.683592 4.75449i −0.0535431 0.372400i −0.998922 0.0464260i $$-0.985217\pi$$
0.945379 0.325974i $$-0.105692\pi$$
$$164$$ 1.69978 3.72201i 0.132731 0.290640i
$$165$$ 1.68936 0.496041i 0.131516 0.0386167i
$$166$$ −3.62690 + 4.18567i −0.281502 + 0.324871i
$$167$$ −11.2720 3.30976i −0.872254 0.256117i −0.185180 0.982705i $$-0.559287\pi$$
−0.687074 + 0.726588i $$0.741105\pi$$
$$168$$ −3.72270 + 2.39243i −0.287212 + 0.184580i
$$169$$ 7.03429 + 15.4029i 0.541099 + 1.18484i
$$170$$ 2.74412 + 3.16689i 0.210465 + 0.242889i
$$171$$ 5.55353 + 3.56904i 0.424689 + 0.272931i
$$172$$ 0.414598 2.88359i 0.0316128 0.219872i
$$173$$ 0.728537 5.06708i 0.0553896 0.385243i −0.943203 0.332216i $$-0.892204\pi$$
0.998593 0.0530276i $$-0.0168871\pi$$
$$174$$ 5.38357 + 3.45981i 0.408127 + 0.262287i
$$175$$ 11.1883 + 12.9120i 0.845754 + 0.976052i
$$176$$ −0.685287 1.50057i −0.0516554 0.113110i
$$177$$ −8.20397 + 5.27237i −0.616648 + 0.396296i
$$178$$ −10.8673 3.19093i −0.814540 0.239171i
$$179$$ 12.2769 14.1683i 0.917619 1.05899i −0.0804426 0.996759i $$-0.525633\pi$$
0.998062 0.0622298i $$-0.0198212\pi$$
$$180$$ 1.02408 0.300696i 0.0763301 0.0224125i
$$181$$ −3.01827 + 6.60909i −0.224346 + 0.491250i −0.988015 0.154359i $$-0.950669\pi$$
0.763669 + 0.645608i $$0.223396\pi$$
$$182$$ −3.44554 23.9643i −0.255401 1.77635i
$$183$$ 1.55946 0.115278
$$184$$ −2.28185 4.21819i −0.168220 0.310969i
$$185$$ 2.35956 0.173478
$$186$$ −0.429067 2.98423i −0.0314607 0.218814i
$$187$$ −2.69052 + 5.89142i −0.196751 + 0.430824i
$$188$$ 9.23326 2.71113i 0.673404 0.197729i
$$189$$ 2.89788 3.34433i 0.210790 0.243264i
$$190$$ 6.76043 + 1.98504i 0.490453 + 0.144010i
$$191$$ 21.1841 13.6142i 1.53283 0.985090i 0.543499 0.839410i $$-0.317099\pi$$
0.989332 0.145681i $$-0.0465372\pi$$
$$192$$ −0.415415 0.909632i −0.0299800 0.0656470i
$$193$$ −11.0715 12.7772i −0.796948 0.919727i 0.201262 0.979537i $$-0.435496\pi$$
−0.998210 + 0.0598109i $$0.980950\pi$$
$$194$$ 10.0777 + 6.47656i 0.723539 + 0.464990i
$$195$$ −0.831030 + 5.77994i −0.0595113 + 0.413910i
$$196$$ −1.79064 + 12.4542i −0.127903 + 0.889583i
$$197$$ −10.8033 6.94289i −0.769706 0.494660i 0.0958965 0.995391i $$-0.469428\pi$$
−0.865603 + 0.500731i $$0.833065\pi$$
$$198$$ 1.08029 + 1.24672i 0.0767727 + 0.0886004i
$$199$$ 5.65154 + 12.3751i 0.400627 + 0.877251i 0.997206 + 0.0746967i $$0.0237989\pi$$
−0.596579 + 0.802554i $$0.703474\pi$$
$$200$$ −3.24796 + 2.08733i −0.229665 + 0.147597i
$$201$$ 11.5574 + 3.39356i 0.815195 + 0.239363i
$$202$$ 12.0894 13.9519i 0.850604 0.981649i
$$203$$ 27.1717 7.97832i 1.90708 0.559968i
$$204$$ −1.63097 + 3.57133i −0.114191 + 0.250043i
$$205$$ 0.621515 + 4.32273i 0.0434085 + 0.301913i
$$206$$ −11.4277 −0.796207
$$207$$ 3.37782 + 3.40446i 0.234775 + 0.236626i
$$208$$ 5.47112 0.379354
$$209$$ 1.54982 + 10.7793i 0.107204 + 0.745617i
$$210$$ 1.96202 4.29622i 0.135392 0.296468i
$$211$$ 20.2858 5.95646i 1.39654 0.410060i 0.505042 0.863095i $$-0.331477\pi$$
0.891493 + 0.453035i $$0.149659\pi$$
$$212$$ 1.46060 1.68562i 0.100314 0.115769i
$$213$$ −5.05092 1.48308i −0.346083 0.101619i
$$214$$ 12.5045 8.03615i 0.854790 0.549340i
$$215$$ 1.29166 + 2.82835i 0.0880908 + 0.192892i
$$216$$ 0.654861 + 0.755750i 0.0445576 + 0.0514222i
$$217$$ −11.2236 7.21298i −0.761909 0.489649i
$$218$$ −1.74805 + 12.1580i −0.118393 + 0.823442i
$$219$$ 1.02261 7.11242i 0.0691017 0.480613i
$$220$$ 1.48118 + 0.951895i 0.0998610 + 0.0641768i
$$221$$ −14.0666 16.2337i −0.946223 1.09200i
$$222$$ 0.918382 + 2.01098i 0.0616378 + 0.134968i
$$223$$ −2.14678 + 1.37965i −0.143759 + 0.0923885i −0.610543 0.791983i $$-0.709049\pi$$
0.466784 + 0.884371i $$0.345413\pi$$
$$224$$ −4.24593 1.24672i −0.283693 0.0832998i
$$225$$ 2.52832 2.91784i 0.168555 0.194522i
$$226$$ 2.89251 0.849316i 0.192407 0.0564957i
$$227$$ −8.19315 + 17.9405i −0.543798 + 1.19075i 0.415820 + 0.909447i $$0.363495\pi$$
−0.959618 + 0.281305i $$0.909233\pi$$
$$228$$ 0.939490 + 6.53430i 0.0622193 + 0.432745i
$$229$$ −11.2054 −0.740473 −0.370237 0.928937i $$-0.620723\pi$$
−0.370237 + 0.928937i $$0.620723\pi$$
$$230$$ 4.48285 + 2.47072i 0.295590 + 0.162915i
$$231$$ 7.29997 0.480303
$$232$$ 0.910738 + 6.33432i 0.0597929 + 0.415869i
$$233$$ 7.48542 16.3908i 0.490386 1.07380i −0.489090 0.872234i $$-0.662671\pi$$
0.979476 0.201562i $$-0.0646019\pi$$
$$234$$ −5.24950 + 1.54139i −0.343171 + 0.100764i
$$235$$ −6.72593 + 7.76213i −0.438751 + 0.506346i
$$236$$ −9.35706 2.74748i −0.609092 0.178846i
$$237$$ −2.26617 + 1.45638i −0.147204 + 0.0946021i
$$238$$ 7.21735 + 15.8038i 0.467831 + 1.02441i
$$239$$ −17.8436 20.5926i −1.15421 1.33203i −0.934293 0.356506i $$-0.883968\pi$$
−0.219914 0.975519i $$-0.570578\pi$$
$$240$$ 0.897877 + 0.577031i 0.0579577 + 0.0372472i
$$241$$ 3.17028 22.0498i 0.204216 1.42035i −0.587383 0.809309i $$-0.699842\pi$$
0.791599 0.611041i $$-0.209249\pi$$
$$242$$ 1.17818 8.19441i 0.0757362 0.526757i
$$243$$ −0.841254 0.540641i −0.0539664 0.0346821i
$$244$$ 1.02123 + 1.17856i 0.0653773 + 0.0754494i
$$245$$ −5.57866 12.2156i −0.356408 0.780424i
$$246$$ −3.44222 + 2.21218i −0.219468 + 0.141043i
$$247$$ −34.6545 10.1755i −2.20502 0.647451i
$$248$$ 1.97435 2.27852i 0.125371 0.144686i
$$249$$ 5.31408 1.56036i 0.336766 0.0988835i
$$250$$ 3.92869 8.60263i 0.248472 0.544078i
$$251$$ 1.45152 + 10.0956i 0.0916192 + 0.637226i 0.982950 + 0.183872i $$0.0588633\pi$$
−0.891331 + 0.453353i $$0.850228\pi$$
$$252$$ 4.42518 0.278760
$$253$$ −0.595379 + 7.88898i −0.0374311 + 0.495976i
$$254$$ −5.45241 −0.342115
$$255$$ −0.596355 4.14774i −0.0373452 0.259741i
$$256$$ 0.415415 0.909632i 0.0259634 0.0568520i
$$257$$ −26.7109 + 7.84303i −1.66618 + 0.489235i −0.972860 0.231395i $$-0.925671\pi$$
−0.693321 + 0.720629i $$0.743853\pi$$
$$258$$ −1.90777 + 2.20169i −0.118773 + 0.137071i
$$259$$ 9.38672 + 2.75619i 0.583263 + 0.171261i
$$260$$ −4.91239 + 3.15700i −0.304654 + 0.195789i
$$261$$ −2.65843 5.82115i −0.164553 0.360320i
$$262$$ 5.68255 + 6.55801i 0.351069 + 0.405155i
$$263$$ 6.35034 + 4.08112i 0.391579 + 0.251652i 0.721584 0.692327i $$-0.243414\pi$$
−0.330006 + 0.943979i $$0.607051\pi$$
$$264$$ −0.234769 + 1.63285i −0.0144490 + 0.100495i
$$265$$ −0.338784 + 2.35629i −0.0208113 + 0.144746i
$$266$$ 24.5754 + 15.7936i 1.50681 + 0.968370i
$$267$$ 7.41703 + 8.55970i 0.453915 + 0.523845i
$$268$$ 5.00380 + 10.9568i 0.305656 + 0.669293i
$$269$$ 4.94396 3.17729i 0.301439 0.193723i −0.381174 0.924503i $$-0.624480\pi$$
0.682612 + 0.730781i $$0.260844\pi$$
$$270$$ −1.02408 0.300696i −0.0623232 0.0182998i
$$271$$ −13.8865 + 16.0259i −0.843545 + 0.973503i −0.999899 0.0141978i $$-0.995481\pi$$
0.156354 + 0.987701i $$0.450026\pi$$
$$272$$ −3.76709 + 1.10612i −0.228414 + 0.0670683i
$$273$$ −10.0575 + 22.0228i −0.608707 + 1.33288i
$$274$$ −1.27824 8.89033i −0.0772211 0.537085i
$$275$$ 6.36903 0.384067
$$276$$ −0.360914 + 4.78223i −0.0217244 + 0.287857i
$$277$$ 3.17305 0.190650 0.0953251 0.995446i $$-0.469611\pi$$
0.0953251 + 0.995446i $$0.469611\pi$$
$$278$$ −0.435892 3.03169i −0.0261430 0.181829i
$$279$$ −1.25244 + 2.74246i −0.0749816 + 0.164187i
$$280$$ 4.53172 1.33063i 0.270822 0.0795205i
$$281$$ 11.9648 13.8081i 0.713759 0.823722i −0.276783 0.960932i $$-0.589268\pi$$
0.990542 + 0.137211i $$0.0438138\pi$$
$$282$$ −9.23326 2.71113i −0.549832 0.161445i
$$283$$ 18.9284 12.1645i 1.12518 0.723107i 0.160628 0.987015i $$-0.448648\pi$$
0.964548 + 0.263908i $$0.0850116\pi$$
$$284$$ −2.18681 4.78845i −0.129763 0.284142i
$$285$$ −4.61404 5.32488i −0.273312 0.315419i
$$286$$ −7.59265 4.87950i −0.448963 0.288531i
$$287$$ −2.57687 + 17.9225i −0.152108 + 1.05793i
$$288$$ −0.142315 + 0.989821i −0.00838598 + 0.0583258i
$$289$$ −1.33382 0.857197i −0.0784603 0.0504234i
$$290$$ −4.47283 5.16192i −0.262654 0.303118i
$$291$$ −4.97643 10.8969i −0.291724 0.638786i
$$292$$ 6.04488 3.88481i 0.353750 0.227341i
$$293$$ 9.98040 + 2.93051i 0.583061 + 0.171202i 0.559944 0.828530i $$-0.310823\pi$$
0.0231175 + 0.999733i $$0.492641\pi$$
$$294$$ 8.23961 9.50901i 0.480544 0.554577i
$$295$$ 9.98687 2.93241i 0.581458 0.170731i
$$296$$ −0.918382 + 2.01098i −0.0533799 + 0.116886i
$$297$$ −0.234769 1.63285i −0.0136227 0.0947477i
$$298$$ −20.4130 −1.18249
$$299$$ −22.9795 12.6651i −1.32894 0.732444i
$$300$$ 3.86085 0.222906
$$301$$ 1.83467 + 12.7604i 0.105749 + 0.735499i
$$302$$ −5.28173 + 11.5654i −0.303929 + 0.665513i
$$303$$ −17.7132 + 5.20105i −1.01759 + 0.298793i
$$304$$ −4.32306 + 4.98908i −0.247944 + 0.286143i
$$305$$ −1.59700 0.468921i −0.0914439 0.0268504i
$$306$$ 3.30287 2.12262i 0.188812 0.121342i
$$307$$ 2.13196 + 4.66834i 0.121677 + 0.266436i 0.960663 0.277718i $$-0.0895780\pi$$
−0.838985 + 0.544154i $$0.816851\pi$$
$$308$$ 4.78047 + 5.51695i 0.272392 + 0.314357i
$$309$$ 9.61361 + 6.17829i 0.546899 + 0.351471i
$$310$$ −0.457947 + 3.18509i −0.0260096 + 0.180901i
$$311$$ −3.04140 + 21.1534i −0.172462 + 1.19950i 0.701199 + 0.712965i $$0.252648\pi$$
−0.873661 + 0.486534i $$0.838261\pi$$
$$312$$ −4.60260 2.95791i −0.260571 0.167459i
$$313$$ −10.4550 12.0658i −0.590953 0.681997i 0.378969 0.925409i $$-0.376279\pi$$
−0.969923 + 0.243413i $$0.921733\pi$$
$$314$$ −0.475566 1.04134i −0.0268377 0.0587664i
$$315$$ −3.97327 + 2.55347i −0.223868 + 0.143871i
$$316$$ −2.58469 0.758933i −0.145400 0.0426933i
$$317$$ −7.12740 + 8.22545i −0.400314 + 0.461987i −0.919740 0.392528i $$-0.871601\pi$$
0.519426 + 0.854516i $$0.326146\pi$$
$$318$$ −2.14005 + 0.628375i −0.120008 + 0.0352375i
$$319$$ 4.38547 9.60283i 0.245539 0.537655i
$$320$$ 0.151894 + 1.05645i 0.00849113 + 0.0590571i
$$321$$ −14.8641 −0.829634
$$322$$ 14.9475 + 15.0653i 0.832990 + 0.839558i
$$323$$ 25.9183 1.44213
$$324$$ −0.142315 0.989821i −0.00790638 0.0549901i
$$325$$ −8.77489 + 19.2143i −0.486743 + 1.06582i
$$326$$ −4.60881 + 1.35327i −0.255258 + 0.0749506i
$$327$$ 8.04365 9.28287i 0.444815 0.513344i
$$328$$ −3.92603 1.15279i −0.216779 0.0636519i
$$329$$ −35.8238 + 23.0225i −1.97503 + 1.26927i
$$330$$ −0.731413 1.60157i −0.0402629 0.0881636i
$$331$$ 8.84577 + 10.2086i 0.486208 + 0.561113i 0.944848 0.327508i $$-0.106209\pi$$
−0.458641 + 0.888622i $$0.651664\pi$$
$$332$$ 4.65922 + 2.99430i 0.255708 + 0.164334i
$$333$$ 0.314624 2.18826i 0.0172413 0.119916i
$$334$$ −1.67190 + 11.6283i −0.0914821 + 0.636272i
$$335$$ −10.8152 6.95051i −0.590898 0.379747i
$$336$$ 2.89788 + 3.34433i 0.158092 + 0.182448i
$$337$$ −0.791811 1.73382i −0.0431327 0.0944474i 0.886839 0.462079i $$-0.152896\pi$$
−0.929972 + 0.367631i $$0.880169\pi$$
$$338$$ 14.2451 9.15475i 0.774830 0.497953i
$$339$$ −2.89251 0.849316i −0.157099 0.0461285i
$$340$$ 2.74412 3.16689i 0.148821 0.171749i
$$341$$ −4.77207 + 1.40121i −0.258422 + 0.0758796i
$$342$$ 2.74236 6.00493i 0.148290 0.324709i
$$343$$ −3.51551 24.4509i −0.189820 1.32023i
$$344$$ −2.91325 −0.157072
$$345$$ −2.43544 4.50212i −0.131120 0.242386i
$$346$$ −5.11919 −0.275209
$$347$$ −1.37041 9.53143i −0.0735676 0.511674i −0.992971 0.118358i $$-0.962237\pi$$
0.919403 0.393316i $$-0.128672\pi$$
$$348$$ 2.65843 5.82115i 0.142507 0.312047i
$$349$$ 30.4262 8.93395i 1.62868 0.478223i 0.665347 0.746534i $$-0.268284\pi$$
0.963332 + 0.268311i $$0.0864655\pi$$
$$350$$ 11.1883 12.9120i 0.598038 0.690173i
$$351$$ 5.24950 + 1.54139i 0.280198 + 0.0822735i
$$352$$ −1.38777 + 0.891865i −0.0739683 + 0.0475366i
$$353$$ 3.21155 + 7.03232i 0.170934 + 0.374292i 0.975639 0.219382i $$-0.0704040\pi$$
−0.804705 + 0.593674i $$0.797677\pi$$
$$354$$ 6.38626 + 7.37013i 0.339426 + 0.391718i
$$355$$ 4.72657 + 3.03758i 0.250860 + 0.161218i
$$356$$ −1.61187 + 11.2108i −0.0854291 + 0.594173i
$$357$$ 2.47255 17.1970i 0.130861 0.910161i
$$358$$ −15.7713 10.1356i −0.833538 0.535682i
$$359$$ 24.2538 + 27.9904i 1.28007 + 1.47728i 0.799940 + 0.600080i $$0.204864\pi$$
0.480128 + 0.877198i $$0.340590\pi$$
$$360$$ −0.443376 0.970858i −0.0233680 0.0511687i
$$361$$ 20.6778 13.2888i 1.08830 0.699410i
$$362$$ 6.97137 + 2.04698i 0.366407 + 0.107587i
$$363$$ −5.42138 + 6.25661i −0.284549 + 0.328387i
$$364$$ −23.2300 + 6.82094i −1.21758 + 0.357514i
$$365$$ −3.18591 + 6.97616i −0.166758 + 0.365149i
$$366$$ −0.221934 1.54358i −0.0116007 0.0806843i
$$367$$ −12.1890 −0.636260 −0.318130 0.948047i $$-0.603055\pi$$
−0.318130 + 0.948047i $$0.603055\pi$$
$$368$$ −3.85052 + 2.85894i −0.200722 + 0.149032i
$$369$$ 4.09177 0.213009
$$370$$ −0.335801 2.33554i −0.0174574 0.121419i
$$371$$ −4.10011 + 8.97798i −0.212867 + 0.466114i
$$372$$ −2.89279 + 0.849399i −0.149984 + 0.0440393i
$$373$$ −3.63198 + 4.19152i −0.188057 + 0.217029i −0.841947 0.539561i $$-0.818590\pi$$
0.653890 + 0.756589i $$0.273136\pi$$
$$374$$ 6.21436 + 1.82470i 0.321337 + 0.0943530i
$$375$$ −7.95596 + 5.11298i −0.410844 + 0.264033i
$$376$$ −3.99756 8.75344i −0.206159 0.451424i
$$377$$ 22.9281 + 26.4605i 1.18086 + 1.36278i
$$378$$ −3.72270 2.39243i −0.191475 0.123054i
$$379$$ 1.45629 10.1287i 0.0748044 0.520276i −0.917624 0.397450i $$-0.869895\pi$$
0.992428 0.122826i $$-0.0391957\pi$$
$$380$$ 1.00273 6.97412i 0.0514388 0.357765i
$$381$$ 4.58686 + 2.94780i 0.234992 + 0.151020i
$$382$$ −16.4905 19.0310i −0.843726 0.973711i
$$383$$ −1.86555 4.08499i −0.0953253 0.208733i 0.855962 0.517038i $$-0.172966\pi$$
−0.951288 + 0.308305i $$0.900238\pi$$
$$384$$ −0.841254 + 0.540641i −0.0429300 + 0.0275895i
$$385$$ −7.47572 2.19507i −0.380998 0.111871i
$$386$$ −11.0715 + 12.7772i −0.563527 + 0.650345i
$$387$$ 2.79524 0.820757i 0.142090 0.0417214i
$$388$$ 4.97643 10.8969i 0.252640 0.553204i
$$389$$ −0.486473 3.38350i −0.0246652 0.171550i 0.973765 0.227555i $$-0.0730730\pi$$
−0.998431 + 0.0560044i $$0.982164\pi$$
$$390$$ 5.83938 0.295688
$$391$$ 18.3829 + 4.07462i 0.929662 + 0.206063i
$$392$$ 12.5822 0.635499
$$393$$ −1.23494 8.58916i −0.0622942 0.433266i
$$394$$ −5.33474 + 11.6815i −0.268760 + 0.588503i
$$395$$ 2.75866 0.810016i 0.138803 0.0407563i
$$396$$ 1.08029 1.24672i 0.0542865 0.0626499i
$$397$$ 24.0355 + 7.05746i 1.20631 + 0.354204i 0.822261 0.569111i $$-0.192712\pi$$
0.384046 + 0.923314i $$0.374531\pi$$
$$398$$ 11.4449 7.35518i 0.573680 0.368682i
$$399$$ −12.1354 26.5729i −0.607532 1.33031i
$$400$$ 2.52832 + 2.91784i 0.126416 + 0.145892i
$$401$$ −7.53498 4.84244i −0.376279 0.241820i 0.338808 0.940856i $$-0.389976\pi$$
−0.715087 + 0.699036i $$0.753613\pi$$
$$402$$ 1.71423 11.9227i 0.0854978 0.594650i
$$403$$ 2.34748 16.3271i 0.116936 0.813309i
$$404$$ −15.5303 9.98075i −0.772663 0.496561i
$$405$$ 0.698939 + 0.806618i 0.0347305 + 0.0400812i
$$406$$ −11.7640 25.7597i −0.583840 1.27843i
$$407$$ 3.06802 1.97170i 0.152076 0.0977334i
$$408$$ 3.76709 + 1.10612i 0.186499 + 0.0547610i
$$409$$ 15.2462 17.5950i 0.753874 0.870017i −0.241064 0.970509i $$-0.577496\pi$$
0.994938 + 0.100492i $$0.0320418\pi$$
$$410$$ 4.19028 1.23038i 0.206943 0.0607640i
$$411$$ −3.73116 + 8.17009i −0.184044 + 0.403001i
$$412$$ 1.62633 + 11.3114i 0.0801237 + 0.557273i
$$413$$ 43.1547 2.12351
$$414$$ 2.88909 3.82794i 0.141991 0.188133i
$$415$$ −5.91121 −0.290170
$$416$$ −0.778622 5.41543i −0.0381751 0.265513i
$$417$$ −1.27236 + 2.78608i −0.0623078 + 0.136435i
$$418$$ 10.4490 3.06810i 0.511077 0.150066i
$$419$$ 1.47320 1.70016i 0.0719705 0.0830584i −0.718622 0.695400i $$-0.755227\pi$$
0.790593 + 0.612342i $$0.209772\pi$$
$$420$$ −4.53172 1.33063i −0.221125 0.0649282i
$$421$$ −15.6993 + 10.0893i −0.765138 + 0.491724i −0.864071 0.503370i $$-0.832093\pi$$
0.0989332 + 0.995094i $$0.468457\pi$$
$$422$$ −8.78281 19.2317i −0.427540 0.936183i
$$423$$ 6.30176 + 7.27262i 0.306402 + 0.353607i
$$424$$ −1.87633 1.20584i −0.0911226 0.0585609i
$$425$$ 2.15724 15.0039i 0.104641 0.727796i
$$426$$ −0.749168 + 5.21058i −0.0362973 + 0.252453i
$$427$$ −5.80538 3.73089i −0.280942 0.180551i
$$428$$ −9.73393 11.2336i −0.470507 0.542994i
$$429$$ 3.74929 + 8.20979i 0.181017 + 0.396372i
$$430$$ 2.61574 1.68103i 0.126142 0.0810666i
$$431$$ −4.62210 1.35717i −0.222639 0.0653726i 0.168511 0.985700i $$-0.446104\pi$$
−0.391149 + 0.920327i $$0.627922\pi$$
$$432$$ 0.654861 0.755750i 0.0315070 0.0363610i
$$433$$ 6.00189 1.76231i 0.288433 0.0846914i −0.134316 0.990939i $$-0.542884\pi$$
0.422748 + 0.906247i $$0.361065\pi$$
$$434$$ −5.54228 + 12.1359i −0.266038 + 0.582541i
$$435$$ 0.972039 + 6.76068i 0.0466057 + 0.324150i
$$436$$ 12.2830 0.588249
$$437$$ 29.7067 10.9473i 1.42107 0.523682i
$$438$$ −7.18556 −0.343339
$$439$$ 1.92771 + 13.4075i 0.0920045 + 0.639905i 0.982686 + 0.185278i $$0.0593185\pi$$
−0.890682 + 0.454627i $$0.849772\pi$$
$$440$$ 0.731413 1.60157i 0.0348687 0.0763519i
$$441$$ −12.0726 + 3.54482i −0.574884 + 0.168801i
$$442$$ −14.0666 + 16.2337i −0.669081 + 0.772160i
$$443$$ −5.31546 1.56076i −0.252545 0.0741540i 0.153010 0.988225i $$-0.451103\pi$$
−0.405555 + 0.914071i $$0.632922\pi$$
$$444$$ 1.85981 1.19523i 0.0882626 0.0567229i
$$445$$ −5.02173 10.9960i −0.238053 0.521263i
$$446$$ 1.67113 + 1.92859i 0.0791304 + 0.0913213i
$$447$$ 17.1725 + 11.0361i 0.812232 + 0.521990i
$$448$$ −0.629769 + 4.38014i −0.0297538 + 0.206942i
$$449$$ 1.92795 13.4092i 0.0909858 0.632820i −0.892394 0.451258i $$-0.850976\pi$$
0.983379 0.181562i $$-0.0581154\pi$$
$$450$$ −3.24796 2.08733i −0.153110 0.0983979i
$$451$$ 4.42029 + 5.10128i 0.208143 + 0.240210i
$$452$$ −1.25232 2.74219i −0.0589041 0.128982i
$$453$$ 10.6960 6.87389i 0.502541 0.322964i
$$454$$ 18.9239 + 5.55655i 0.888142 + 0.260782i
$$455$$ 16.9218 19.5288i 0.793306 0.915524i
$$456$$ 6.33409 1.85986i 0.296621 0.0870957i
$$457$$ −4.61680 + 10.1094i −0.215965 + 0.472897i −0.986346 0.164687i $$-0.947339\pi$$
0.770381 + 0.637584i $$0.220066\pi$$
$$458$$ 1.59469 + 11.0913i 0.0745151 + 0.518264i
$$459$$ −3.92613 −0.183256
$$460$$ 1.80760 4.78884i 0.0842797 0.223281i
$$461$$ −33.3324 −1.55245 −0.776223 0.630459i $$-0.782867\pi$$
−0.776223 + 0.630459i $$0.782867\pi$$
$$462$$ −1.03889 7.22567i −0.0483337 0.336169i
$$463$$ −8.07365 + 17.6788i −0.375214 + 0.821605i 0.623979 + 0.781441i $$0.285515\pi$$
−0.999193 + 0.0401636i $$0.987212\pi$$
$$464$$ 6.14024 1.80294i 0.285053 0.0836992i
$$465$$ 2.10724 2.43188i 0.0977209 0.112776i
$$466$$ −17.2892 5.07658i −0.800908 0.235168i
$$467$$ −28.2030 + 18.1250i −1.30508 + 0.838724i −0.993756 0.111579i $$-0.964409\pi$$
−0.311325 + 0.950303i $$0.600773\pi$$
$$468$$ 2.27279 + 4.97671i 0.105060 + 0.230048i
$$469$$ −34.9058 40.2835i −1.61180 1.86012i
$$470$$ 8.64033 + 5.55280i 0.398549 + 0.256132i
$$471$$ −0.162921 + 1.13314i −0.00750703 + 0.0522125i
$$472$$ −1.38787 + 9.65282i −0.0638817 + 0.444307i
$$473$$ 4.04291 + 2.59822i 0.185893 + 0.119466i
$$474$$ 1.76407 + 2.03584i 0.0810263 + 0.0935093i
$$475$$ −10.5878 23.1841i −0.485804 1.06376i
$$476$$ 14.6158 9.39300i 0.669914 0.430527i
$$477$$ 2.14005 + 0.628375i 0.0979861 + 0.0287713i
$$478$$ −17.8436 + 20.5926i −0.816147 + 0.941884i
$$479$$ 1.58866 0.466472i 0.0725876 0.0213137i −0.245237 0.969463i $$-0.578866\pi$$
0.317825 + 0.948149i $$0.397048\pi$$
$$480$$ 0.443376 0.970858i 0.0202373 0.0443134i
$$481$$ 1.72134 + 11.9722i 0.0784865 + 0.545886i
$$482$$ −22.2765 −1.01467
$$483$$ −4.42968 20.7550i −0.201557 0.944384i
$$484$$ −8.27868 −0.376303
$$485$$ 1.81960 + 12.6556i 0.0826238 + 0.574661i
$$486$$ −0.415415 + 0.909632i −0.0188436 + 0.0412617i
$$487$$ 20.1450 5.91510i 0.912856 0.268039i 0.208614 0.977998i $$-0.433105\pi$$
0.704243 + 0.709959i $$0.251287\pi$$
$$488$$ 1.02123 1.17856i 0.0462287 0.0533508i
$$489$$ 4.60881 + 1.35327i 0.208418 + 0.0611969i
$$490$$ −11.2973 + 7.26033i −0.510360 + 0.327988i
$$491$$ 10.7230 + 23.4802i 0.483924 + 1.05965i 0.981366 + 0.192148i $$0.0615454\pi$$
−0.497442 + 0.867497i $$0.665727\pi$$
$$492$$ 2.67954 + 3.09235i 0.120803 + 0.139414i
$$493$$ −21.1366 13.5837i −0.951944 0.611777i
$$494$$ −5.14006 + 35.7499i −0.231262 + 1.60847i
$$495$$ −0.250571 + 1.74276i −0.0112623 + 0.0783312i
$$496$$ −2.53631 1.62999i −0.113884 0.0731885i
$$497$$ 15.2549 + 17.6051i 0.684275 + 0.789695i
$$498$$ −2.30075 5.03793i −0.103099 0.225755i
$$499$$ −5.41570 + 3.48046i −0.242440 + 0.155807i −0.656219 0.754571i $$-0.727845\pi$$
0.413779 + 0.910378i $$0.364209\pi$$
$$500$$ −9.07418 2.66442i −0.405810 0.119156i
$$501$$ 7.69322 8.87845i 0.343708 0.396660i
$$502$$ 9.78622 2.87349i 0.436781 0.128250i
$$503$$ 4.22191 9.24470i 0.188246 0.412201i −0.791853 0.610712i $$-0.790883\pi$$
0.980099 + 0.198511i $$0.0636106\pi$$
$$504$$ −0.629769 4.38014i −0.0280521 0.195107i
$$505$$ 19.7035 0.876796
$$506$$ 7.89341 0.533400i 0.350905 0.0237125i
$$507$$ −16.9332 −0.752028
$$508$$ 0.775959 + 5.39691i 0.0344276 + 0.239449i
$$509$$ −10.8955 + 23.8578i −0.482933 + 1.05748i 0.498713 + 0.866767i $$0.333806\pi$$
−0.981647 + 0.190709i $$0.938921\pi$$
$$510$$ −4.02065 + 1.18057i −0.178037 + 0.0522765i
$$511$$ −20.8229 + 24.0309i −0.921150 + 1.06306i
$$512$$ −0.959493 0.281733i −0.0424040 0.0124509i
$$513$$ −5.55353 + 3.56904i −0.245194 + 0.157577i
$$514$$ 11.5646 + 25.3228i 0.510091 + 1.11694i
$$515$$ −7.98727 9.21780i −0.351961 0.406185i
$$516$$ 2.45078 + 1.57502i 0.107890 + 0.0693364i
$$517$$ −2.25919 + 15.7130i −0.0993592 + 0.691059i
$$518$$ 1.39227 9.68343i 0.0611727 0.425465i
$$519$$ 4.30654 + 2.76764i 0.189036 + 0.121486i
$$520$$ 3.82398 + 4.41311i 0.167693 + 0.193527i
$$521$$ 6.39845 + 14.0106i 0.280321 + 0.613818i 0.996453 0.0841470i $$-0.0268165\pi$$
−0.716132 + 0.697965i $$0.754089\pi$$
$$522$$ −5.38357 + 3.45981i −0.235632 + 0.151432i
$$523$$ 25.1618 + 7.38818i 1.10025 + 0.323062i 0.780951 0.624592i $$-0.214735\pi$$
0.319298 + 0.947654i $$0.396553\pi$$
$$524$$ 5.68255 6.55801i 0.248243 0.286488i
$$525$$ −16.3929 + 4.81339i −0.715445 + 0.210074i
$$526$$ 3.13583 6.86651i 0.136729 0.299394i
$$527$$ 1.68457 + 11.7165i 0.0733811 + 0.510377i
$$528$$ 1.64964 0.0717915
$$529$$ 22.7909 3.09434i 0.990909 0.134536i
$$530$$ 2.38052 0.103403
$$531$$ −1.38787 9.65282i −0.0602283 0.418897i
$$532$$ 12.1354 26.5729i 0.526138 1.15208i
$$533$$ −21.4798 + 6.30703i −0.930392 + 0.273188i
$$534$$ 7.41703 8.55970i 0.320966 0.370415i
$$535$$ 15.2220 + 4.46958i 0.658104 + 0.193237i
$$536$$ 10.1332 6.51219i 0.437686 0.281284i
$$537$$ 7.78793 + 17.0532i 0.336074 + 0.735900i
$$538$$ −3.84855 4.44146i −0.165923 0.191485i
$$539$$ −17.4612 11.2216i −0.752108 0.483351i
$$540$$ −0.151894 + 1.05645i −0.00653647 + 0.0454622i
$$541$$ −0.141885 + 0.986830i −0.00610010 + 0.0424271i −0.992644 0.121069i $$-0.961368\pi$$
0.986544 + 0.163496i $$0.0522770\pi$$
$$542$$ 17.8390 + 11.4644i 0.766252 + 0.492440i
$$543$$ −4.75801 5.49103i −0.204186 0.235643i
$$544$$ 1.63097 + 3.57133i 0.0699274 + 0.153120i
$$545$$ −11.0286 + 7.08767i −0.472414 + 0.303602i
$$546$$ 23.2300 + 6.82094i 0.994152 + 0.291909i
$$547$$ −3.81944 + 4.40787i −0.163307 + 0.188467i −0.831505 0.555517i $$-0.812520\pi$$
0.668198 + 0.743984i $$0.267066\pi$$
$$548$$ −8.61793 + 2.53045i −0.368140 + 0.108096i
$$549$$ −0.647821 + 1.41853i −0.0276483 + 0.0605414i
$$550$$ −0.906407 6.30420i −0.0386493 0.268812i
$$551$$ −42.2460 −1.79974
$$552$$ 4.78492 0.323343i 0.203660 0.0137624i
$$553$$ 11.9206 0.506914
$$554$$ −0.451573 3.14076i −0.0191855 0.133438i
$$555$$ −0.980197 + 2.14633i −0.0416071 + 0.0911067i
$$556$$ −2.93880 + 0.862910i −0.124633 + 0.0365955i
$$557$$ 21.5121 24.8262i 0.911495 1.05192i −0.0869520 0.996213i $$-0.527713\pi$$
0.998447 0.0557089i $$-0.0177419\pi$$
$$558$$ 2.89279 + 0.849399i 0.122461 + 0.0359579i
$$559$$ −13.4085 + 8.61713i −0.567120 + 0.364466i
$$560$$ −1.96202 4.29622i −0.0829105 0.181549i
$$561$$ −4.24134 4.89477i −0.179070 0.206657i
$$562$$ −15.3703 9.87790i −0.648357 0.416674i
$$563$$ 1.71395 11.9208i 0.0722344 0.502402i −0.921298 0.388856i $$-0.872870\pi$$
0.993533 0.113545i $$-0.0362207\pi$$
$$564$$ −1.36950 + 9.52511i −0.0576665 + 0.401079i
$$565$$ 2.70676 + 1.73953i 0.113874 + 0.0731825i
$$566$$ −14.7345 17.0045i −0.619338 0.714754i
$$567$$ 1.83829 + 4.02529i 0.0772008 + 0.169046i
$$568$$ −4.42849 + 2.84602i −0.185815 + 0.119416i
$$569$$ 12.3983 + 3.64048i 0.519765 + 0.152617i 0.531084 0.847319i $$-0.321785\pi$$
−0.0113189 + 0.999936i $$0.503603\pi$$
$$570$$ −4.61404 + 5.32488i −0.193261 + 0.223035i
$$571$$ −32.5250 + 9.55020i −1.36113 + 0.399663i −0.879161 0.476525i $$-0.841896\pi$$
−0.481968 + 0.876189i $$0.660078\pi$$
$$572$$ −3.74929 + 8.20979i −0.156766 + 0.343269i
$$573$$ 3.58372 + 24.9253i 0.149712 + 1.04127i
$$574$$ 18.1068 0.755764
$$575$$ −3.86478 18.1082i −0.161172 0.755163i
$$576$$ 1.00000 0.0416667
$$577$$ 3.19552 + 22.2254i 0.133031 + 0.925254i 0.941572 + 0.336813i $$0.109349\pi$$
−0.808540 + 0.588441i $$0.799742\pi$$
$$578$$ −0.658649 + 1.44224i −0.0273962 + 0.0599893i
$$579$$ 16.2219 4.76317i 0.674158 0.197951i
$$580$$ −4.47283 + 5.16192i −0.185724 + 0.214337i
$$581$$ −23.5158 6.90486i −0.975599 0.286462i
$$582$$ −10.0777 + 6.47656i −0.417735 + 0.268462i
$$583$$ 1.52846 + 3.34686i 0.0633024 + 0.138613i
$$584$$ −4.70554 5.43048i −0.194717 0.224715i
$$585$$ −4.91239 3.15700i −0.203103 0.130526i
$$586$$ 1.48032 10.2959i 0.0611516 0.425319i
$$587$$ 0.163758 1.13896i 0.00675903 0.0470101i −0.986163 0.165780i $$-0.946986\pi$$
0.992922 + 0.118770i $$0.0378950\pi$$
$$588$$ −10.5848 6.80247i −0.436512 0.280529i
$$589$$ 13.0336 + 15.0416i 0.537042 + 0.619780i
$$590$$ −4.32384 9.46789i −0.178010 0.389787i
$$591$$ 10.8033 6.94289i 0.444390 0.285592i
$$592$$ 2.12121 + 0.622842i 0.0871810 + 0.0255987i
$$593$$ 2.14872 2.47976i 0.0882376 0.101832i −0.709914 0.704289i $$-0.751266\pi$$
0.798151 + 0.602457i $$0.205812\pi$$
$$594$$ −1.58282 + 0.464758i −0.0649440 + 0.0190693i
$$595$$ −7.70314 + 16.8675i −0.315798 + 0.691501i
$$596$$ 2.90507 + 20.2052i 0.118996 + 0.827639i
$$597$$ −13.6046 −0.556798
$$598$$ −9.26591 + 24.5480i −0.378911 + 1.00384i
$$599$$ 3.76746 0.153934 0.0769671 0.997034i $$-0.475476\pi$$
0.0769671 + 0.997034i $$0.475476\pi$$
$$600$$ −0.549456 3.82155i −0.0224315 0.156014i
$$601$$ 8.17680 17.9047i 0.333538 0.730347i −0.666345 0.745644i $$-0.732142\pi$$
0.999883 + 0.0152967i $$0.00486927\pi$$
$$602$$ 12.3694 3.63200i 0.504141 0.148029i
$$603$$ −7.88800 + 9.10324i −0.321224 + 0.370712i
$$604$$ 12.1993 + 3.58205i 0.496384 + 0.145751i
$$605$$ 7.43324 4.77705i 0.302204 0.194215i
$$606$$ 7.66896 + 16.7927i 0.311530 + 0.682156i
$$607$$ −28.1237 32.4564i −1.14150 1.31737i −0.941284 0.337616i $$-0.890380\pi$$
−0.200221 0.979751i $$-0.564166\pi$$
$$608$$ 5.55353 + 3.56904i 0.225225 + 0.144744i
$$609$$ −4.03018 + 28.0305i −0.163311 + 1.13585i
$$610$$ −0.236872 + 1.64748i −0.00959066 + 0.0667045i
$$611$$ −44.2911 28.4641i −1.79183 1.15154i
$$612$$ −2.57107 2.96717i −0.103929 0.119941i
$$613$$ 9.71463 + 21.2721i 0.392370 + 0.859171i 0.997987 + 0.0634149i $$0.0201991\pi$$
−0.605617 + 0.795756i $$0.707074\pi$$
$$614$$ 4.31741 2.77463i 0.174237 0.111975i
$$615$$ −4.19028 1.23038i −0.168968 0.0496136i
$$616$$ 4.78047 5.51695i 0.192610 0.222284i
$$617$$ −7.16091 + 2.10263i −0.288287 + 0.0846488i −0.422679 0.906280i $$-0.638910\pi$$
0.134392 + 0.990928i $$0.457092\pi$$
$$618$$ 4.74724 10.3950i 0.190962 0.418149i
$$619$$ −4.63655 32.2479i −0.186359 1.29615i −0.841339 0.540508i $$-0.818232\pi$$
0.654980 0.755646i $$-0.272677\pi$$
$$620$$ 3.21784 0.129232
$$621$$ −4.50000 + 1.65831i −0.180579 + 0.0665458i
$$622$$ 21.3709 0.856896
$$623$$ −7.13283 49.6099i −0.285771 1.98758i
$$624$$ −2.27279 + 4.97671i −0.0909842 + 0.199228i
$$625$$ −8.83735 + 2.59488i −0.353494 + 0.103795i
$$626$$ −10.4550 + 12.0658i −0.417867 + 0.482244i
$$627$$ −10.4490 3.06810i −0.417292 0.122528i
$$628$$ −0.963064 + 0.618924i −0.0384304 + 0.0246977i
$$629$$ −3.60568 7.89535i −0.143768 0.314808i
$$630$$ 3.09293 + 3.56943i 0.123225 + 0.142210i
$$631$$ −14.5045 9.32146i −0.577414 0.371082i 0.219099 0.975703i $$-0.429688\pi$$
−0.796513 + 0.604621i $$0.793325\pi$$
$$632$$ −0.383368 + 2.66639i −0.0152496 + 0.106063i
$$633$$ −3.00886 + 20.9271i −0.119591 + 0.831776i
$$634$$ 9.15606 + 5.88425i 0.363634 + 0.233693i
$$635$$ −3.81090 4.39802i −0.151231 0.174530i
$$636$$ 0.926540 + 2.02884i 0.0367397 + 0.0804487i
$$637$$ 57.9110 37.2171i 2.29452 1.47460i
$$638$$ −10.1292 2.97420i −0.401019 0.117750i
$$639$$ 3.44729 3.97838i 0.136373 0.157382i
$$640$$ 1.02408 0.300696i 0.0404801 0.0118860i
$$641$$ 16.8914 36.9870i 0.667170 1.46090i −0.208516 0.978019i $$-0.566863\pi$$
0.875686 0.482880i $$-0.160409\pi$$
$$642$$ 2.11539 + 14.7128i 0.0834876 + 0.580669i
$$643$$ −11.4111 −0.450008 −0.225004 0.974358i $$-0.572240\pi$$
−0.225004 + 0.974358i $$0.572240\pi$$
$$644$$ 12.7847 16.9393i 0.503790 0.667504i
$$645$$ −3.10933 −0.122430
$$646$$ −3.68856 25.6545i −0.145124 1.00936i
$$647$$ 14.3578 31.4391i 0.564462 1.23600i −0.385232 0.922820i $$-0.625878\pi$$
0.949694 0.313180i $$-0.101394\pi$$
$$648$$ −0.959493 + 0.281733i −0.0376924 + 0.0110675i
$$649$$ 10.5350 12.1581i 0.413537 0.477247i
$$650$$ 20.2675 + 5.95109i 0.794959 + 0.233421i
$$651$$ 11.2236 7.21298i 0.439888 0.282699i
$$652$$ 1.99540 + 4.36931i 0.0781457 + 0.171115i
$$653$$ −5.61473 6.47974i −0.219721 0.253572i 0.635178 0.772366i $$-0.280927\pi$$
−0.854899 + 0.518794i $$0.826381\pi$$
$$654$$ −10.3331 6.64069i −0.404057 0.259671i
$$655$$ −1.31806 + 9.16729i −0.0515008 + 0.358196i
$$656$$ −0.582320 + 4.05012i −0.0227358 + 0.158131i
$$657$$ 6.04488 + 3.88481i 0.235833 + 0.151561i
$$658$$ 27.8864 + 32.1827i 1.08713 + 1.25461i
$$659$$ −1.75450 3.84181i −0.0683454 0.149656i 0.872376 0.488835i $$-0.162578\pi$$
−0.940722 + 0.339179i $$0.889851\pi$$
$$660$$ −1.48118 + 0.951895i −0.0576548 + 0.0370525i
$$661$$ 22.1777 + 6.51196i 0.862612 + 0.253286i 0.682970 0.730446i $$-0.260688\pi$$
0.179642 + 0.983732i $$0.442506\pi$$
$$662$$ 8.84577 10.2086i 0.343801 0.396767i
$$663$$ 20.6102 6.05170i 0.800434 0.235029i
$$664$$ 2.30075 5.03793i 0.0892863 0.195510i
$$665$$ 4.43725 + 30.8617i 0.172069 + 1.19677i
$$666$$ −2.21076 −0.0856651
$$667$$ −29.9635 6.64150i −1.16019 0.257160i
$$668$$ 11.7479 0.454539
$$669$$ −0.363172 2.52591i −0.0140410 0.0976575i
$$670$$ −5.34060 + 11.6943i −0.206325 + 0.451790i
$$671$$ −2.46834 + 0.724770i −0.0952892 + 0.0279794i
$$672$$ 2.89788 3.34433i 0.111788 0.129010i
$$673$$ 43.1923 + 12.6824i 1.66494 + 0.488871i 0.972559 0.232658i $$-0.0747423\pi$$
0.692384 + 0.721529i $$0.256561\pi$$
$$674$$ −1.60349 + 1.03050i −0.0617641 + 0.0396934i
$$675$$ 1.60386 + 3.51195i 0.0617324 + 0.135175i
$$676$$ −11.0889 12.7972i −0.426495 0.492201i
$$677$$ −26.1110 16.7805i −1.00353 0.644928i −0.0678176 0.997698i $$-0.521604\pi$$
−0.935710 + 0.352770i $$0.885240\pi$$
$$678$$ −0.429025 + 2.98393i −0.0164766 + 0.114597i
$$679$$ −7.54427 + 52.4715i −0.289522 + 2.01367i
$$680$$ −3.52518 2.26550i −0.135185 0.0868778i
$$681$$ −12.9157 14.9055i −0.494930 0.571180i
$$682$$ 2.06608 + 4.52408i 0.0791143 + 0.173236i
$$683$$ −21.8572 + 14.0468i −0.836344 + 0.537485i −0.887288 0.461216i $$-0.847413\pi$$
0.0509442 + 0.998701i $$0.483777\pi$$
$$684$$ −6.33409 1.85986i −0.242190 0.0711134i
$$685$$ 6.27770 7.24485i 0.239858 0.276811i
$$686$$ −23.7018 + 6.95946i −0.904937 + 0.265714i
$$687$$ 4.65489 10.1928i 0.177595 0.388879i
$$688$$ 0.414598 + 2.88359i 0.0158064 + 0.109936i
$$689$$ −12.2028 −0.464888
$$690$$ −4.10969 + 3.05137i −0.156453 + 0.116164i
$$691$$ 33.5110 1.27482 0.637410 0.770525i $$-0.280006\pi$$
0.637410 + 0.770525i $$0.280006\pi$$
$$692$$ 0.728537 + 5.06708i 0.0276948 + 0.192622i
$$693$$ −3.03252 + 6.64029i −0.115196 + 0.252244i
$$694$$ −9.23938 + 2.71293i −0.350722 + 0.102981i
$$695$$ 2.14076 2.47057i 0.0812036 0.0937139i
$$696$$ −6.14024 1.80294i −0.232745 0.0683401i
$$697$$ 13.5146 8.68530i 0.511901 0.328979i
$$698$$ −13.1731 28.8451i −0.498610 1.09180i
$$699$$ 11.8000 + 13.6180i 0.446318 + 0.515078i
$$700$$ −14.3728 9.23683i −0.543240 0.349119i
$$701$$ 0.833884 5.79979i 0.0314954 0.219055i −0.967995 0.250968i $$-0.919251\pi$$
0.999491 + 0.0319133i $$0.0101601\pi$$
$$702$$ 0.778622 5.41543i 0.0293872 0.204392i
$$703$$ −12.2775 7.89027i −0.463055 0.297587i
$$704$$ 1.08029 + 1.24672i 0.0407148 + 0.0469874i
$$705$$ −4.26663 9.34263i −0.160691 0.351864i
$$706$$ 6.50369 4.17967i 0.244769 0.157304i
$$707$$ 78.3839 + 23.0156i 2.94793 + 0.865591i
$$708$$ 6.38626 7.37013i 0.240010 0.276987i
$$709$$ −43.2693 + 12.7050i −1.62501 + 0.477147i −0.962360 0.271779i $$-0.912388\pi$$
−0.662653 + 0.748926i $$0.730570\pi$$
$$710$$ 2.33400 5.11075i 0.0875935 0.191803i
$$711$$ −0.383368 2.66639i −0.0143774 0.0999973i
$$712$$ 11.3261 0.424464
$$713$$ 6.87958 + 12.7175i 0.257642 + 0.476274i
$$714$$ −17.3738 −0.650199
$$715$$ −1.37090 9.53484i −0.0512689 0.356583i
$$716$$ −7.78793 + 17.0532i −0.291049 + 0.637308i
$$717$$ 26.1442 7.67663i 0.976373 0.286689i
$$718$$ 24.2538 27.9904i 0.905145 1.04459i
$$719$$ 31.5875 + 9.27493i 1.17802 + 0.345897i 0.811409 0.584479i $$-0.198701\pi$$
0.366607 + 0.930376i $$0.380519\pi$$
$$720$$ −0.897877 + 0.577031i −0.0334619 + 0.0215047i
$$721$$ −21.0074 45.9998i −0.782357 1.71312i
$$722$$ −16.0963 18.5761i −0.599042 0.691331i
$$723$$ 18.7402 + 12.0436i 0.696955 + 0.447906i
$$724$$ 1.03401 7.19172i 0.0384288 0.267278i
$$725$$ −3.51622 + 24.4559i −0.130589 + 0.908269i
$$726$$ 6.96446 + 4.47579i 0.258476 + 0.166112i
$$727$$ 1.64107 + 1.89390i 0.0608641 + 0.0702409i 0.785365 0.619033i $$-0.212475\pi$$
−0.724501 + 0.689274i $$0.757930\pi$$
$$728$$ 10.0575 + 22.0228i 0.372755 + 0.816220i
$$729$$ 0.841254 0.540641i 0.0311575 0.0200237i
$$730$$ 7.35855 + 2.16067i 0.272352 + 0.0799699i
$$731$$ 7.49015 8.64410i 0.277033 0.319714i
$$732$$ −1.49629 + 0.439349i −0.0553043 + 0.0162388i
$$733$$ −4.60963 + 10.0937i −0.170261 + 0.372818i −0.975457 0.220189i $$-0.929332\pi$$
0.805197 + 0.593008i $$0.202060\pi$$
$$734$$ 1.73467 + 12.0649i 0.0640279 + 0.445324i
$$735$$ 13.4291 0.495341
$$736$$ 3.37782 + 3.40446i 0.124508 + 0.125490i
$$737$$ −19.8705 −0.731938
$$738$$ −0.582320 4.05012i −0.0214355 0.149087i
$$739$$ −15.0167 + 32.8820i −0.552399 + 1.20958i 0.403254 + 0.915088i $$0.367879\pi$$
−0.955653 + 0.294496i $$0.904848\pi$$
$$740$$ −2.26398 + 0.664765i −0.0832256 + 0.0244373i
$$741$$ 23.6520 27.2958i 0.868877 1.00274i
$$742$$ 9.47011 + 2.78067i 0.347659 + 0.102082i
$$743$$ 22.3469 14.3615i 0.819830 0.526873i −0.0622013 0.998064i $$-0.519812\pi$$
0.882031 + 0.471191i $$0.156176\pi$$
$$744$$ 1.25244 + 2.74246i 0.0459167 + 0.100544i
$$745$$ −14.2674 16.4655i −0.522719 0.603249i
$$746$$ 4.66574 + 2.99849i 0.170825 + 0.109783i
$$747$$ −0.788201 + 5.48206i −0.0288388 + 0.200578i
$$748$$ 0.921732 6.41079i 0.0337019 0.234402i
$$749$$ 55.3347 + 35.5614i 2.02188 + 1.29939i
$$750$$ 6.19319 + 7.14732i 0.226143 + 0.260983i
$$751$$ 5.72851 + 12.5437i 0.209036 + 0.457725i 0.984889 0.173189i $$-0.0554072\pi$$
−0.775852 + 0.630914i $$0.782680\pi$$
$$752$$ −8.09543 + 5.20262i −0.295210 + 0.189720i
$$753$$ −9.78622 2.87349i −0.356630 0.104716i
$$754$$ 22.9281 26.4605i 0.834993 0.963633i
$$755$$ −13.0204 + 3.82315i −0.473863 + 0.139139i
$$756$$ −1.83829 + 4.02529i −0.0668578 + 0.146398i
$$757$$ 5.42275 + 37.7160i 0.197093 + 1.37081i 0.812664 + 0.582732i $$0.198016\pi$$
−0.615571 + 0.788081i $$0.711075\pi$$
$$758$$ −10.2328 −0.371674
$$759$$ −6.92874 3.81878i −0.251497 0.138613i
$$760$$ −7.04583 −0.255579
$$761$$ −6.16173 42.8558i −0.223363 1.55352i −0.725187 0.688551i $$-0.758247\pi$$
0.501825 0.864969i $$-0.332662\pi$$
$$762$$ 2.26501 4.95969i 0.0820528 0.179671i
$$763$$ −52.1527 + 15.3134i −1.88806 + 0.554383i
$$764$$ −16.4905 + 19.0310i −0.596604 + 0.688518i
$$765$$ 4.02065 + 1.18057i 0.145367 + 0.0426836i
$$766$$ −3.77792 + 2.42792i −0.136502 + 0.0877243i
$$767$$ 22.1644 + 48.5333i 0.800310 + 1.75243i
$$768$$ 0.654861 + 0.755750i 0.0236303 + 0.0272708i
$$769$$ −29.5055 18.9620i −1.06400 0.683789i −0.113189 0.993573i $$-0.536107\pi$$
−0.950807 + 0.309785i $$0.899743\pi$$ <