Properties

Label 138.2.e.a.85.1
Level $138$
Weight $2$
Character 138.85
Analytic conductor $1.102$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [138,2,Mod(13,138)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(138, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("138.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 138.e (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.10193554789\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 85.1
Root \(0.654861 - 0.755750i\) of defining polynomial
Character \(\chi\) \(=\) 138.85
Dual form 138.2.e.a.13.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.654861 + 0.755750i) q^{2} +(0.841254 - 0.540641i) q^{3} +(-0.142315 - 0.989821i) q^{4} +(-0.614354 - 1.34525i) q^{5} +(-0.142315 + 0.989821i) q^{6} +(3.07385 - 0.902563i) q^{7} +(0.841254 + 0.540641i) q^{8} +(0.415415 - 0.909632i) q^{9} +O(q^{10})\) \(q+(-0.654861 + 0.755750i) q^{2} +(0.841254 - 0.540641i) q^{3} +(-0.142315 - 0.989821i) q^{4} +(-0.614354 - 1.34525i) q^{5} +(-0.142315 + 0.989821i) q^{6} +(3.07385 - 0.902563i) q^{7} +(0.841254 + 0.540641i) q^{8} +(0.415415 - 0.909632i) q^{9} +(1.41899 + 0.416652i) q^{10} +(-0.0362090 - 0.0417874i) q^{11} +(-0.654861 - 0.755750i) q^{12} +(0.773100 + 0.227003i) q^{13} +(-1.33083 + 2.91411i) q^{14} +(-1.24412 - 0.799549i) q^{15} +(-0.959493 + 0.281733i) q^{16} +(-0.293103 + 2.03857i) q^{17} +(0.415415 + 0.909632i) q^{18} +(0.523231 + 3.63915i) q^{19} +(-1.24412 + 0.799549i) q^{20} +(2.09792 - 2.42113i) q^{21} +0.0552927 q^{22} +(-4.62936 - 1.25259i) q^{23} +1.00000 q^{24} +(1.84204 - 2.12583i) q^{25} +(-0.677830 + 0.435615i) q^{26} +(-0.142315 - 0.989821i) q^{27} +(-1.33083 - 2.91411i) q^{28} +(-1.04541 + 7.27098i) q^{29} +(1.41899 - 0.416652i) q^{30} +(-6.69256 - 4.30105i) q^{31} +(0.415415 - 0.909632i) q^{32} +(-0.0530529 - 0.0155777i) q^{33} +(-1.34871 - 1.55649i) q^{34} +(-3.10260 - 3.58059i) q^{35} +(-0.959493 - 0.281733i) q^{36} +(-1.28287 + 2.80909i) q^{37} +(-3.09293 - 1.98771i) q^{38} +(0.773100 - 0.227003i) q^{39} +(0.210468 - 1.46384i) q^{40} +(-0.606395 - 1.32782i) q^{41} +(0.455922 + 3.17101i) q^{42} +(-10.5428 + 6.77544i) q^{43} +(-0.0362090 + 0.0417874i) q^{44} -1.47889 q^{45} +(3.97823 - 2.67837i) q^{46} -1.27459 q^{47} +(-0.654861 + 0.755750i) q^{48} +(2.74514 - 1.76419i) q^{49} +(0.400315 + 2.78425i) q^{50} +(0.855563 + 1.87342i) q^{51} +(0.114669 - 0.797537i) q^{52} +(10.5975 - 3.11170i) q^{53} +(0.841254 + 0.540641i) q^{54} +(-0.0339693 + 0.0743823i) q^{55} +(3.07385 + 0.902563i) q^{56} +(2.40764 + 2.77857i) q^{57} +(-4.81044 - 5.55155i) q^{58} +(5.14362 + 1.51030i) q^{59} +(-0.614354 + 1.34525i) q^{60} +(10.2645 + 6.59662i) q^{61} +(7.63321 - 2.24131i) q^{62} +(0.455922 - 3.17101i) q^{63} +(0.415415 + 0.909632i) q^{64} +(-0.169582 - 1.17947i) q^{65} +(0.0465151 - 0.0298935i) q^{66} +(-2.96073 + 3.41687i) q^{67} +2.05954 q^{68} +(-4.57167 + 1.44908i) q^{69} +4.73780 q^{70} +(9.56286 - 11.0361i) q^{71} +(0.841254 - 0.540641i) q^{72} +(1.40345 + 9.76122i) q^{73} +(-1.28287 - 2.80909i) q^{74} +(0.400315 - 2.78425i) q^{75} +(3.52765 - 1.03581i) q^{76} +(-0.149017 - 0.0957672i) q^{77} +(-0.334716 + 0.732925i) q^{78} +(-3.47320 - 1.01982i) q^{79} +(0.968468 + 1.11767i) q^{80} +(-0.654861 - 0.755750i) q^{81} +(1.40060 + 0.411254i) q^{82} +(-4.16838 + 9.12749i) q^{83} +(-2.69505 - 1.73201i) q^{84} +(2.92245 - 0.858110i) q^{85} +(1.78352 - 12.4047i) q^{86} +(3.05153 + 6.68193i) q^{87} +(-0.00786897 - 0.0547299i) q^{88} +(-6.94243 + 4.46163i) q^{89} +(0.968468 - 1.11767i) q^{90} +2.58128 q^{91} +(-0.581014 + 4.76051i) q^{92} -7.95546 q^{93} +(0.834679 - 0.963271i) q^{94} +(4.57411 - 2.93960i) q^{95} +(-0.142315 - 0.989821i) q^{96} +(2.91463 + 6.38215i) q^{97} +(-0.464395 + 3.22994i) q^{98} +(-0.0530529 + 0.0155777i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - q^{3} - q^{4} + 8 q^{5} - q^{6} + 8 q^{7} - q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - q^{2} - q^{3} - q^{4} + 8 q^{5} - q^{6} + 8 q^{7} - q^{8} - q^{9} - 3 q^{10} + 7 q^{11} - q^{12} + 3 q^{13} - 3 q^{14} - 3 q^{15} - q^{16} + 4 q^{17} - q^{18} - 3 q^{20} - 3 q^{21} - 26 q^{22} - 12 q^{23} + 10 q^{24} - 15 q^{25} + 3 q^{26} - q^{27} - 3 q^{28} - 25 q^{29} - 3 q^{30} + 6 q^{31} - q^{32} - 4 q^{33} - 7 q^{34} + 2 q^{35} - q^{36} + 9 q^{37} + 11 q^{38} + 3 q^{39} - 3 q^{40} + 24 q^{41} + 8 q^{42} - 30 q^{43} + 7 q^{44} - 14 q^{45} + 21 q^{46} - 48 q^{47} - q^{48} + 9 q^{49} + 7 q^{50} + 15 q^{51} + 14 q^{52} + 15 q^{53} - q^{54} - 23 q^{55} + 8 q^{56} - 11 q^{57} - 3 q^{58} + 5 q^{59} + 8 q^{60} + 12 q^{61} + 28 q^{62} + 8 q^{63} - q^{64} - 13 q^{65} + 18 q^{66} + 18 q^{67} - 18 q^{68} - q^{69} + 2 q^{70} + 28 q^{71} - q^{72} + 19 q^{73} + 9 q^{74} + 7 q^{75} + 22 q^{76} - 12 q^{77} - 8 q^{78} - 52 q^{79} + 8 q^{80} - q^{81} - 20 q^{82} + 7 q^{83} - 3 q^{84} + 23 q^{85} + 14 q^{86} + 30 q^{87} - 4 q^{88} + 3 q^{89} + 8 q^{90} + 42 q^{91} - 23 q^{92} - 16 q^{93} + 29 q^{94} + 22 q^{95} - q^{96} + 51 q^{97} - 2 q^{98} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/138\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.654861 + 0.755750i −0.463056 + 0.534396i
\(3\) 0.841254 0.540641i 0.485698 0.312139i
\(4\) −0.142315 0.989821i −0.0711574 0.494911i
\(5\) −0.614354 1.34525i −0.274747 0.601613i 0.721082 0.692850i \(-0.243645\pi\)
−0.995829 + 0.0912371i \(0.970918\pi\)
\(6\) −0.142315 + 0.989821i −0.0580998 + 0.404093i
\(7\) 3.07385 0.902563i 1.16180 0.341137i 0.356671 0.934230i \(-0.383912\pi\)
0.805134 + 0.593093i \(0.202093\pi\)
\(8\) 0.841254 + 0.540641i 0.297428 + 0.191145i
\(9\) 0.415415 0.909632i 0.138472 0.303211i
\(10\) 1.41899 + 0.416652i 0.448723 + 0.131757i
\(11\) −0.0362090 0.0417874i −0.0109174 0.0125994i 0.750265 0.661138i \(-0.229926\pi\)
−0.761182 + 0.648538i \(0.775381\pi\)
\(12\) −0.654861 0.755750i −0.189042 0.218166i
\(13\) 0.773100 + 0.227003i 0.214419 + 0.0629592i 0.387178 0.922005i \(-0.373450\pi\)
−0.172759 + 0.984964i \(0.555268\pi\)
\(14\) −1.33083 + 2.91411i −0.355679 + 0.778829i
\(15\) −1.24412 0.799549i −0.321231 0.206443i
\(16\) −0.959493 + 0.281733i −0.239873 + 0.0704331i
\(17\) −0.293103 + 2.03857i −0.0710879 + 0.494427i 0.922909 + 0.385018i \(0.125805\pi\)
−0.993997 + 0.109409i \(0.965104\pi\)
\(18\) 0.415415 + 0.909632i 0.0979143 + 0.214402i
\(19\) 0.523231 + 3.63915i 0.120037 + 0.834879i 0.957510 + 0.288399i \(0.0931231\pi\)
−0.837473 + 0.546479i \(0.815968\pi\)
\(20\) −1.24412 + 0.799549i −0.278194 + 0.178785i
\(21\) 2.09792 2.42113i 0.457804 0.528334i
\(22\) 0.0552927 0.0117884
\(23\) −4.62936 1.25259i −0.965289 0.261183i
\(24\) 1.00000 0.204124
\(25\) 1.84204 2.12583i 0.368409 0.425167i
\(26\) −0.677830 + 0.435615i −0.132933 + 0.0854311i
\(27\) −0.142315 0.989821i −0.0273885 0.190491i
\(28\) −1.33083 2.91411i −0.251503 0.550715i
\(29\) −1.04541 + 7.27098i −0.194128 + 1.35019i 0.626811 + 0.779171i \(0.284360\pi\)
−0.820939 + 0.571016i \(0.806549\pi\)
\(30\) 1.41899 0.416652i 0.259070 0.0760699i
\(31\) −6.69256 4.30105i −1.20202 0.772491i −0.222715 0.974884i \(-0.571492\pi\)
−0.979305 + 0.202392i \(0.935128\pi\)
\(32\) 0.415415 0.909632i 0.0734357 0.160802i
\(33\) −0.0530529 0.0155777i −0.00923533 0.00271174i
\(34\) −1.34871 1.55649i −0.231302 0.266937i
\(35\) −3.10260 3.58059i −0.524435 0.605230i
\(36\) −0.959493 0.281733i −0.159915 0.0469554i
\(37\) −1.28287 + 2.80909i −0.210902 + 0.461811i −0.985288 0.170903i \(-0.945332\pi\)
0.774386 + 0.632713i \(0.218059\pi\)
\(38\) −3.09293 1.98771i −0.501740 0.322448i
\(39\) 0.773100 0.227003i 0.123795 0.0363495i
\(40\) 0.210468 1.46384i 0.0332779 0.231453i
\(41\) −0.606395 1.32782i −0.0947030 0.207371i 0.856352 0.516393i \(-0.172726\pi\)
−0.951055 + 0.309022i \(0.899998\pi\)
\(42\) 0.455922 + 3.17101i 0.0703503 + 0.489297i
\(43\) −10.5428 + 6.77544i −1.60776 + 1.03324i −0.644526 + 0.764582i \(0.722945\pi\)
−0.963234 + 0.268663i \(0.913418\pi\)
\(44\) −0.0362090 + 0.0417874i −0.00545871 + 0.00629969i
\(45\) −1.47889 −0.220460
\(46\) 3.97823 2.67837i 0.586559 0.394904i
\(47\) −1.27459 −0.185918 −0.0929591 0.995670i \(-0.529633\pi\)
−0.0929591 + 0.995670i \(0.529633\pi\)
\(48\) −0.654861 + 0.755750i −0.0945210 + 0.109083i
\(49\) 2.74514 1.76419i 0.392163 0.252028i
\(50\) 0.400315 + 2.78425i 0.0566130 + 0.393752i
\(51\) 0.855563 + 1.87342i 0.119803 + 0.262331i
\(52\) 0.114669 0.797537i 0.0159017 0.110598i
\(53\) 10.5975 3.11170i 1.45567 0.427424i 0.544260 0.838916i \(-0.316810\pi\)
0.911413 + 0.411492i \(0.134992\pi\)
\(54\) 0.841254 + 0.540641i 0.114480 + 0.0735719i
\(55\) −0.0339693 + 0.0743823i −0.00458041 + 0.0100297i
\(56\) 3.07385 + 0.902563i 0.410760 + 0.120610i
\(57\) 2.40764 + 2.77857i 0.318900 + 0.368030i
\(58\) −4.81044 5.55155i −0.631642 0.728954i
\(59\) 5.14362 + 1.51030i 0.669642 + 0.196625i 0.598844 0.800866i \(-0.295627\pi\)
0.0707986 + 0.997491i \(0.477445\pi\)
\(60\) −0.614354 + 1.34525i −0.0793127 + 0.173671i
\(61\) 10.2645 + 6.59662i 1.31424 + 0.844611i 0.994686 0.102957i \(-0.0328303\pi\)
0.319555 + 0.947568i \(0.396467\pi\)
\(62\) 7.63321 2.24131i 0.969419 0.284647i
\(63\) 0.455922 3.17101i 0.0574408 0.399509i
\(64\) 0.415415 + 0.909632i 0.0519269 + 0.113704i
\(65\) −0.169582 1.17947i −0.0210341 0.146295i
\(66\) 0.0465151 0.0298935i 0.00572562 0.00367963i
\(67\) −2.96073 + 3.41687i −0.361711 + 0.417437i −0.907212 0.420673i \(-0.861794\pi\)
0.545501 + 0.838110i \(0.316339\pi\)
\(68\) 2.05954 0.249756
\(69\) −4.57167 + 1.44908i −0.550365 + 0.174448i
\(70\) 4.73780 0.566275
\(71\) 9.56286 11.0361i 1.13490 1.30975i 0.190228 0.981740i \(-0.439077\pi\)
0.944675 0.328008i \(-0.106377\pi\)
\(72\) 0.841254 0.540641i 0.0991427 0.0637151i
\(73\) 1.40345 + 9.76122i 0.164262 + 1.14246i 0.890487 + 0.455008i \(0.150364\pi\)
−0.726226 + 0.687456i \(0.758727\pi\)
\(74\) −1.28287 2.80909i −0.149130 0.326550i
\(75\) 0.400315 2.78425i 0.0462243 0.321497i
\(76\) 3.52765 1.03581i 0.404649 0.118816i
\(77\) −0.149017 0.0957672i −0.0169820 0.0109137i
\(78\) −0.334716 + 0.732925i −0.0378991 + 0.0829874i
\(79\) −3.47320 1.01982i −0.390765 0.114739i 0.0804469 0.996759i \(-0.474365\pi\)
−0.471212 + 0.882020i \(0.656183\pi\)
\(80\) 0.968468 + 1.11767i 0.108278 + 0.124959i
\(81\) −0.654861 0.755750i −0.0727623 0.0839722i
\(82\) 1.40060 + 0.411254i 0.154671 + 0.0454155i
\(83\) −4.16838 + 9.12749i −0.457540 + 1.00187i 0.530502 + 0.847684i \(0.322004\pi\)
−0.988041 + 0.154188i \(0.950724\pi\)
\(84\) −2.69505 1.73201i −0.294054 0.188977i
\(85\) 2.92245 0.858110i 0.316985 0.0930751i
\(86\) 1.78352 12.4047i 0.192322 1.33763i
\(87\) 3.05153 + 6.68193i 0.327159 + 0.716378i
\(88\) −0.00786897 0.0547299i −0.000838835 0.00583422i
\(89\) −6.94243 + 4.46163i −0.735896 + 0.472932i −0.854134 0.520054i \(-0.825912\pi\)
0.118237 + 0.992985i \(0.462276\pi\)
\(90\) 0.968468 1.11767i 0.102085 0.117813i
\(91\) 2.58128 0.270591
\(92\) −0.581014 + 4.76051i −0.0605749 + 0.496317i
\(93\) −7.95546 −0.824943
\(94\) 0.834679 0.963271i 0.0860906 0.0993539i
\(95\) 4.57411 2.93960i 0.469294 0.301597i
\(96\) −0.142315 0.989821i −0.0145249 0.101023i
\(97\) 2.91463 + 6.38215i 0.295936 + 0.648009i 0.997939 0.0641646i \(-0.0204383\pi\)
−0.702004 + 0.712173i \(0.747711\pi\)
\(98\) −0.464395 + 3.22994i −0.0469110 + 0.326273i
\(99\) −0.0530529 + 0.0155777i −0.00533202 + 0.00156562i
\(100\) −2.36635 1.52076i −0.236635 0.152076i
\(101\) 6.37690 13.9635i 0.634526 1.38942i −0.269943 0.962876i \(-0.587005\pi\)
0.904468 0.426541i \(-0.140268\pi\)
\(102\) −1.97611 0.580239i −0.195664 0.0574522i
\(103\) −10.0337 11.5795i −0.988648 1.14096i −0.990015 0.140962i \(-0.954981\pi\)
0.00136697 0.999999i \(-0.499565\pi\)
\(104\) 0.527646 + 0.608936i 0.0517400 + 0.0597111i
\(105\) −4.54589 1.33479i −0.443633 0.130262i
\(106\) −4.58820 + 10.0468i −0.445645 + 0.975827i
\(107\) −8.13948 5.23093i −0.786873 0.505693i 0.0844348 0.996429i \(-0.473092\pi\)
−0.871308 + 0.490736i \(0.836728\pi\)
\(108\) −0.959493 + 0.281733i −0.0923273 + 0.0271097i
\(109\) 1.90704 13.2638i 0.182662 1.27044i −0.667775 0.744363i \(-0.732753\pi\)
0.850437 0.526077i \(-0.176338\pi\)
\(110\) −0.0339693 0.0743823i −0.00323884 0.00709207i
\(111\) 0.439490 + 3.05672i 0.0417146 + 0.290131i
\(112\) −2.69505 + 1.73201i −0.254659 + 0.163659i
\(113\) −5.38879 + 6.21899i −0.506934 + 0.585033i −0.950311 0.311302i \(-0.899235\pi\)
0.443377 + 0.896335i \(0.353780\pi\)
\(114\) −3.67657 −0.344343
\(115\) 1.15902 + 6.99717i 0.108079 + 0.652490i
\(116\) 7.34575 0.682036
\(117\) 0.527646 0.608936i 0.0487809 0.0562962i
\(118\) −4.50977 + 2.89825i −0.415158 + 0.266806i
\(119\) 0.938989 + 6.53081i 0.0860769 + 0.598678i
\(120\) −0.614354 1.34525i −0.0560826 0.122804i
\(121\) 1.56503 10.8850i 0.142275 0.989546i
\(122\) −11.7072 + 3.43756i −1.05992 + 0.311222i
\(123\) −1.22801 0.789191i −0.110726 0.0711590i
\(124\) −3.30482 + 7.23654i −0.296782 + 0.649861i
\(125\) −11.0864 3.25525i −0.991595 0.291159i
\(126\) 2.09792 + 2.42113i 0.186898 + 0.215692i
\(127\) −12.6731 14.6256i −1.12456 1.29781i −0.949681 0.313219i \(-0.898593\pi\)
−0.174877 0.984590i \(-0.555953\pi\)
\(128\) −0.959493 0.281733i −0.0848080 0.0249019i
\(129\) −5.20608 + 11.3997i −0.458370 + 1.00369i
\(130\) 1.00244 + 0.644227i 0.0879196 + 0.0565025i
\(131\) 20.0561 5.88899i 1.75231 0.514523i 0.761306 0.648392i \(-0.224558\pi\)
0.990999 + 0.133869i \(0.0427401\pi\)
\(132\) −0.00786897 + 0.0547299i −0.000684906 + 0.00476362i
\(133\) 4.89289 + 10.7139i 0.424268 + 0.929017i
\(134\) −0.643429 4.47515i −0.0555838 0.386594i
\(135\) −1.24412 + 0.799549i −0.107077 + 0.0688142i
\(136\) −1.34871 + 1.55649i −0.115651 + 0.133468i
\(137\) 5.89909 0.503993 0.251997 0.967728i \(-0.418913\pi\)
0.251997 + 0.967728i \(0.418913\pi\)
\(138\) 1.89867 4.40398i 0.161625 0.374892i
\(139\) −4.04356 −0.342971 −0.171485 0.985187i \(-0.554857\pi\)
−0.171485 + 0.985187i \(0.554857\pi\)
\(140\) −3.10260 + 3.58059i −0.262217 + 0.302615i
\(141\) −1.07225 + 0.689096i −0.0903001 + 0.0580323i
\(142\) 2.07821 + 14.4543i 0.174399 + 1.21297i
\(143\) −0.0185073 0.0405254i −0.00154766 0.00338890i
\(144\) −0.142315 + 0.989821i −0.0118596 + 0.0824851i
\(145\) 10.4235 3.06062i 0.865626 0.254171i
\(146\) −8.29611 5.33158i −0.686591 0.441245i
\(147\) 1.35556 2.96827i 0.111805 0.244819i
\(148\) 2.96306 + 0.870034i 0.243562 + 0.0715164i
\(149\) 5.37873 + 6.20739i 0.440643 + 0.508529i 0.932014 0.362421i \(-0.118050\pi\)
−0.491372 + 0.870950i \(0.663504\pi\)
\(150\) 1.84204 + 2.12583i 0.150402 + 0.173574i
\(151\) 12.3286 + 3.62000i 1.00328 + 0.294591i 0.741803 0.670617i \(-0.233971\pi\)
0.261482 + 0.965208i \(0.415789\pi\)
\(152\) −1.52730 + 3.34433i −0.123881 + 0.271261i
\(153\) 1.73259 + 1.11347i 0.140072 + 0.0900187i
\(154\) 0.169961 0.0499051i 0.0136959 0.00402147i
\(155\) −1.67437 + 11.6455i −0.134489 + 0.935390i
\(156\) −0.334716 0.732925i −0.0267987 0.0586810i
\(157\) −0.557702 3.87890i −0.0445095 0.309570i −0.999899 0.0142211i \(-0.995473\pi\)
0.955389 0.295349i \(-0.0954360\pi\)
\(158\) 3.04519 1.95703i 0.242262 0.155693i
\(159\) 7.23284 8.34715i 0.573602 0.661972i
\(160\) −1.47889 −0.116917
\(161\) −15.3605 + 0.328020i −1.21058 + 0.0258516i
\(162\) 1.00000 0.0785674
\(163\) −10.2975 + 11.8839i −0.806560 + 0.930820i −0.998722 0.0505437i \(-0.983905\pi\)
0.192162 + 0.981363i \(0.438450\pi\)
\(164\) −1.22801 + 0.789191i −0.0958911 + 0.0616255i
\(165\) 0.0116373 + 0.0809395i 0.000905966 + 0.00630113i
\(166\) −4.16838 9.12749i −0.323529 0.708431i
\(167\) 0.572056 3.97873i 0.0442670 0.307884i −0.955644 0.294525i \(-0.904839\pi\)
0.999911 0.0133587i \(-0.00425233\pi\)
\(168\) 3.07385 0.902563i 0.237152 0.0696342i
\(169\) −10.3901 6.67734i −0.799242 0.513641i
\(170\) −1.26528 + 2.77059i −0.0970429 + 0.212494i
\(171\) 3.52765 + 1.03581i 0.269766 + 0.0792104i
\(172\) 8.20687 + 9.47123i 0.625768 + 0.722175i
\(173\) −3.44095 3.97106i −0.261610 0.301914i 0.609715 0.792621i \(-0.291284\pi\)
−0.871325 + 0.490707i \(0.836739\pi\)
\(174\) −7.04820 2.06954i −0.534322 0.156891i
\(175\) 3.74347 8.19705i 0.282979 0.619638i
\(176\) 0.0465151 + 0.0298935i 0.00350621 + 0.00225331i
\(177\) 5.14362 1.51030i 0.386618 0.113521i
\(178\) 1.17445 8.16849i 0.0880288 0.612254i
\(179\) −0.877732 1.92196i −0.0656048 0.143654i 0.873989 0.485945i \(-0.161525\pi\)
−0.939594 + 0.342291i \(0.888797\pi\)
\(180\) 0.210468 + 1.46384i 0.0156874 + 0.109108i
\(181\) −0.194228 + 0.124823i −0.0144369 + 0.00927802i −0.547839 0.836584i \(-0.684549\pi\)
0.533402 + 0.845862i \(0.320913\pi\)
\(182\) −1.69038 + 1.95080i −0.125299 + 0.144603i
\(183\) 12.2015 0.901960
\(184\) −3.21727 3.55657i −0.237180 0.262194i
\(185\) 4.56705 0.335776
\(186\) 5.20972 6.01234i 0.381995 0.440846i
\(187\) 0.0957997 0.0615667i 0.00700557 0.00450220i
\(188\) 0.181393 + 1.26162i 0.0132295 + 0.0920129i
\(189\) −1.33083 2.91411i −0.0968036 0.211970i
\(190\) −0.773802 + 5.38191i −0.0561375 + 0.390445i
\(191\) −4.22482 + 1.24052i −0.305697 + 0.0897608i −0.430984 0.902360i \(-0.641833\pi\)
0.125286 + 0.992121i \(0.460015\pi\)
\(192\) 0.841254 + 0.540641i 0.0607122 + 0.0390174i
\(193\) 8.93029 19.5546i 0.642817 1.40757i −0.254886 0.966971i \(-0.582038\pi\)
0.897703 0.440601i \(-0.145235\pi\)
\(194\) −6.73198 1.97669i −0.483328 0.141918i
\(195\) −0.780332 0.900551i −0.0558807 0.0644898i
\(196\) −2.13691 2.46613i −0.152636 0.176152i
\(197\) −8.53190 2.50519i −0.607873 0.178487i −0.0367120 0.999326i \(-0.511688\pi\)
−0.571160 + 0.820838i \(0.693507\pi\)
\(198\) 0.0229694 0.0502960i 0.00163236 0.00357438i
\(199\) 15.2730 + 9.81535i 1.08267 + 0.695792i 0.955173 0.296047i \(-0.0956685\pi\)
0.127500 + 0.991839i \(0.459305\pi\)
\(200\) 2.69894 0.792480i 0.190844 0.0560368i
\(201\) −0.643429 + 4.47515i −0.0453840 + 0.315652i
\(202\) 6.37690 + 13.9635i 0.448677 + 0.982466i
\(203\) 3.34909 + 23.2934i 0.235060 + 1.63488i
\(204\) 1.73259 1.11347i 0.121306 0.0779585i
\(205\) −1.41370 + 1.63150i −0.0987374 + 0.113949i
\(206\) 15.3219 1.06752
\(207\) −3.06250 + 3.69067i −0.212859 + 0.256520i
\(208\) −0.805738 −0.0558679
\(209\) 0.133125 0.153634i 0.00920845 0.0106271i
\(210\) 3.98569 2.56145i 0.275039 0.176757i
\(211\) −2.44839 17.0289i −0.168554 1.17232i −0.881876 0.471482i \(-0.843719\pi\)
0.713322 0.700836i \(-0.247190\pi\)
\(212\) −4.58820 10.0468i −0.315119 0.690014i
\(213\) 2.07821 14.4543i 0.142397 0.990390i
\(214\) 9.28350 2.72588i 0.634607 0.186337i
\(215\) 15.5916 + 10.0201i 1.06334 + 0.683368i
\(216\) 0.415415 0.909632i 0.0282654 0.0618926i
\(217\) −24.4539 7.18031i −1.66004 0.487431i
\(218\) 8.77525 + 10.1272i 0.594335 + 0.685899i
\(219\) 6.45797 + 7.45290i 0.436389 + 0.503620i
\(220\) 0.0784595 + 0.0230378i 0.00528974 + 0.00155321i
\(221\) −0.689360 + 1.50949i −0.0463713 + 0.101539i
\(222\) −2.59792 1.66958i −0.174361 0.112055i
\(223\) 9.25505 2.71753i 0.619764 0.181979i 0.0432473 0.999064i \(-0.486230\pi\)
0.576517 + 0.817085i \(0.304411\pi\)
\(224\) 0.455922 3.17101i 0.0304626 0.211872i
\(225\) −1.16851 2.55869i −0.0779008 0.170579i
\(226\) −1.17109 8.14514i −0.0779001 0.541807i
\(227\) −11.1785 + 7.18400i −0.741944 + 0.476819i −0.856208 0.516632i \(-0.827186\pi\)
0.114263 + 0.993450i \(0.463549\pi\)
\(228\) 2.40764 2.77857i 0.159450 0.184015i
\(229\) 10.3343 0.682912 0.341456 0.939898i \(-0.389080\pi\)
0.341456 + 0.939898i \(0.389080\pi\)
\(230\) −6.04711 3.70624i −0.398735 0.244382i
\(231\) −0.177136 −0.0116547
\(232\) −4.81044 + 5.55155i −0.315821 + 0.364477i
\(233\) −0.186234 + 0.119685i −0.0122006 + 0.00784085i −0.546727 0.837311i \(-0.684126\pi\)
0.534526 + 0.845152i \(0.320490\pi\)
\(234\) 0.114669 + 0.797537i 0.00749611 + 0.0521366i
\(235\) 0.783050 + 1.71464i 0.0510805 + 0.111851i
\(236\) 0.762917 5.30620i 0.0496617 0.345404i
\(237\) −3.47320 + 1.01982i −0.225608 + 0.0662446i
\(238\) −5.55056 3.56713i −0.359790 0.231223i
\(239\) 4.19290 9.18117i 0.271216 0.593881i −0.724192 0.689598i \(-0.757787\pi\)
0.995409 + 0.0957174i \(0.0305145\pi\)
\(240\) 1.41899 + 0.416652i 0.0915951 + 0.0268948i
\(241\) 1.63492 + 1.88680i 0.105315 + 0.121540i 0.805960 0.591970i \(-0.201650\pi\)
−0.700645 + 0.713510i \(0.747104\pi\)
\(242\) 7.20147 + 8.31093i 0.462928 + 0.534247i
\(243\) −0.959493 0.281733i −0.0615515 0.0180732i
\(244\) 5.06868 11.0989i 0.324489 0.710532i
\(245\) −4.05976 2.60905i −0.259369 0.166686i
\(246\) 1.40060 0.411254i 0.0892992 0.0262206i
\(247\) −0.421587 + 2.93220i −0.0268249 + 0.186572i
\(248\) −3.30482 7.23654i −0.209856 0.459521i
\(249\) 1.42803 + 9.93213i 0.0904974 + 0.629423i
\(250\) 9.72018 6.24678i 0.614758 0.395081i
\(251\) −9.41401 + 10.8643i −0.594207 + 0.685752i −0.970597 0.240710i \(-0.922620\pi\)
0.376390 + 0.926461i \(0.377165\pi\)
\(252\) −3.20362 −0.201809
\(253\) 0.115282 + 0.238804i 0.00724772 + 0.0150135i
\(254\) 19.3524 1.21428
\(255\) 1.99460 2.30189i 0.124906 0.144150i
\(256\) 0.841254 0.540641i 0.0525783 0.0337901i
\(257\) 2.43482 + 16.9346i 0.151880 + 1.05635i 0.913065 + 0.407814i \(0.133709\pi\)
−0.761185 + 0.648535i \(0.775382\pi\)
\(258\) −5.20608 11.3997i −0.324116 0.709716i
\(259\) −1.40796 + 9.79257i −0.0874863 + 0.608480i
\(260\) −1.14333 + 0.335712i −0.0709064 + 0.0208200i
\(261\) 6.17964 + 3.97141i 0.382510 + 0.245824i
\(262\) −8.68332 + 19.0138i −0.536457 + 1.17468i
\(263\) 9.43152 + 2.76934i 0.581573 + 0.170765i 0.559269 0.828986i \(-0.311082\pi\)
0.0223034 + 0.999751i \(0.492900\pi\)
\(264\) −0.0362090 0.0417874i −0.00222851 0.00257184i
\(265\) −10.6966 12.3445i −0.657086 0.758318i
\(266\) −11.3012 3.31834i −0.692922 0.203460i
\(267\) −3.42821 + 7.50672i −0.209803 + 0.459404i
\(268\) 3.80345 + 2.44433i 0.232332 + 0.149311i
\(269\) −25.9470 + 7.61874i −1.58202 + 0.464523i −0.950471 0.310814i \(-0.899398\pi\)
−0.631548 + 0.775337i \(0.717580\pi\)
\(270\) 0.210468 1.46384i 0.0128087 0.0890864i
\(271\) 5.82097 + 12.7462i 0.353599 + 0.774274i 0.999937 + 0.0112226i \(0.00357233\pi\)
−0.646338 + 0.763051i \(0.723700\pi\)
\(272\) −0.293103 2.03857i −0.0177720 0.123607i
\(273\) 2.17151 1.39554i 0.131426 0.0844621i
\(274\) −3.86308 + 4.45824i −0.233377 + 0.269332i
\(275\) −0.155532 −0.00937891
\(276\) 2.08494 + 4.31891i 0.125499 + 0.259968i
\(277\) −6.65528 −0.399877 −0.199938 0.979808i \(-0.564074\pi\)
−0.199938 + 0.979808i \(0.564074\pi\)
\(278\) 2.64797 3.05592i 0.158815 0.183282i
\(279\) −6.69256 + 4.30105i −0.400673 + 0.257497i
\(280\) −0.674259 4.68958i −0.0402947 0.280256i
\(281\) −6.11673 13.3938i −0.364894 0.799006i −0.999654 0.0262969i \(-0.991628\pi\)
0.634760 0.772709i \(-0.281099\pi\)
\(282\) 0.181393 1.26162i 0.0108018 0.0751282i
\(283\) 13.1361 3.85711i 0.780861 0.229282i 0.133077 0.991106i \(-0.457514\pi\)
0.647784 + 0.761824i \(0.275696\pi\)
\(284\) −12.2847 7.89492i −0.728965 0.468477i
\(285\) 2.25872 4.94590i 0.133795 0.292970i
\(286\) 0.0427468 + 0.0125516i 0.00252767 + 0.000742191i
\(287\) −3.06241 3.53421i −0.180768 0.208618i
\(288\) −0.654861 0.755750i −0.0385880 0.0445330i
\(289\) 12.2415 + 3.59443i 0.720089 + 0.211437i
\(290\) −4.51289 + 9.88185i −0.265006 + 0.580282i
\(291\) 5.90239 + 3.79324i 0.346004 + 0.222363i
\(292\) 9.46214 2.77833i 0.553730 0.162590i
\(293\) −4.21529 + 29.3180i −0.246260 + 1.71278i 0.373203 + 0.927750i \(0.378260\pi\)
−0.619463 + 0.785026i \(0.712650\pi\)
\(294\) 1.35556 + 2.96827i 0.0790580 + 0.173113i
\(295\) −1.12827 7.84730i −0.0656905 0.456887i
\(296\) −2.59792 + 1.66958i −0.151001 + 0.0970425i
\(297\) −0.0362090 + 0.0417874i −0.00210106 + 0.00242475i
\(298\) −8.21355 −0.475798
\(299\) −3.29462 2.01926i −0.190533 0.116777i
\(300\) −2.81288 −0.162402
\(301\) −26.2917 + 30.3422i −1.51543 + 1.74890i
\(302\) −10.8093 + 6.94672i −0.622006 + 0.399739i
\(303\) −2.18463 15.1944i −0.125504 0.872897i
\(304\) −1.52730 3.34433i −0.0875969 0.191810i
\(305\) 2.56803 17.8610i 0.147045 1.02272i
\(306\) −1.97611 + 0.580239i −0.112967 + 0.0331700i
\(307\) 7.67787 + 4.93427i 0.438199 + 0.281613i 0.741082 0.671414i \(-0.234313\pi\)
−0.302883 + 0.953028i \(0.597949\pi\)
\(308\) −0.0735851 + 0.161129i −0.00419290 + 0.00918118i
\(309\) −14.7012 4.31667i −0.836323 0.245567i
\(310\) −7.70461 8.89160i −0.437593 0.505009i
\(311\) −15.0457 17.3636i −0.853162 0.984602i 0.146827 0.989162i \(-0.453094\pi\)
−0.999990 + 0.00456050i \(0.998548\pi\)
\(312\) 0.773100 + 0.227003i 0.0437682 + 0.0128515i
\(313\) 8.20118 17.9581i 0.463558 1.01505i −0.523104 0.852269i \(-0.675226\pi\)
0.986662 0.162782i \(-0.0520466\pi\)
\(314\) 3.29670 + 2.11866i 0.186043 + 0.119563i
\(315\) −4.54589 + 1.33479i −0.256132 + 0.0752070i
\(316\) −0.515155 + 3.58298i −0.0289797 + 0.201558i
\(317\) −8.65385 18.9493i −0.486049 1.06430i −0.980756 0.195238i \(-0.937452\pi\)
0.494707 0.869060i \(-0.335275\pi\)
\(318\) 1.57185 + 10.9324i 0.0881448 + 0.613061i
\(319\) 0.341689 0.219590i 0.0191309 0.0122947i
\(320\) 0.968468 1.11767i 0.0541390 0.0624797i
\(321\) −9.67542 −0.540029
\(322\) 9.81109 11.8235i 0.546750 0.658898i
\(323\) −7.57204 −0.421320
\(324\) −0.654861 + 0.755750i −0.0363812 + 0.0419861i
\(325\) 1.90665 1.22533i 0.105762 0.0679692i
\(326\) −2.23785 15.5646i −0.123943 0.862044i
\(327\) −5.56664 12.1892i −0.307836 0.674066i
\(328\) 0.207742 1.44488i 0.0114706 0.0797799i
\(329\) −3.91790 + 1.15040i −0.216001 + 0.0634235i
\(330\) −0.0687909 0.0442092i −0.00378681 0.00243364i
\(331\) −6.45836 + 14.1418i −0.354983 + 0.777305i 0.644931 + 0.764241i \(0.276886\pi\)
−0.999915 + 0.0130646i \(0.995841\pi\)
\(332\) 9.62781 + 2.82698i 0.528395 + 0.155151i
\(333\) 2.02231 + 2.33387i 0.110822 + 0.127895i
\(334\) 2.63231 + 3.03785i 0.144034 + 0.166224i
\(335\) 6.41547 + 1.88375i 0.350514 + 0.102920i
\(336\) −1.33083 + 2.91411i −0.0726027 + 0.158978i
\(337\) 5.95413 + 3.82649i 0.324342 + 0.208442i 0.692671 0.721253i \(-0.256434\pi\)
−0.368329 + 0.929695i \(0.620070\pi\)
\(338\) 11.8505 3.47962i 0.644582 0.189266i
\(339\) −1.17109 + 8.14514i −0.0636051 + 0.442384i
\(340\) −1.26528 2.77059i −0.0686197 0.150256i
\(341\) 0.0626013 + 0.435401i 0.00339005 + 0.0235783i
\(342\) −3.09293 + 1.98771i −0.167247 + 0.107483i
\(343\) −7.83961 + 9.04740i −0.423299 + 0.488513i
\(344\) −12.5322 −0.675693
\(345\) 4.75799 + 5.25978i 0.256162 + 0.283177i
\(346\) 5.25447 0.282482
\(347\) 16.6438 19.2080i 0.893486 1.03114i −0.105839 0.994383i \(-0.533753\pi\)
0.999324 0.0367541i \(-0.0117018\pi\)
\(348\) 6.17964 3.97141i 0.331263 0.212890i
\(349\) 3.29197 + 22.8962i 0.176215 + 1.22560i 0.865423 + 0.501041i \(0.167049\pi\)
−0.689208 + 0.724563i \(0.742041\pi\)
\(350\) 3.74347 + 8.19705i 0.200097 + 0.438151i
\(351\) 0.114669 0.797537i 0.00612055 0.0425694i
\(352\) −0.0530529 + 0.0155777i −0.00282773 + 0.000830297i
\(353\) 20.2471 + 13.0120i 1.07765 + 0.692561i 0.954013 0.299767i \(-0.0969088\pi\)
0.123634 + 0.992328i \(0.460545\pi\)
\(354\) −2.22694 + 4.87633i −0.118361 + 0.259174i
\(355\) −20.7213 6.08432i −1.09977 0.322922i
\(356\) 5.40423 + 6.23681i 0.286424 + 0.330550i
\(357\) 4.32075 + 4.98641i 0.228678 + 0.263909i
\(358\) 2.02732 + 0.595274i 0.107147 + 0.0314612i
\(359\) 7.96450 17.4398i 0.420350 0.920438i −0.574445 0.818543i \(-0.694782\pi\)
0.994795 0.101895i \(-0.0324907\pi\)
\(360\) −1.24412 0.799549i −0.0655710 0.0421399i
\(361\) 5.26072 1.54469i 0.276880 0.0812992i
\(362\) 0.0328576 0.228530i 0.00172696 0.0120113i
\(363\) −4.56830 10.0032i −0.239773 0.525030i
\(364\) −0.367354 2.55500i −0.0192546 0.133918i
\(365\) 12.2690 7.88483i 0.642191 0.412711i
\(366\) −7.99028 + 9.22127i −0.417659 + 0.482004i
\(367\) −26.2686 −1.37121 −0.685606 0.727973i \(-0.740463\pi\)
−0.685606 + 0.727973i \(0.740463\pi\)
\(368\) 4.79474 0.102391i 0.249943 0.00533748i
\(369\) −1.45973 −0.0759907
\(370\) −2.99078 + 3.45154i −0.155483 + 0.179437i
\(371\) 29.7665 19.1298i 1.54540 0.993167i
\(372\) 1.13218 + 7.87449i 0.0587008 + 0.408273i
\(373\) 8.47650 + 18.5609i 0.438896 + 0.961049i 0.991800 + 0.127803i \(0.0407927\pi\)
−0.552903 + 0.833246i \(0.686480\pi\)
\(374\) −0.0162064 + 0.112718i −0.000838015 + 0.00582852i
\(375\) −11.0864 + 3.25525i −0.572498 + 0.168100i
\(376\) −1.07225 0.689096i −0.0552973 0.0355374i
\(377\) −2.45874 + 5.38389i −0.126631 + 0.277284i
\(378\) 3.07385 + 0.902563i 0.158102 + 0.0464228i
\(379\) −2.61309 3.01566i −0.134225 0.154904i 0.684658 0.728865i \(-0.259952\pi\)
−0.818883 + 0.573961i \(0.805406\pi\)
\(380\) −3.56064 4.10920i −0.182657 0.210798i
\(381\) −18.5685 5.45220i −0.951293 0.279325i
\(382\) 1.82915 4.00527i 0.0935873 0.204928i
\(383\) 5.31857 + 3.41804i 0.271766 + 0.174654i 0.669425 0.742880i \(-0.266541\pi\)
−0.397658 + 0.917534i \(0.630177\pi\)
\(384\) −0.959493 + 0.281733i −0.0489639 + 0.0143771i
\(385\) −0.0372816 + 0.259299i −0.00190005 + 0.0132151i
\(386\) 8.93029 + 19.5546i 0.454540 + 0.995304i
\(387\) 1.78352 + 12.4047i 0.0906616 + 0.630565i
\(388\) 5.90239 3.79324i 0.299648 0.192572i
\(389\) 16.6443 19.2085i 0.843900 0.973912i −0.156005 0.987756i \(-0.549861\pi\)
0.999904 + 0.0138443i \(0.00440693\pi\)
\(390\) 1.19160 0.0603390
\(391\) 3.91038 9.07017i 0.197756 0.458698i
\(392\) 3.26315 0.164814
\(393\) 13.6884 15.7973i 0.690488 0.796866i
\(394\) 7.48050 4.80743i 0.376862 0.242195i
\(395\) 0.761858 + 5.29884i 0.0383333 + 0.266614i
\(396\) 0.0229694 + 0.0502960i 0.00115426 + 0.00252747i
\(397\) 0.488864 3.40012i 0.0245354 0.170647i −0.973869 0.227109i \(-0.927073\pi\)
0.998405 + 0.0564614i \(0.0179818\pi\)
\(398\) −17.4196 + 5.11486i −0.873167 + 0.256385i
\(399\) 9.90856 + 6.36784i 0.496048 + 0.318791i
\(400\) −1.16851 + 2.55869i −0.0584256 + 0.127934i
\(401\) 8.01654 + 2.35387i 0.400327 + 0.117547i 0.475697 0.879609i \(-0.342196\pi\)
−0.0753705 + 0.997156i \(0.524014\pi\)
\(402\) −2.96073 3.41687i −0.147668 0.170418i
\(403\) −4.19767 4.84437i −0.209101 0.241315i
\(404\) −14.7289 4.32479i −0.732789 0.215166i
\(405\) −0.614354 + 1.34525i −0.0305275 + 0.0668459i
\(406\) −19.7972 12.7229i −0.982518 0.631426i
\(407\) 0.163836 0.0481065i 0.00812103 0.00238455i
\(408\) −0.293103 + 2.03857i −0.0145107 + 0.100924i
\(409\) −1.73917 3.80824i −0.0859962 0.188305i 0.861748 0.507336i \(-0.169370\pi\)
−0.947744 + 0.319031i \(0.896643\pi\)
\(410\) −0.307227 2.13681i −0.0151729 0.105530i
\(411\) 4.96263 3.18929i 0.244789 0.157316i
\(412\) −10.0337 + 11.5795i −0.494324 + 0.570480i
\(413\) 17.1738 0.845070
\(414\) −0.783711 4.73136i −0.0385173 0.232534i
\(415\) 14.8396 0.728447
\(416\) 0.527646 0.608936i 0.0258700 0.0298556i
\(417\) −3.40166 + 2.18612i −0.166580 + 0.107055i
\(418\) 0.0289308 + 0.201218i 0.00141505 + 0.00984191i
\(419\) 3.73254 + 8.17311i 0.182346 + 0.399283i 0.978627 0.205645i \(-0.0659293\pi\)
−0.796280 + 0.604928i \(0.793202\pi\)
\(420\) −0.674259 + 4.68958i −0.0329005 + 0.228828i
\(421\) 6.48508 1.90419i 0.316063 0.0928046i −0.119853 0.992792i \(-0.538242\pi\)
0.435917 + 0.899987i \(0.356424\pi\)
\(422\) 14.4729 + 9.30119i 0.704532 + 0.452775i
\(423\) −0.529484 + 1.15941i −0.0257444 + 0.0563724i
\(424\) 10.5975 + 3.11170i 0.514658 + 0.151117i
\(425\) 3.79376 + 4.37823i 0.184024 + 0.212375i
\(426\) 9.56286 + 11.0361i 0.463322 + 0.534702i
\(427\) 37.5055 + 11.0126i 1.81502 + 0.532938i
\(428\) −4.01932 + 8.80107i −0.194281 + 0.425416i
\(429\) −0.0374790 0.0240863i −0.00180950 0.00116290i
\(430\) −17.7831 + 5.22158i −0.857576 + 0.251807i
\(431\) 3.22681 22.4430i 0.155430 1.08104i −0.751492 0.659742i \(-0.770666\pi\)
0.906922 0.421298i \(-0.138425\pi\)
\(432\) 0.415415 + 0.909632i 0.0199867 + 0.0437647i
\(433\) −4.26292 29.6492i −0.204863 1.42485i −0.789596 0.613627i \(-0.789710\pi\)
0.584734 0.811225i \(-0.301199\pi\)
\(434\) 21.4404 13.7789i 1.02917 0.661409i
\(435\) 7.11412 8.21014i 0.341096 0.393646i
\(436\) −13.4002 −0.641752
\(437\) 2.13614 17.5024i 0.102185 0.837251i
\(438\) −9.86160 −0.471205
\(439\) 0.983215 1.13469i 0.0469263 0.0541559i −0.731801 0.681518i \(-0.761320\pi\)
0.778727 + 0.627362i \(0.215865\pi\)
\(440\) −0.0687909 + 0.0442092i −0.00327948 + 0.00210759i
\(441\) −0.464395 3.22994i −0.0221141 0.153807i
\(442\) −0.689360 1.50949i −0.0327895 0.0717990i
\(443\) 0.838999 5.83536i 0.0398620 0.277246i −0.960135 0.279536i \(-0.909820\pi\)
0.999997 + 0.00228902i \(0.000728619\pi\)
\(444\) 2.96306 0.870034i 0.140621 0.0412900i
\(445\) 10.2671 + 6.59827i 0.486707 + 0.312788i
\(446\) −4.00700 + 8.77411i −0.189737 + 0.415466i
\(447\) 7.88084 + 2.31402i 0.372751 + 0.109450i
\(448\) 2.09792 + 2.42113i 0.0991175 + 0.114388i
\(449\) 24.1373 + 27.8559i 1.13911 + 1.31460i 0.942533 + 0.334114i \(0.108437\pi\)
0.196577 + 0.980488i \(0.437017\pi\)
\(450\) 2.69894 + 0.792480i 0.127229 + 0.0373579i
\(451\) −0.0335292 + 0.0734187i −0.00157883 + 0.00345715i
\(452\) 6.92259 + 4.44888i 0.325611 + 0.209258i
\(453\) 12.3286 3.62000i 0.579247 0.170082i
\(454\) 1.89107 13.1527i 0.0887523 0.617286i
\(455\) −1.58582 3.47245i −0.0743442 0.162791i
\(456\) 0.523231 + 3.63915i 0.0245025 + 0.170419i
\(457\) −4.87731 + 3.13445i −0.228151 + 0.146624i −0.649723 0.760171i \(-0.725115\pi\)
0.421572 + 0.906795i \(0.361479\pi\)
\(458\) −6.76755 + 7.81017i −0.316227 + 0.364945i
\(459\) 2.05954 0.0961310
\(460\) 6.76101 2.14303i 0.315233 0.0999192i
\(461\) −19.1277 −0.890864 −0.445432 0.895316i \(-0.646950\pi\)
−0.445432 + 0.895316i \(0.646950\pi\)
\(462\) 0.116000 0.133871i 0.00539679 0.00622823i
\(463\) −17.1083 + 10.9948i −0.795091 + 0.510974i −0.874010 0.485907i \(-0.838489\pi\)
0.0789197 + 0.996881i \(0.474853\pi\)
\(464\) −1.04541 7.27098i −0.0485319 0.337547i
\(465\) 4.88747 + 10.7021i 0.226651 + 0.496296i
\(466\) 0.0315052 0.219124i 0.00145945 0.0101507i
\(467\) −26.0471 + 7.64812i −1.20532 + 0.353913i −0.821883 0.569656i \(-0.807076\pi\)
−0.383433 + 0.923569i \(0.625258\pi\)
\(468\) −0.677830 0.435615i −0.0313327 0.0201363i
\(469\) −6.01690 + 13.1752i −0.277835 + 0.608373i
\(470\) −1.80863 0.531061i −0.0834257 0.0244960i
\(471\) −2.56626 2.96162i −0.118247 0.136464i
\(472\) 3.51056 + 4.05140i 0.161586 + 0.186481i
\(473\) 0.664872 + 0.195224i 0.0305708 + 0.00897641i
\(474\) 1.50373 3.29271i 0.0690686 0.151239i
\(475\) 8.70004 + 5.59118i 0.399185 + 0.256541i
\(476\) 6.33070 1.85886i 0.290167 0.0852008i
\(477\) 1.57185 10.9324i 0.0719699 0.500562i
\(478\) 4.19290 + 9.18117i 0.191779 + 0.419937i
\(479\) 0.531346 + 3.69559i 0.0242778 + 0.168856i 0.998353 0.0573682i \(-0.0182709\pi\)
−0.974075 + 0.226224i \(0.927362\pi\)
\(480\) −1.24412 + 0.799549i −0.0567862 + 0.0364943i
\(481\) −1.62945 + 1.88049i −0.0742967 + 0.0857430i
\(482\) −2.49660 −0.113717
\(483\) −12.7447 + 8.58046i −0.579905 + 0.390424i
\(484\) −10.9969 −0.499861
\(485\) 6.79495 7.84179i 0.308543 0.356077i
\(486\) 0.841254 0.540641i 0.0381600 0.0245240i
\(487\) −3.28140 22.8226i −0.148694 1.03419i −0.918360 0.395745i \(-0.870486\pi\)
0.769666 0.638446i \(-0.220423\pi\)
\(488\) 5.06868 + 11.0989i 0.229448 + 0.502422i
\(489\) −2.23785 + 15.5646i −0.101199 + 0.703856i
\(490\) 4.63037 1.35960i 0.209179 0.0614204i
\(491\) −0.944131 0.606756i −0.0426080 0.0273825i 0.519163 0.854675i \(-0.326244\pi\)
−0.561771 + 0.827292i \(0.689880\pi\)
\(492\) −0.606395 + 1.32782i −0.0273384 + 0.0598628i
\(493\) −14.5160 4.26229i −0.653769 0.191964i
\(494\) −1.93993 2.23880i −0.0872816 0.100728i
\(495\) 0.0535492 + 0.0617990i 0.00240686 + 0.00277766i
\(496\) 7.63321 + 2.24131i 0.342741 + 0.100638i
\(497\) 19.4340 42.5545i 0.871733 1.90883i
\(498\) −8.44136 5.42493i −0.378266 0.243097i
\(499\) −38.0512 + 11.1728i −1.70340 + 0.500165i −0.981441 0.191766i \(-0.938579\pi\)
−0.721964 + 0.691931i \(0.756760\pi\)
\(500\) −1.64436 + 11.4368i −0.0735381 + 0.511469i
\(501\) −1.66982 3.65640i −0.0746022 0.163356i
\(502\) −2.04586 14.2293i −0.0913112 0.635083i
\(503\) −28.6350 + 18.4026i −1.27677 + 0.820530i −0.990486 0.137614i \(-0.956057\pi\)
−0.286284 + 0.958145i \(0.592420\pi\)
\(504\) 2.09792 2.42113i 0.0934489 0.107846i
\(505\) −22.7020 −1.01023
\(506\) −0.255970 0.0692591i −0.0113792 0.00307894i
\(507\) −12.3508 −0.548518
\(508\) −12.6731 + 14.6256i −0.562279 + 0.648905i
\(509\) 0.791310 0.508544i 0.0350742 0.0225408i −0.522986 0.852341i \(-0.675182\pi\)
0.558060 + 0.829800i \(0.311546\pi\)
\(510\) 0.433467 + 3.01483i 0.0191942 + 0.133499i
\(511\) 13.1241 + 28.7378i 0.580577 + 1.27129i
\(512\) −0.142315 + 0.989821i −0.00628949 + 0.0437443i
\(513\) 3.52765 1.03581i 0.155749 0.0457321i
\(514\) −14.3928 9.24967i −0.634838 0.407985i
\(515\) −9.41304 + 20.6117i −0.414788 + 0.908259i
\(516\) 12.0246 + 3.53074i 0.529353 + 0.155432i
\(517\) 0.0461516 + 0.0532618i 0.00202975 + 0.00234245i
\(518\) −6.47871 7.47683i −0.284658 0.328513i
\(519\) −5.04163 1.48035i −0.221303 0.0649804i
\(520\) 0.495008 1.08392i 0.0217075 0.0475329i
\(521\) −33.9920 21.8454i −1.48922 0.957062i −0.996205 0.0870408i \(-0.972259\pi\)
−0.493014 0.870022i \(-0.664105\pi\)
\(522\) −7.04820 + 2.06954i −0.308491 + 0.0905812i
\(523\) 2.00533 13.9473i 0.0876868 0.609875i −0.897836 0.440330i \(-0.854861\pi\)
0.985523 0.169544i \(-0.0542296\pi\)
\(524\) −8.68332 19.0138i −0.379333 0.830623i
\(525\) −1.28245 8.91966i −0.0559709 0.389286i
\(526\) −8.26927 + 5.31433i −0.360557 + 0.231716i
\(527\) 10.7296 12.3826i 0.467389 0.539396i
\(528\) 0.0552927 0.00240630
\(529\) 19.8620 + 11.5974i 0.863567 + 0.504235i
\(530\) 16.3341 0.709510
\(531\) 3.51056 4.05140i 0.152345 0.175816i
\(532\) 9.90856 6.36784i 0.429591 0.276081i
\(533\) −0.167385 1.16419i −0.00725027 0.0504267i
\(534\) −3.42821 7.50672i −0.148353 0.324848i
\(535\) −2.03637 + 14.1633i −0.0880399 + 0.612331i
\(536\) −4.33803 + 1.27376i −0.187374 + 0.0550180i
\(537\) −1.77749 1.14232i −0.0767043 0.0492948i
\(538\) 11.2338 24.5987i 0.484325 1.06052i
\(539\) −0.173120 0.0508326i −0.00745680 0.00218951i
\(540\) 0.968468 + 1.11767i 0.0416762 + 0.0480969i
\(541\) 20.9730 + 24.2042i 0.901701 + 1.04062i 0.998971 + 0.0453605i \(0.0144437\pi\)
−0.0972695 + 0.995258i \(0.531011\pi\)
\(542\) −13.4448 3.94776i −0.577505 0.169571i
\(543\) −0.0959109 + 0.210016i −0.00411593 + 0.00901263i
\(544\) 1.73259 + 1.11347i 0.0742843 + 0.0477396i
\(545\) −19.0147 + 5.58321i −0.814499 + 0.239158i
\(546\) −0.367354 + 2.55500i −0.0157213 + 0.109344i
\(547\) −14.2184 31.1339i −0.607934 1.33119i −0.923978 0.382445i \(-0.875082\pi\)
0.316045 0.948744i \(-0.397645\pi\)
\(548\) −0.839528 5.83905i −0.0358629 0.249432i
\(549\) 10.2645 6.59662i 0.438080 0.281537i
\(550\) 0.101852 0.117543i 0.00434297 0.00501205i
\(551\) −27.0072 −1.15054
\(552\) −4.62936 1.25259i −0.197039 0.0533138i
\(553\) −11.5965 −0.493135
\(554\) 4.35828 5.02972i 0.185166 0.213692i
\(555\) 3.84204 2.46913i 0.163086 0.104809i
\(556\) 0.575459 + 4.00241i 0.0244049 + 0.169740i
\(557\) −4.69734 10.2857i −0.199033 0.435820i 0.783629 0.621229i \(-0.213366\pi\)
−0.982661 + 0.185409i \(0.940639\pi\)
\(558\) 1.13218 7.87449i 0.0479290 0.333354i
\(559\) −9.68868 + 2.84485i −0.409787 + 0.120324i
\(560\) 3.98569 + 2.56145i 0.168426 + 0.108241i
\(561\) 0.0473063 0.103586i 0.00199728 0.00437342i
\(562\) 14.1280 + 4.14834i 0.595952 + 0.174987i
\(563\) −11.3275 13.0726i −0.477397 0.550946i 0.465057 0.885281i \(-0.346034\pi\)
−0.942454 + 0.334335i \(0.891488\pi\)
\(564\) 0.834679 + 0.963271i 0.0351463 + 0.0405610i
\(565\) 11.6767 + 3.42859i 0.491242 + 0.144242i
\(566\) −5.68732 + 12.4535i −0.239056 + 0.523459i
\(567\) −2.69505 1.73201i −0.113182 0.0727374i
\(568\) 14.0114 4.11411i 0.587904 0.172624i
\(569\) −4.13566 + 28.7642i −0.173376 + 1.20586i 0.698311 + 0.715794i \(0.253935\pi\)
−0.871687 + 0.490063i \(0.836974\pi\)
\(570\) 2.25872 + 4.94590i 0.0946072 + 0.207161i
\(571\) −0.447773 3.11433i −0.0187387 0.130331i 0.978305 0.207171i \(-0.0664258\pi\)
−0.997043 + 0.0768408i \(0.975517\pi\)
\(572\) −0.0374790 + 0.0240863i −0.00156708 + 0.00100710i
\(573\) −2.88347 + 3.32770i −0.120459 + 0.139017i
\(574\) 4.67642 0.195190
\(575\) −11.1903 + 7.53393i −0.466668 + 0.314186i
\(576\) 1.00000 0.0416667
\(577\) −7.10693 + 8.20184i −0.295866 + 0.341447i −0.884147 0.467209i \(-0.845259\pi\)
0.588281 + 0.808656i \(0.299805\pi\)
\(578\) −10.7330 + 6.89766i −0.446433 + 0.286905i
\(579\) −3.05938 21.2785i −0.127144 0.884303i
\(580\) −4.51289 9.88185i −0.187387 0.410321i
\(581\) −4.57484 + 31.8187i −0.189796 + 1.32006i
\(582\) −6.73198 + 1.97669i −0.279050 + 0.0819363i
\(583\) −0.513753 0.330169i −0.0212775 0.0136742i
\(584\) −4.09666 + 8.97043i −0.169521 + 0.371199i
\(585\) −1.14333 0.335712i −0.0472709 0.0138800i
\(586\) −19.3966 22.3849i −0.801268 0.924712i
\(587\) 21.1402 + 24.3971i 0.872549 + 1.00698i 0.999886 + 0.0151162i \(0.00481181\pi\)
−0.127336 + 0.991860i \(0.540643\pi\)
\(588\) −3.13097 0.919336i −0.129119 0.0379128i
\(589\) 12.1504 26.6057i 0.500649 1.09627i
\(590\) 6.66945 + 4.28620i 0.274577 + 0.176460i
\(591\) −8.53190 + 2.50519i −0.350955 + 0.103050i
\(592\) 0.439490 3.05672i 0.0180629 0.125631i
\(593\) 14.5904 + 31.9486i 0.599157 + 1.31197i 0.929748 + 0.368196i \(0.120025\pi\)
−0.330591 + 0.943774i \(0.607248\pi\)
\(594\) −0.00786897 0.0547299i −0.000322868 0.00224559i
\(595\) 8.20868 5.27540i 0.336523 0.216270i
\(596\) 5.37873 6.20739i 0.220321 0.254264i
\(597\) 18.1550 0.743036
\(598\) 3.68357 1.16758i 0.150632 0.0477458i
\(599\) −33.0831 −1.35174 −0.675870 0.737021i \(-0.736232\pi\)
−0.675870 + 0.737021i \(0.736232\pi\)
\(600\) 1.84204 2.12583i 0.0752012 0.0867868i
\(601\) −34.4280 + 22.1256i −1.40435 + 0.902521i −0.999927 0.0120520i \(-0.996164\pi\)
−0.404422 + 0.914573i \(0.632527\pi\)
\(602\) −5.71372 39.7398i −0.232874 1.61967i
\(603\) 1.87816 + 4.11260i 0.0764846 + 0.167478i
\(604\) 1.82861 12.7183i 0.0744051 0.517499i
\(605\) −15.6045 + 4.58190i −0.634413 + 0.186281i
\(606\) 12.9138 + 8.29920i 0.524588 + 0.337132i
\(607\) 0.360269 0.788879i 0.0146229 0.0320196i −0.902180 0.431360i \(-0.858034\pi\)
0.916803 + 0.399341i \(0.130761\pi\)
\(608\) 3.52765 + 1.03581i 0.143065 + 0.0420077i
\(609\) 15.4108 + 17.7850i 0.624478 + 0.720685i
\(610\) 11.8168 + 13.6373i 0.478446 + 0.552157i
\(611\) −0.985386 0.289336i −0.0398645 0.0117053i
\(612\) 0.855563 1.87342i 0.0345841 0.0757286i
\(613\) 11.4396 + 7.35175i 0.462039 + 0.296935i 0.750875 0.660444i \(-0.229632\pi\)
−0.288836 + 0.957379i \(0.593268\pi\)
\(614\) −8.75700 + 2.57129i −0.353404 + 0.103769i
\(615\) −0.307227 + 2.13681i −0.0123886 + 0.0861646i
\(616\) −0.0735851 0.161129i −0.00296483 0.00649207i
\(617\) 6.07169 + 42.2295i 0.244437 + 1.70010i 0.629332 + 0.777137i \(0.283329\pi\)
−0.384895 + 0.922960i \(0.625762\pi\)
\(618\) 12.8896 8.28362i 0.518494 0.333216i
\(619\) 20.6446 23.8251i 0.829775 0.957612i −0.169837 0.985472i \(-0.554324\pi\)
0.999612 + 0.0278606i \(0.00886945\pi\)
\(620\) 11.7653 0.472505
\(621\) −0.581014 + 4.76051i −0.0233153 + 0.191033i
\(622\) 22.9754 0.921229
\(623\) −17.3131 + 19.9803i −0.693633 + 0.800496i
\(624\) −0.677830 + 0.435615i −0.0271349 + 0.0174386i
\(625\) 0.430261 + 2.99253i 0.0172104 + 0.119701i
\(626\) 8.20118 + 17.9581i 0.327785 + 0.717749i
\(627\) 0.0289308 0.201218i 0.00115539 0.00803589i
\(628\) −3.76005 + 1.10405i −0.150042 + 0.0440564i
\(629\) −5.35052 3.43857i −0.213339 0.137105i
\(630\) 1.96815 4.30965i 0.0784131 0.171701i
\(631\) 46.7584 + 13.7295i 1.86142 + 0.546563i 0.999198 + 0.0400350i \(0.0127469\pi\)
0.862224 + 0.506528i \(0.169071\pi\)
\(632\) −2.37048 2.73568i −0.0942927 0.108820i
\(633\) −11.2662 13.0019i −0.447793 0.516780i
\(634\) 19.9880 + 5.86900i 0.793824 + 0.233088i
\(635\) −11.8892 + 26.0338i −0.471809 + 1.03312i
\(636\) −9.29153 5.97130i −0.368433 0.236778i
\(637\) 2.52274 0.740745i 0.0999548 0.0293494i
\(638\) −0.0578035 + 0.402032i −0.00228846 + 0.0159166i
\(639\) −6.06626 13.2833i −0.239978 0.525478i
\(640\) 0.210468 + 1.46384i 0.00831949 + 0.0578633i
\(641\) 25.3919 16.3184i 1.00292 0.644537i 0.0673684 0.997728i \(-0.478540\pi\)
0.935551 + 0.353191i \(0.114903\pi\)
\(642\) 6.33605 7.31220i 0.250064 0.288589i
\(643\) 34.4723 1.35946 0.679728 0.733464i \(-0.262098\pi\)
0.679728 + 0.733464i \(0.262098\pi\)
\(644\) 2.51071 + 15.1575i 0.0989358 + 0.597288i
\(645\) 18.5338 0.729769
\(646\) 4.95863 5.72257i 0.195095 0.225151i
\(647\) 11.7496 7.55102i 0.461925 0.296861i −0.288903 0.957358i \(-0.593291\pi\)
0.750829 + 0.660497i \(0.229654\pi\)
\(648\) −0.142315 0.989821i −0.00559065 0.0388839i
\(649\) −0.123134 0.269625i −0.00483342 0.0105837i
\(650\) −0.322549 + 2.24338i −0.0126514 + 0.0879924i
\(651\) −24.4539 + 7.18031i −0.958423 + 0.281418i
\(652\) 13.2284 + 8.50140i 0.518065 + 0.332940i
\(653\) 15.3401 33.5902i 0.600306 1.31449i −0.328705 0.944433i \(-0.606612\pi\)
0.929011 0.370053i \(-0.120661\pi\)
\(654\) 12.8574 + 3.77527i 0.502763 + 0.147625i
\(655\) −20.2437 23.3624i −0.790985 0.912845i
\(656\) 0.955922 + 1.10319i 0.0373225 + 0.0430724i
\(657\) 9.46214 + 2.77833i 0.369153 + 0.108393i
\(658\) 1.69626 3.71430i 0.0661272 0.144798i
\(659\) −9.28343 5.96610i −0.361631 0.232406i 0.347189 0.937795i \(-0.387136\pi\)
−0.708821 + 0.705389i \(0.750772\pi\)
\(660\) 0.0784595 0.0230378i 0.00305403 0.000896745i
\(661\) −4.83516 + 33.6292i −0.188066 + 1.30803i 0.648943 + 0.760837i \(0.275211\pi\)
−0.837009 + 0.547189i \(0.815698\pi\)
\(662\) −6.45836 14.1418i −0.251011 0.549638i
\(663\) 0.236164 + 1.64256i 0.00917185 + 0.0637916i
\(664\) −8.44136 + 5.42493i −0.327588 + 0.210528i
\(665\) 11.4069 13.1643i 0.442342 0.510490i
\(666\) −3.08816 −0.119664
\(667\) 13.9471 32.3505i 0.540036 1.25262i
\(668\) −4.01965 −0.155525
\(669\) 6.31664 7.28979i 0.244215 0.281840i
\(670\) −5.62488 + 3.61489i −0.217308 + 0.139655i
\(671\) −0.0960131 0.667786i −0.00370655 0.0257796i
\(672\) −1.33083 2.91411i −0.0513379 0.112414i
\(673\) 4.46767 31.0733i 0.172216 1.19779i −0.701974 0.712203i \(-0.747698\pi\)
0.874190 0.485585i \(-0.161393\pi\)
\(674\) −6.79099 + 1.99402i −0.261579 + 0.0768066i
\(675\) −2.36635 1.52076i −0.0910807 0.0585340i
\(676\) −5.13070 + 11.2347i −0.197335 + 0.432103i
\(677\) 37.7447 + 11.0828i 1.45065 + 0.425948i 0.909756 0.415144i \(-0.136269\pi\)
0.540891 + 0.841093i \(0.318087\pi\)
\(678\) −5.38879 6.21899i −0.206955 0.238839i
\(679\) 14.7194 + 16.9871i 0.564879 + 0.651905i
\(680\) 2.92245 + 0.858110i 0.112071 + 0.0329070i
\(681\) −5.52000 + 12.0871i −0.211527 + 0.463180i
\(682\) −0.370050 0.237816i −0.0141699 0.00910646i
\(683\) −30.3414 + 8.90905i −1.16098 + 0.340895i −0.804814 0.593527i \(-0.797735\pi\)
−0.356168 + 0.934422i \(0.615917\pi\)
\(684\) 0.523231 3.63915i 0.0200062 0.139146i
\(685\) −3.62413 7.93574i −0.138471 0.303209i
\(686\) −1.70371 11.8496i −0.0650480 0.452419i
\(687\) 8.69379 5.58716i 0.331689 0.213164i
\(688\) 8.20687 9.47123i 0.312884 0.361087i
\(689\) 8.89927 0.339035
\(690\) −7.09090 + 0.151425i −0.269946 + 0.00576463i
\(691\) 22.2620 0.846886 0.423443 0.905923i \(-0.360821\pi\)
0.423443 + 0.905923i \(0.360821\pi\)
\(692\) −3.44095 + 3.97106i −0.130805 + 0.150957i
\(693\) −0.149017 + 0.0957672i −0.00566067 + 0.00363789i
\(694\) 3.61704 + 25.1571i 0.137301 + 0.954950i
\(695\) 2.48418 + 5.43959i 0.0942303 + 0.206336i
\(696\) −1.04541 + 7.27098i −0.0396261 + 0.275606i
\(697\) 2.88460 0.846994i 0.109262 0.0320822i
\(698\) −19.4596 12.5059i −0.736555 0.473355i
\(699\) −0.0919633 + 0.201372i −0.00347837 + 0.00761657i
\(700\) −8.64636 2.53880i −0.326802 0.0959577i
\(701\) −9.06733 10.4643i −0.342468 0.395230i 0.558222 0.829692i \(-0.311484\pi\)
−0.900690 + 0.434462i \(0.856938\pi\)
\(702\) 0.527646 + 0.608936i 0.0199147 + 0.0229828i
\(703\) −10.8939 3.19874i −0.410872 0.120643i
\(704\) 0.0229694 0.0502960i 0.000865692 0.00189560i
\(705\) 1.58575 + 1.01910i 0.0597227 + 0.0383814i
\(706\) −23.0929 + 6.78069i −0.869113 + 0.255195i
\(707\) 6.99871 48.6771i 0.263214 1.83069i
\(708\) −2.22694 4.87633i −0.0836937 0.183264i
\(709\) −6.98803 48.6028i −0.262441 1.82532i −0.514367 0.857570i \(-0.671973\pi\)
0.251926 0.967746i \(-0.418936\pi\)
\(710\) 18.1678 11.6757i 0.681825 0.438182i
\(711\) −2.37048 + 2.73568i −0.0889000 + 0.102596i
\(712\) −8.25248 −0.309275
\(713\) 25.5949 + 28.2942i 0.958535 + 1.05962i
\(714\) −6.59797 −0.246923
\(715\) −0.0431466 + 0.0497938i −0.00161359 + 0.00186218i
\(716\) −1.77749 + 1.14232i −0.0664278 + 0.0426906i
\(717\) −1.43642 9.99055i −0.0536442 0.373104i
\(718\) 7.96450 + 17.4398i 0.297232 + 0.650848i
\(719\) −5.20770 + 36.2204i −0.194214 + 1.35079i 0.626486 + 0.779433i \(0.284493\pi\)
−0.820701 + 0.571359i \(0.806417\pi\)
\(720\) 1.41899 0.416652i 0.0528825 0.0155277i
\(721\) −41.2932 26.5375i −1.53784 0.988310i
\(722\) −2.27764 + 4.98734i −0.0847650 + 0.185609i
\(723\) 2.39547 + 0.703372i 0.0890883 + 0.0261587i
\(724\) 0.151194 + 0.174487i 0.00561908 + 0.00648477i
\(725\) 13.5312 + 15.6158i 0.502536 + 0.579958i
\(726\) 10.5515 + 3.09820i 0.391602 + 0.114985i
\(727\) 7.73116 16.9289i 0.286733 0.627857i −0.710378 0.703821i \(-0.751476\pi\)
0.997111 + 0.0759632i \(0.0242032\pi\)
\(728\) 2.17151 + 1.39554i 0.0804814 + 0.0517223i
\(729\) −0.959493 + 0.281733i −0.0355368 + 0.0104345i
\(730\) −2.07555 + 14.4358i −0.0768197 + 0.534293i
\(731\) −10.7221 23.4782i −0.396572 0.868371i
\(732\) −1.73645 12.0773i −0.0641812 0.446390i
\(733\) −19.0255 + 12.2269i −0.702722 + 0.451612i −0.842588 0.538558i \(-0.818969\pi\)
0.139866 + 0.990170i \(0.455333\pi\)
\(734\) 17.2023 19.8525i 0.634948 0.732769i
\(735\) −4.82585 −0.178004
\(736\) −3.06250 + 3.69067i −0.112885 + 0.136040i
\(737\) 0.249987 0.00920840
\(738\) 0.955922 1.10319i 0.0351880 0.0406091i
\(739\) −15.0475 + 9.67041i −0.553530 + 0.355732i −0.787310 0.616558i \(-0.788527\pi\)
0.233780 + 0.972289i \(0.424890\pi\)
\(740\) −0.649959 4.52056i −0.0238930 0.166179i
\(741\) 1.23061 + 2.69465i 0.0452075 + 0.0989906i
\(742\) −5.03559 + 35.0233i −0.184862 + 1.28575i
\(743\) 21.5290 6.32150i 0.789824 0.231913i 0.138149 0.990411i \(-0.455885\pi\)
0.651675 + 0.758498i \(0.274067\pi\)
\(744\) −6.69256 4.30105i −0.245361 0.157684i
\(745\) 5.04602 11.0493i 0.184872 0.404813i
\(746\) −19.5783 5.74872i −0.716814 0.210476i
\(747\) 6.57105 + 7.58339i 0.240422 + 0.277462i
\(748\) −0.0745738 0.0860627i −0.00272669 0.00314677i
\(749\) −29.7408 8.73267i −1.08670 0.319085i
\(750\) 4.79987 10.5103i 0.175267 0.383780i
\(751\) 39.5260 + 25.4018i 1.44232 + 0.926924i 0.999541 + 0.0302948i \(0.00964461\pi\)
0.442781 + 0.896630i \(0.353992\pi\)
\(752\) 1.22296 0.359094i 0.0445968 0.0130948i
\(753\) −2.04586 + 14.2293i −0.0745553 + 0.518543i
\(754\) −2.45874 5.38389i −0.0895420 0.196070i
\(755\) −2.70432 18.8089i −0.0984201 0.684527i
\(756\) −2.69505 + 1.73201i −0.0980181 + 0.0629924i
\(757\) −18.8145 + 21.7131i −0.683825 + 0.789176i −0.986473 0.163926i \(-0.947584\pi\)
0.302647 + 0.953103i \(0.402130\pi\)
\(758\) 3.99029 0.144934
\(759\) 0.226089 + 0.138569i 0.00820650 + 0.00502972i
\(760\) 5.43725 0.197230
\(761\) −10.2728 + 11.8554i −0.372387 + 0.429758i −0.910752 0.412954i \(-0.864497\pi\)
0.538364 + 0.842712i \(0.319042\pi\)
\(762\) 16.2803 10.4627i 0.589772 0.379024i
\(763\) −6.10944 42.4921i −0.221176 1.53832i
\(764\) 1.82915 + 4.00527i 0.0661762 + 0.144906i
\(765\) 0.433467 3.01483i 0.0156720 0.109001i
\(766\) −6.06611 + 1.78117i −0.219177