Properties

 Label 138.2.e.a.73.1 Level $138$ Weight $2$ Character 138.73 Analytic conductor $1.102$ Analytic rank $0$ Dimension $10$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$138 = 2 \cdot 3 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 138.e (of order $$11$$, degree $$10$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$1.10193554789$$ Analytic rank: $$0$$ Dimension: $$10$$ Coefficient field: $$\Q(\zeta_{22})$$ Defining polynomial: $$x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$$ x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

 Embedding label 73.1 Root $$-0.415415 - 0.909632i$$ of defining polynomial Character $$\chi$$ $$=$$ 138.73 Dual form 138.2.e.a.121.1

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.415415 + 0.909632i) q^{2} +(-0.959493 + 0.281733i) q^{3} +(-0.654861 + 0.755750i) q^{4} +(1.27310 + 0.818172i) q^{5} +(-0.654861 - 0.755750i) q^{6} +(0.369215 + 2.56794i) q^{7} +(-0.959493 - 0.281733i) q^{8} +(0.841254 - 0.540641i) q^{9} +O(q^{10})$$ $$q+(0.415415 + 0.909632i) q^{2} +(-0.959493 + 0.281733i) q^{3} +(-0.654861 + 0.755750i) q^{4} +(1.27310 + 0.818172i) q^{5} +(-0.654861 - 0.755750i) q^{6} +(0.369215 + 2.56794i) q^{7} +(-0.959493 - 0.281733i) q^{8} +(0.841254 - 0.540641i) q^{9} +(-0.215370 + 1.49793i) q^{10} +(-2.08004 + 4.55466i) q^{11} +(0.415415 - 0.909632i) q^{12} +(0.686393 - 4.77397i) q^{13} +(-2.18251 + 1.40261i) q^{14} +(-1.45204 - 0.426356i) q^{15} +(-0.142315 - 0.989821i) q^{16} +(0.565599 + 0.652736i) q^{17} +(0.841254 + 0.540641i) q^{18} +(4.58506 - 5.29144i) q^{19} +(-1.45204 + 0.426356i) q^{20} +(-1.07773 - 2.35990i) q^{21} -5.00714 q^{22} +(4.66533 - 1.11118i) q^{23} +1.00000 q^{24} +(-1.12570 - 2.46493i) q^{25} +(4.62769 - 1.35881i) q^{26} +(-0.654861 + 0.755750i) q^{27} +(-2.18251 - 1.40261i) q^{28} +(-2.03899 - 2.35312i) q^{29} +(-0.215370 - 1.49793i) q^{30} +(1.12671 + 0.330833i) q^{31} +(0.841254 - 0.540641i) q^{32} +(0.712591 - 4.95618i) q^{33} +(-0.358791 + 0.785643i) q^{34} +(-1.63097 + 3.57133i) q^{35} +(-0.142315 + 0.989821i) q^{36} +(-0.506538 + 0.325532i) q^{37} +(6.71797 + 1.97257i) q^{38} +(0.686393 + 4.77397i) q^{39} +(-0.991025 - 1.14370i) q^{40} +(4.45305 + 2.86180i) q^{41} +(1.69894 - 1.96068i) q^{42} +(-1.40014 + 0.411119i) q^{43} +(-2.08004 - 4.55466i) q^{44} +1.51334 q^{45} +(2.94881 + 3.78213i) q^{46} -12.6797 q^{47} +(0.415415 + 0.909632i) q^{48} +(0.258432 - 0.0758824i) q^{49} +(1.77455 - 2.04794i) q^{50} +(-0.726585 - 0.466948i) q^{51} +(3.15843 + 3.64502i) q^{52} +(-0.602392 - 4.18973i) q^{53} +(-0.959493 - 0.281733i) q^{54} +(-6.37459 + 4.09670i) q^{55} +(0.369215 - 2.56794i) q^{56} +(-2.90856 + 6.36886i) q^{57} +(1.29345 - 2.83225i) q^{58} +(-0.566615 + 3.94090i) q^{59} +(1.27310 - 0.818172i) q^{60} +(6.96812 + 2.04602i) q^{61} +(0.167117 + 1.16233i) q^{62} +(1.69894 + 1.96068i) q^{63} +(0.841254 + 0.540641i) q^{64} +(4.77977 - 5.51615i) q^{65} +(4.80432 - 1.41067i) q^{66} +(-6.70359 - 14.6788i) q^{67} -0.863693 q^{68} +(-4.16330 + 2.38054i) q^{69} -3.92613 q^{70} +(2.44456 + 5.35285i) q^{71} +(-0.959493 + 0.281733i) q^{72} +(-9.41782 + 10.8687i) q^{73} +(-0.506538 - 0.325532i) q^{74} +(1.77455 + 2.04794i) q^{75} +(0.996429 + 6.93032i) q^{76} +(-12.4641 - 3.65979i) q^{77} +(-4.05742 + 2.60754i) q^{78} +(-1.47156 + 10.2349i) q^{79} +(0.628663 - 1.37658i) q^{80} +(0.415415 - 0.909632i) q^{81} +(-0.753323 + 5.23948i) q^{82} +(2.22176 - 1.42784i) q^{83} +(2.48926 + 0.730913i) q^{84} +(0.186014 + 1.29376i) q^{85} +(-0.955607 - 1.10283i) q^{86} +(2.61935 + 1.68335i) q^{87} +(3.27898 - 3.78415i) q^{88} +(5.02538 - 1.47559i) q^{89} +(0.628663 + 1.37658i) q^{90} +12.5127 q^{91} +(-2.21537 + 4.25348i) q^{92} -1.17428 q^{93} +(-5.26732 - 11.5338i) q^{94} +(10.1666 - 2.98517i) q^{95} +(-0.654861 + 0.755750i) q^{96} +(12.5782 + 8.08355i) q^{97} +(0.176382 + 0.203555i) q^{98} +(0.712591 + 4.95618i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$10 q - q^{2} - q^{3} - q^{4} + 8 q^{5} - q^{6} + 8 q^{7} - q^{8} - q^{9}+O(q^{10})$$ 10 * q - q^2 - q^3 - q^4 + 8 * q^5 - q^6 + 8 * q^7 - q^8 - q^9 $$10 q - q^{2} - q^{3} - q^{4} + 8 q^{5} - q^{6} + 8 q^{7} - q^{8} - q^{9} - 3 q^{10} + 7 q^{11} - q^{12} + 3 q^{13} - 3 q^{14} - 3 q^{15} - q^{16} + 4 q^{17} - q^{18} - 3 q^{20} - 3 q^{21} - 26 q^{22} - 12 q^{23} + 10 q^{24} - 15 q^{25} + 3 q^{26} - q^{27} - 3 q^{28} - 25 q^{29} - 3 q^{30} + 6 q^{31} - q^{32} - 4 q^{33} - 7 q^{34} + 2 q^{35} - q^{36} + 9 q^{37} + 11 q^{38} + 3 q^{39} - 3 q^{40} + 24 q^{41} + 8 q^{42} - 30 q^{43} + 7 q^{44} - 14 q^{45} + 21 q^{46} - 48 q^{47} - q^{48} + 9 q^{49} + 7 q^{50} + 15 q^{51} + 14 q^{52} + 15 q^{53} - q^{54} - 23 q^{55} + 8 q^{56} - 11 q^{57} - 3 q^{58} + 5 q^{59} + 8 q^{60} + 12 q^{61} + 28 q^{62} + 8 q^{63} - q^{64} - 13 q^{65} + 18 q^{66} + 18 q^{67} - 18 q^{68} - q^{69} + 2 q^{70} + 28 q^{71} - q^{72} + 19 q^{73} + 9 q^{74} + 7 q^{75} + 22 q^{76} - 12 q^{77} - 8 q^{78} - 52 q^{79} + 8 q^{80} - q^{81} - 20 q^{82} + 7 q^{83} - 3 q^{84} + 23 q^{85} + 14 q^{86} + 30 q^{87} - 4 q^{88} + 3 q^{89} + 8 q^{90} + 42 q^{91} - 23 q^{92} - 16 q^{93} + 29 q^{94} + 22 q^{95} - q^{96} + 51 q^{97} - 2 q^{98} - 4 q^{99}+O(q^{100})$$ 10 * q - q^2 - q^3 - q^4 + 8 * q^5 - q^6 + 8 * q^7 - q^8 - q^9 - 3 * q^10 + 7 * q^11 - q^12 + 3 * q^13 - 3 * q^14 - 3 * q^15 - q^16 + 4 * q^17 - q^18 - 3 * q^20 - 3 * q^21 - 26 * q^22 - 12 * q^23 + 10 * q^24 - 15 * q^25 + 3 * q^26 - q^27 - 3 * q^28 - 25 * q^29 - 3 * q^30 + 6 * q^31 - q^32 - 4 * q^33 - 7 * q^34 + 2 * q^35 - q^36 + 9 * q^37 + 11 * q^38 + 3 * q^39 - 3 * q^40 + 24 * q^41 + 8 * q^42 - 30 * q^43 + 7 * q^44 - 14 * q^45 + 21 * q^46 - 48 * q^47 - q^48 + 9 * q^49 + 7 * q^50 + 15 * q^51 + 14 * q^52 + 15 * q^53 - q^54 - 23 * q^55 + 8 * q^56 - 11 * q^57 - 3 * q^58 + 5 * q^59 + 8 * q^60 + 12 * q^61 + 28 * q^62 + 8 * q^63 - q^64 - 13 * q^65 + 18 * q^66 + 18 * q^67 - 18 * q^68 - q^69 + 2 * q^70 + 28 * q^71 - q^72 + 19 * q^73 + 9 * q^74 + 7 * q^75 + 22 * q^76 - 12 * q^77 - 8 * q^78 - 52 * q^79 + 8 * q^80 - q^81 - 20 * q^82 + 7 * q^83 - 3 * q^84 + 23 * q^85 + 14 * q^86 + 30 * q^87 - 4 * q^88 + 3 * q^89 + 8 * q^90 + 42 * q^91 - 23 * q^92 - 16 * q^93 + 29 * q^94 + 22 * q^95 - q^96 + 51 * q^97 - 2 * q^98 - 4 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/138\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$97$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{2}{11}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.415415 + 0.909632i 0.293743 + 0.643207i
$$3$$ −0.959493 + 0.281733i −0.553964 + 0.162658i
$$4$$ −0.654861 + 0.755750i −0.327430 + 0.377875i
$$5$$ 1.27310 + 0.818172i 0.569348 + 0.365898i 0.793420 0.608675i $$-0.208299\pi$$
−0.224072 + 0.974573i $$0.571935\pi$$
$$6$$ −0.654861 0.755750i −0.267346 0.308533i
$$7$$ 0.369215 + 2.56794i 0.139550 + 0.970592i 0.932465 + 0.361260i $$0.117653\pi$$
−0.792915 + 0.609332i $$0.791438\pi$$
$$8$$ −0.959493 0.281733i −0.339232 0.0996075i
$$9$$ 0.841254 0.540641i 0.280418 0.180214i
$$10$$ −0.215370 + 1.49793i −0.0681061 + 0.473688i
$$11$$ −2.08004 + 4.55466i −0.627156 + 1.37328i 0.283042 + 0.959108i $$0.408656\pi$$
−0.910198 + 0.414173i $$0.864071\pi$$
$$12$$ 0.415415 0.909632i 0.119920 0.262588i
$$13$$ 0.686393 4.77397i 0.190371 1.32406i −0.640656 0.767828i $$-0.721337\pi$$
0.831027 0.556232i $$-0.187753\pi$$
$$14$$ −2.18251 + 1.40261i −0.583300 + 0.374864i
$$15$$ −1.45204 0.426356i −0.374914 0.110085i
$$16$$ −0.142315 0.989821i −0.0355787 0.247455i
$$17$$ 0.565599 + 0.652736i 0.137178 + 0.158312i 0.820182 0.572103i $$-0.193872\pi$$
−0.683004 + 0.730415i $$0.739327\pi$$
$$18$$ 0.841254 + 0.540641i 0.198285 + 0.127430i
$$19$$ 4.58506 5.29144i 1.05189 1.21394i 0.0756708 0.997133i $$-0.475890\pi$$
0.976214 0.216807i $$-0.0695644\pi$$
$$20$$ −1.45204 + 0.426356i −0.324685 + 0.0953362i
$$21$$ −1.07773 2.35990i −0.235180 0.514973i
$$22$$ −5.00714 −1.06753
$$23$$ 4.66533 1.11118i 0.972788 0.231696i
$$24$$ 1.00000 0.204124
$$25$$ −1.12570 2.46493i −0.225139 0.492986i
$$26$$ 4.62769 1.35881i 0.907565 0.266485i
$$27$$ −0.654861 + 0.755750i −0.126028 + 0.145444i
$$28$$ −2.18251 1.40261i −0.412455 0.265069i
$$29$$ −2.03899 2.35312i −0.378631 0.436963i 0.534165 0.845381i $$-0.320626\pi$$
−0.912795 + 0.408417i $$0.866081\pi$$
$$30$$ −0.215370 1.49793i −0.0393211 0.273484i
$$31$$ 1.12671 + 0.330833i 0.202364 + 0.0594193i 0.381343 0.924433i $$-0.375462\pi$$
−0.178980 + 0.983853i $$0.557280\pi$$
$$32$$ 0.841254 0.540641i 0.148714 0.0955727i
$$33$$ 0.712591 4.95618i 0.124046 0.862760i
$$34$$ −0.358791 + 0.785643i −0.0615322 + 0.134737i
$$35$$ −1.63097 + 3.57133i −0.275685 + 0.603665i
$$36$$ −0.142315 + 0.989821i −0.0237191 + 0.164970i
$$37$$ −0.506538 + 0.325532i −0.0832743 + 0.0535171i −0.581615 0.813464i $$-0.697579\pi$$
0.498341 + 0.866981i $$0.333943\pi$$
$$38$$ 6.71797 + 1.97257i 1.08980 + 0.319994i
$$39$$ 0.686393 + 4.77397i 0.109911 + 0.764446i
$$40$$ −0.991025 1.14370i −0.156695 0.180835i
$$41$$ 4.45305 + 2.86180i 0.695450 + 0.446939i 0.840020 0.542556i $$-0.182543\pi$$
−0.144570 + 0.989495i $$0.546180\pi$$
$$42$$ 1.69894 1.96068i 0.262152 0.302539i
$$43$$ −1.40014 + 0.411119i −0.213520 + 0.0626951i −0.386743 0.922188i $$-0.626400\pi$$
0.173223 + 0.984883i $$0.444582\pi$$
$$44$$ −2.08004 4.55466i −0.313578 0.686640i
$$45$$ 1.51334 0.225595
$$46$$ 2.94881 + 3.78213i 0.434778 + 0.557645i
$$47$$ −12.6797 −1.84952 −0.924760 0.380552i $$-0.875734\pi$$
−0.924760 + 0.380552i $$0.875734\pi$$
$$48$$ 0.415415 + 0.909632i 0.0599600 + 0.131294i
$$49$$ 0.258432 0.0758824i 0.0369188 0.0108403i
$$50$$ 1.77455 2.04794i 0.250959 0.289622i
$$51$$ −0.726585 0.466948i −0.101742 0.0653858i
$$52$$ 3.15843 + 3.64502i 0.437996 + 0.505474i
$$53$$ −0.602392 4.18973i −0.0827449 0.575504i −0.988444 0.151583i $$-0.951563\pi$$
0.905700 0.423920i $$-0.139346\pi$$
$$54$$ −0.959493 0.281733i −0.130570 0.0383389i
$$55$$ −6.37459 + 4.09670i −0.859550 + 0.552399i
$$56$$ 0.369215 2.56794i 0.0493384 0.343156i
$$57$$ −2.90856 + 6.36886i −0.385249 + 0.843577i
$$58$$ 1.29345 2.83225i 0.169838 0.371893i
$$59$$ −0.566615 + 3.94090i −0.0737670 + 0.513061i 0.919118 + 0.393983i $$0.128903\pi$$
−0.992885 + 0.119078i $$0.962006\pi$$
$$60$$ 1.27310 0.818172i 0.164357 0.105626i
$$61$$ 6.96812 + 2.04602i 0.892176 + 0.261966i 0.695520 0.718506i $$-0.255174\pi$$
0.196655 + 0.980473i $$0.436992\pi$$
$$62$$ 0.167117 + 1.16233i 0.0212239 + 0.147616i
$$63$$ 1.69894 + 1.96068i 0.214046 + 0.247022i
$$64$$ 0.841254 + 0.540641i 0.105157 + 0.0675801i
$$65$$ 4.77977 5.51615i 0.592858 0.684194i
$$66$$ 4.80432 1.41067i 0.591371 0.173642i
$$67$$ −6.70359 14.6788i −0.818973 1.79330i −0.562614 0.826720i $$-0.690204\pi$$
−0.256360 0.966581i $$-0.582523\pi$$
$$68$$ −0.863693 −0.104738
$$69$$ −4.16330 + 2.38054i −0.501202 + 0.286583i
$$70$$ −3.92613 −0.469262
$$71$$ 2.44456 + 5.35285i 0.290116 + 0.635266i 0.997431 0.0716327i $$-0.0228209\pi$$
−0.707315 + 0.706899i $$0.750094\pi$$
$$72$$ −0.959493 + 0.281733i −0.113077 + 0.0332025i
$$73$$ −9.41782 + 10.8687i −1.10227 + 1.27209i −0.142964 + 0.989728i $$0.545663\pi$$
−0.959308 + 0.282362i $$0.908882\pi$$
$$74$$ −0.506538 0.325532i −0.0588838 0.0378423i
$$75$$ 1.77455 + 2.04794i 0.204907 + 0.236476i
$$76$$ 0.996429 + 6.93032i 0.114298 + 0.794962i
$$77$$ −12.4641 3.65979i −1.42041 0.417071i
$$78$$ −4.05742 + 2.60754i −0.459412 + 0.295246i
$$79$$ −1.47156 + 10.2349i −0.165564 + 1.15152i 0.722356 + 0.691522i $$0.243059\pi$$
−0.887919 + 0.459999i $$0.847850\pi$$
$$80$$ 0.628663 1.37658i 0.0702867 0.153906i
$$81$$ 0.415415 0.909632i 0.0461572 0.101070i
$$82$$ −0.753323 + 5.23948i −0.0831906 + 0.578603i
$$83$$ 2.22176 1.42784i 0.243870 0.156725i −0.412997 0.910732i $$-0.635518\pi$$
0.656866 + 0.754007i $$0.271882\pi$$
$$84$$ 2.48926 + 0.730913i 0.271601 + 0.0797492i
$$85$$ 0.186014 + 1.29376i 0.0201760 + 0.140327i
$$86$$ −0.955607 1.10283i −0.103046 0.118921i
$$87$$ 2.61935 + 1.68335i 0.280823 + 0.180474i
$$88$$ 3.27898 3.78415i 0.349541 0.403391i
$$89$$ 5.02538 1.47559i 0.532689 0.156412i −0.00431578 0.999991i $$-0.501374\pi$$
0.537005 + 0.843579i $$0.319556\pi$$
$$90$$ 0.628663 + 1.37658i 0.0662669 + 0.145104i
$$91$$ 12.5127 1.31169
$$92$$ −2.21537 + 4.25348i −0.230968 + 0.443456i
$$93$$ −1.17428 −0.121767
$$94$$ −5.26732 11.5338i −0.543283 1.18962i
$$95$$ 10.1666 2.98517i 1.04307 0.306272i
$$96$$ −0.654861 + 0.755750i −0.0668364 + 0.0771334i
$$97$$ 12.5782 + 8.08355i 1.27713 + 0.820760i 0.990531 0.137291i $$-0.0438397\pi$$
0.286597 + 0.958051i $$0.407476\pi$$
$$98$$ 0.176382 + 0.203555i 0.0178172 + 0.0205622i
$$99$$ 0.712591 + 4.95618i 0.0716180 + 0.498114i
$$100$$ 2.60004 + 0.763442i 0.260004 + 0.0763442i
$$101$$ −0.446103 + 0.286693i −0.0443889 + 0.0285270i −0.562647 0.826697i $$-0.690217\pi$$
0.518258 + 0.855224i $$0.326581\pi$$
$$102$$ 0.122916 0.854902i 0.0121705 0.0846479i
$$103$$ 0.382147 0.836786i 0.0376541 0.0824510i −0.889870 0.456214i $$-0.849205\pi$$
0.927524 + 0.373763i $$0.121933\pi$$
$$104$$ −2.00357 + 4.38721i −0.196466 + 0.430201i
$$105$$ 0.558746 3.88617i 0.0545281 0.379251i
$$106$$ 3.56087 2.28843i 0.345862 0.222272i
$$107$$ −12.9111 3.79104i −1.24816 0.366493i −0.410086 0.912047i $$-0.634501\pi$$
−0.838076 + 0.545554i $$0.816319\pi$$
$$108$$ −0.142315 0.989821i −0.0136943 0.0952456i
$$109$$ 3.25857 + 3.76059i 0.312114 + 0.360199i 0.890034 0.455895i $$-0.150681\pi$$
−0.577920 + 0.816094i $$0.696135\pi$$
$$110$$ −6.37459 4.09670i −0.607794 0.390605i
$$111$$ 0.394306 0.455054i 0.0374259 0.0431918i
$$112$$ 2.48926 0.730913i 0.235213 0.0690648i
$$113$$ −5.65122 12.3744i −0.531622 1.16409i −0.964849 0.262805i $$-0.915352\pi$$
0.433227 0.901285i $$-0.357375\pi$$
$$114$$ −7.00158 −0.655758
$$115$$ 6.84856 + 2.40240i 0.638632 + 0.224025i
$$116$$ 3.11362 0.289093
$$117$$ −2.00357 4.38721i −0.185230 0.405598i
$$118$$ −3.82014 + 1.12170i −0.351673 + 0.103260i
$$119$$ −1.46736 + 1.69343i −0.134513 + 0.155236i
$$120$$ 1.27310 + 0.818172i 0.116218 + 0.0746885i
$$121$$ −9.21485 10.6345i −0.837714 0.966773i
$$122$$ 1.03353 + 7.18837i 0.0935715 + 0.650804i
$$123$$ −5.07894 1.49131i −0.457952 0.134467i
$$124$$ −0.987866 + 0.634863i −0.0887130 + 0.0570124i
$$125$$ 1.66046 11.5488i 0.148516 1.03295i
$$126$$ −1.07773 + 2.35990i −0.0960120 + 0.210237i
$$127$$ 2.79580 6.12195i 0.248087 0.543235i −0.744089 0.668080i $$-0.767116\pi$$
0.992176 + 0.124845i $$0.0398435\pi$$
$$128$$ −0.142315 + 0.989821i −0.0125790 + 0.0874887i
$$129$$ 1.22760 0.788932i 0.108084 0.0694615i
$$130$$ 7.00326 + 2.05634i 0.614226 + 0.180353i
$$131$$ −2.70354 18.8035i −0.236209 1.64287i −0.670364 0.742032i $$-0.733862\pi$$
0.434155 0.900838i $$-0.357047\pi$$
$$132$$ 3.27898 + 3.78415i 0.285399 + 0.329368i
$$133$$ 15.2810 + 9.82050i 1.32503 + 0.851546i
$$134$$ 10.5675 12.1956i 0.912896 1.05354i
$$135$$ −1.45204 + 0.426356i −0.124971 + 0.0366949i
$$136$$ −0.358791 0.785643i −0.0307661 0.0673683i
$$137$$ −2.62684 −0.224426 −0.112213 0.993684i $$-0.535794\pi$$
−0.112213 + 0.993684i $$0.535794\pi$$
$$138$$ −3.89491 2.79816i −0.331557 0.238195i
$$139$$ −18.4268 −1.56294 −0.781471 0.623941i $$-0.785530\pi$$
−0.781471 + 0.623941i $$0.785530\pi$$
$$140$$ −1.63097 3.57133i −0.137842 0.301833i
$$141$$ 12.1660 3.57227i 1.02457 0.300840i
$$142$$ −3.85361 + 4.44731i −0.323388 + 0.373210i
$$143$$ 20.3161 + 13.0563i 1.69891 + 1.09183i
$$144$$ −0.654861 0.755750i −0.0545717 0.0629791i
$$145$$ −0.670582 4.66400i −0.0556888 0.387324i
$$146$$ −13.7989 4.05171i −1.14200 0.335322i
$$147$$ −0.226585 + 0.145617i −0.0186884 + 0.0120103i
$$148$$ 0.0856910 0.595994i 0.00704376 0.0489904i
$$149$$ −1.64339 + 3.59852i −0.134632 + 0.294802i −0.964926 0.262524i $$-0.915445\pi$$
0.830294 + 0.557326i $$0.188173\pi$$
$$150$$ −1.12570 + 2.46493i −0.0919127 + 0.201261i
$$151$$ 2.31220 16.0817i 0.188164 1.30871i −0.648592 0.761136i $$-0.724642\pi$$
0.836756 0.547575i $$-0.184449\pi$$
$$152$$ −5.89011 + 3.78534i −0.477751 + 0.307032i
$$153$$ 0.828708 + 0.243331i 0.0669970 + 0.0196721i
$$154$$ −1.84871 12.8581i −0.148973 1.03613i
$$155$$ 1.16374 + 1.34303i 0.0934738 + 0.107875i
$$156$$ −4.05742 2.60754i −0.324853 0.208770i
$$157$$ −13.3213 + 15.3736i −1.06316 + 1.22695i −0.0902098 + 0.995923i $$0.528754\pi$$
−0.972948 + 0.231026i $$0.925792\pi$$
$$158$$ −9.92134 + 2.91317i −0.789299 + 0.231759i
$$159$$ 1.75837 + 3.85030i 0.139448 + 0.305349i
$$160$$ 1.51334 0.119640
$$161$$ 4.57594 + 11.5700i 0.360635 + 0.911847i
$$162$$ 1.00000 0.0785674
$$163$$ −6.21157 13.6015i −0.486528 1.06535i −0.980617 0.195936i $$-0.937225\pi$$
0.494089 0.869412i $$-0.335502\pi$$
$$164$$ −5.07894 + 1.49131i −0.396598 + 0.116452i
$$165$$ 4.96220 5.72669i 0.386307 0.445822i
$$166$$ 2.22176 + 1.42784i 0.172442 + 0.110822i
$$167$$ 7.89124 + 9.10698i 0.610642 + 0.704719i 0.973902 0.226969i $$-0.0728816\pi$$
−0.363260 + 0.931688i $$0.618336\pi$$
$$168$$ 0.369215 + 2.56794i 0.0284855 + 0.198121i
$$169$$ −9.84622 2.89111i −0.757401 0.222393i
$$170$$ −1.09957 + 0.706649i −0.0843330 + 0.0541975i
$$171$$ 0.996429 6.93032i 0.0761988 0.529975i
$$172$$ 0.606195 1.32738i 0.0462220 0.101212i
$$173$$ 6.43950 14.1005i 0.489586 1.07204i −0.490130 0.871650i $$-0.663051\pi$$
0.979715 0.200394i $$-0.0642221\pi$$
$$174$$ −0.443115 + 3.08193i −0.0335924 + 0.233640i
$$175$$ 5.91418 3.80081i 0.447070 0.287314i
$$176$$ 4.80432 + 1.41067i 0.362139 + 0.106334i
$$177$$ −0.566615 3.94090i −0.0425894 0.296216i
$$178$$ 3.42986 + 3.95827i 0.257079 + 0.296685i
$$179$$ 6.06984 + 3.90085i 0.453681 + 0.291563i 0.747456 0.664311i $$-0.231275\pi$$
−0.293775 + 0.955875i $$0.594911\pi$$
$$180$$ −0.991025 + 1.14370i −0.0738666 + 0.0852467i
$$181$$ −3.20527 + 0.941152i −0.238246 + 0.0699552i −0.398676 0.917092i $$-0.630530\pi$$
0.160430 + 0.987047i $$0.448712\pi$$
$$182$$ 5.19797 + 11.3820i 0.385299 + 0.843687i
$$183$$ −7.26229 −0.536844
$$184$$ −4.78940 0.248210i −0.353080 0.0182983i
$$185$$ −0.911214 −0.0669938
$$186$$ −0.487813 1.06816i −0.0357682 0.0783214i
$$187$$ −4.14946 + 1.21839i −0.303438 + 0.0890975i
$$188$$ 8.30342 9.58265i 0.605589 0.698887i
$$189$$ −2.18251 1.40261i −0.158754 0.102025i
$$190$$ 6.93874 + 8.00774i 0.503389 + 0.580942i
$$191$$ 2.42111 + 16.8392i 0.175185 + 1.21844i 0.867719 + 0.497055i $$0.165585\pi$$
−0.692534 + 0.721385i $$0.743506\pi$$
$$192$$ −0.959493 0.281733i −0.0692454 0.0203323i
$$193$$ −19.1315 + 12.2951i −1.37712 + 0.885020i −0.999167 0.0408061i $$-0.987007\pi$$
−0.377950 + 0.925826i $$0.623371\pi$$
$$194$$ −2.12786 + 14.7996i −0.152772 + 1.06255i
$$195$$ −3.03208 + 6.63933i −0.217132 + 0.475452i
$$196$$ −0.111889 + 0.245002i −0.00799205 + 0.0175002i
$$197$$ −1.43442 + 9.97664i −0.102198 + 0.710806i 0.872716 + 0.488228i $$0.162356\pi$$
−0.974915 + 0.222578i $$0.928553\pi$$
$$198$$ −4.21228 + 2.70707i −0.299353 + 0.192383i
$$199$$ 9.05033 + 2.65742i 0.641561 + 0.188379i 0.586302 0.810093i $$-0.300583\pi$$
0.0552593 + 0.998472i $$0.482401\pi$$
$$200$$ 0.385646 + 2.68223i 0.0272693 + 0.189662i
$$201$$ 10.5675 + 12.1956i 0.745377 + 0.860211i
$$202$$ −0.446103 0.286693i −0.0313877 0.0201716i
$$203$$ 5.28985 6.10482i 0.371275 0.428474i
$$204$$ 0.828708 0.243331i 0.0580211 0.0170365i
$$205$$ 3.32774 + 7.28672i 0.232419 + 0.508927i
$$206$$ 0.919917 0.0640937
$$207$$ 3.32398 3.45705i 0.231032 0.240281i
$$208$$ −4.82306 −0.334419
$$209$$ 14.5636 + 31.8898i 1.00738 + 2.20586i
$$210$$ 3.76709 1.10612i 0.259954 0.0763294i
$$211$$ 2.21294 2.55387i 0.152345 0.175816i −0.674447 0.738323i $$-0.735618\pi$$
0.826792 + 0.562508i $$0.190163\pi$$
$$212$$ 3.56087 + 2.28843i 0.244561 + 0.157170i
$$213$$ −3.85361 4.44731i −0.264045 0.304724i
$$214$$ −1.91501 13.3192i −0.130907 0.910481i
$$215$$ −2.11889 0.622162i −0.144507 0.0424311i
$$216$$ 0.841254 0.540641i 0.0572401 0.0367859i
$$217$$ −0.433561 + 3.01548i −0.0294320 + 0.204704i
$$218$$ −2.06709 + 4.52630i −0.140001 + 0.306560i
$$219$$ 5.97425 13.0818i 0.403702 0.883985i
$$220$$ 1.07839 7.50037i 0.0727050 0.505675i
$$221$$ 3.50436 2.25212i 0.235729 0.151494i
$$222$$ 0.577732 + 0.169638i 0.0387749 + 0.0113853i
$$223$$ 2.46625 + 17.1532i 0.165152 + 1.14866i 0.888735 + 0.458422i $$0.151585\pi$$
−0.723582 + 0.690238i $$0.757506\pi$$
$$224$$ 1.69894 + 1.96068i 0.113515 + 0.131003i
$$225$$ −2.27964 1.46503i −0.151976 0.0976690i
$$226$$ 8.90859 10.2811i 0.592591 0.683886i
$$227$$ −11.4377 + 3.35842i −0.759148 + 0.222906i −0.638324 0.769768i $$-0.720372\pi$$
−0.120824 + 0.992674i $$0.538554\pi$$
$$228$$ −2.90856 6.36886i −0.192624 0.421788i
$$229$$ 16.9000 1.11678 0.558390 0.829578i $$-0.311419\pi$$
0.558390 + 0.829578i $$0.311419\pi$$
$$230$$ 0.659693 + 7.22767i 0.0434989 + 0.476578i
$$231$$ 12.9903 0.854698
$$232$$ 1.29345 + 2.83225i 0.0849188 + 0.185946i
$$233$$ −27.3383 + 8.02724i −1.79099 + 0.525882i −0.996664 0.0816122i $$-0.973993\pi$$
−0.794324 + 0.607494i $$0.792175\pi$$
$$234$$ 3.15843 3.64502i 0.206473 0.238283i
$$235$$ −16.1425 10.3741i −1.05302 0.676735i
$$236$$ −2.60728 3.00896i −0.169719 0.195866i
$$237$$ −1.47156 10.2349i −0.0955883 0.664831i
$$238$$ −2.14996 0.631285i −0.139361 0.0409201i
$$239$$ −18.5912 + 11.9478i −1.20256 + 0.772841i −0.979398 0.201940i $$-0.935275\pi$$
−0.223165 + 0.974781i $$0.571639\pi$$
$$240$$ −0.215370 + 1.49793i −0.0139021 + 0.0966912i
$$241$$ −0.663894 + 1.45372i −0.0427651 + 0.0936426i −0.929809 0.368043i $$-0.880028\pi$$
0.887044 + 0.461686i $$0.152755\pi$$
$$242$$ 5.84550 12.7999i 0.375763 0.822806i
$$243$$ −0.142315 + 0.989821i −0.00912950 + 0.0634971i
$$244$$ −6.10943 + 3.92629i −0.391116 + 0.251355i
$$245$$ 0.391095 + 0.114836i 0.0249861 + 0.00733659i
$$246$$ −0.753323 5.23948i −0.0480301 0.334057i
$$247$$ −22.1140 25.5209i −1.40708 1.62386i
$$248$$ −0.987866 0.634863i −0.0627296 0.0403139i
$$249$$ −1.72949 + 1.99594i −0.109602 + 0.126488i
$$250$$ 11.1949 3.28713i 0.708029 0.207896i
$$251$$ −7.30661 15.9992i −0.461189 1.00986i −0.987215 0.159395i $$-0.949046\pi$$
0.526026 0.850469i $$-0.323682\pi$$
$$252$$ −2.59435 −0.163429
$$253$$ −4.64306 + 23.5603i −0.291907 + 1.48122i
$$254$$ 6.73013 0.422286
$$255$$ −0.542972 1.18894i −0.0340022 0.0744545i
$$256$$ −0.959493 + 0.281733i −0.0599683 + 0.0176083i
$$257$$ 13.5533 15.6413i 0.845430 0.975678i −0.154494 0.987994i $$-0.549375\pi$$
0.999924 + 0.0123156i $$0.00392026\pi$$
$$258$$ 1.22760 + 0.788932i 0.0764271 + 0.0491167i
$$259$$ −1.02297 1.18057i −0.0635642 0.0733570i
$$260$$ 1.03874 + 7.22462i 0.0644201 + 0.448052i
$$261$$ −2.98750 0.877209i −0.184922 0.0542979i
$$262$$ 15.9812 10.2705i 0.987321 0.634513i
$$263$$ 3.91717 27.2445i 0.241543 1.67997i −0.402844 0.915269i $$-0.631978\pi$$
0.644387 0.764699i $$-0.277113\pi$$
$$264$$ −2.08004 + 4.55466i −0.128018 + 0.280320i
$$265$$ 2.66101 5.82680i 0.163465 0.357938i
$$266$$ −2.58509 + 17.9797i −0.158502 + 1.10240i
$$267$$ −4.40610 + 2.83163i −0.269649 + 0.173293i
$$268$$ 15.4834 + 4.54634i 0.945800 + 0.277712i
$$269$$ 1.88933 + 13.1406i 0.115194 + 0.801195i 0.962731 + 0.270459i $$0.0871755\pi$$
−0.847537 + 0.530736i $$0.821915\pi$$
$$270$$ −0.991025 1.14370i −0.0603119 0.0696036i
$$271$$ 20.2562 + 13.0179i 1.23048 + 0.790779i 0.983965 0.178361i $$-0.0570795\pi$$
0.246511 + 0.969140i $$0.420716\pi$$
$$272$$ 0.565599 0.652736i 0.0342945 0.0395779i
$$273$$ −12.0059 + 3.52524i −0.726627 + 0.213357i
$$274$$ −1.09123 2.38946i −0.0659235 0.144352i
$$275$$ 13.5684 0.818206
$$276$$ 0.927287 4.70533i 0.0558161 0.283228i
$$277$$ −18.3404 −1.10197 −0.550983 0.834516i $$-0.685747\pi$$
−0.550983 + 0.834516i $$0.685747\pi$$
$$278$$ −7.65478 16.7616i −0.459103 1.00530i
$$279$$ 1.12671 0.330833i 0.0674545 0.0198064i
$$280$$ 2.57107 2.96717i 0.153651 0.177322i
$$281$$ −0.0168026 0.0107984i −0.00100236 0.000644178i 0.540140 0.841575i $$-0.318371\pi$$
−0.541142 + 0.840931i $$0.682008\pi$$
$$282$$ 8.30342 + 9.58265i 0.494461 + 0.570639i
$$283$$ −2.49815 17.3750i −0.148500 1.03284i −0.918678 0.395008i $$-0.870742\pi$$
0.770178 0.637829i $$-0.220167\pi$$
$$284$$ −5.64626 1.65789i −0.335044 0.0983778i
$$285$$ −8.91372 + 5.72850i −0.528003 + 0.339327i
$$286$$ −3.43687 + 23.9039i −0.203226 + 1.41347i
$$287$$ −5.70482 + 12.4918i −0.336745 + 0.737368i
$$288$$ 0.415415 0.909632i 0.0244786 0.0536006i
$$289$$ 2.31319 16.0886i 0.136070 0.946388i
$$290$$ 3.96395 2.54748i 0.232771 0.149593i
$$291$$ −14.3461 4.21241i −0.840985 0.246936i
$$292$$ −2.04669 14.2350i −0.119773 0.833042i
$$293$$ 1.90332 + 2.19655i 0.111193 + 0.128324i 0.808618 0.588335i $$-0.200216\pi$$
−0.697424 + 0.716658i $$0.745671\pi$$
$$294$$ −0.226585 0.145617i −0.0132147 0.00849258i
$$295$$ −3.94569 + 4.55357i −0.229727 + 0.265119i
$$296$$ 0.577732 0.169638i 0.0335800 0.00985998i
$$297$$ −2.08004 4.55466i −0.120696 0.264288i
$$298$$ −3.95602 −0.229166
$$299$$ −2.10247 23.0348i −0.121589 1.33214i
$$300$$ −2.70981 −0.156451
$$301$$ −1.57268 3.44370i −0.0906480 0.198491i
$$302$$ 15.5890 4.57733i 0.897044 0.263396i
$$303$$ 0.347262 0.400761i 0.0199497 0.0230231i
$$304$$ −5.89011 3.78534i −0.337821 0.217104i
$$305$$ 7.19711 + 8.30591i 0.412105 + 0.475595i
$$306$$ 0.122916 + 0.854902i 0.00702666 + 0.0488715i
$$307$$ 12.1970 + 3.58138i 0.696122 + 0.204400i 0.610603 0.791937i $$-0.290927\pi$$
0.0855190 + 0.996337i $$0.472745\pi$$
$$308$$ 10.9281 7.02308i 0.622688 0.400177i
$$309$$ −0.130918 + 0.910554i −0.00744766 + 0.0517996i
$$310$$ −0.738226 + 1.61649i −0.0419284 + 0.0918104i
$$311$$ −8.84860 + 19.3757i −0.501758 + 1.09870i 0.474136 + 0.880452i $$0.342760\pi$$
−0.975894 + 0.218245i $$0.929967\pi$$
$$312$$ 0.686393 4.77397i 0.0388593 0.270273i
$$313$$ 1.59110 1.02253i 0.0899340 0.0577971i −0.494901 0.868949i $$-0.664796\pi$$
0.584835 + 0.811152i $$0.301159\pi$$
$$314$$ −19.5182 5.73107i −1.10148 0.323423i
$$315$$ 0.558746 + 3.88617i 0.0314818 + 0.218961i
$$316$$ −6.77138 7.81459i −0.380920 0.439605i
$$317$$ −18.3490 11.7922i −1.03058 0.662314i −0.0879413 0.996126i $$-0.528029\pi$$
−0.942640 + 0.333811i $$0.891665\pi$$
$$318$$ −2.77190 + 3.19895i −0.155441 + 0.179388i
$$319$$ 14.9588 4.39231i 0.837534 0.245922i
$$320$$ 0.628663 + 1.37658i 0.0351433 + 0.0769532i
$$321$$ 13.4562 0.751049
$$322$$ −8.62356 + 8.96879i −0.480572 + 0.499811i
$$323$$ 6.04722 0.336476
$$324$$ 0.415415 + 0.909632i 0.0230786 + 0.0505351i
$$325$$ −12.5402 + 3.68213i −0.695603 + 0.204248i
$$326$$ 9.79193 11.3005i 0.542325 0.625876i
$$327$$ −4.18605 2.69021i −0.231489 0.148769i
$$328$$ −3.46641 4.00045i −0.191400 0.220888i
$$329$$ −4.68152 32.5607i −0.258100 1.79513i
$$330$$ 7.27055 + 2.13483i 0.400231 + 0.117518i
$$331$$ 14.6532 9.41704i 0.805413 0.517608i −0.0719651 0.997407i $$-0.522927\pi$$
0.877378 + 0.479800i $$0.159291\pi$$
$$332$$ −0.375855 + 2.61413i −0.0206277 + 0.143469i
$$333$$ −0.250131 + 0.547710i −0.0137071 + 0.0300143i
$$334$$ −5.00586 + 10.9613i −0.273908 + 0.599776i
$$335$$ 3.47545 24.1723i 0.189884 1.32067i
$$336$$ −2.18251 + 1.40261i −0.119066 + 0.0765188i
$$337$$ 17.2210 + 5.05653i 0.938086 + 0.275447i 0.714818 0.699310i $$-0.246509\pi$$
0.223268 + 0.974757i $$0.428328\pi$$
$$338$$ −1.46042 10.1574i −0.0794364 0.552492i
$$339$$ 8.90859 + 10.2811i 0.483848 + 0.558391i
$$340$$ −1.09957 0.706649i −0.0596325 0.0383234i
$$341$$ −3.85044 + 4.44364i −0.208513 + 0.240637i
$$342$$ 6.71797 1.97257i 0.363266 0.106665i
$$343$$ 7.83441 + 17.1550i 0.423018 + 0.926281i
$$344$$ 1.45925 0.0786776
$$345$$ −7.24798 0.375626i −0.390218 0.0202230i
$$346$$ 15.5014 0.833358
$$347$$ −2.00445 4.38914i −0.107605 0.235621i 0.848168 0.529727i $$-0.177706\pi$$
−0.955773 + 0.294105i $$0.904978\pi$$
$$348$$ −2.98750 + 0.877209i −0.160147 + 0.0470233i
$$349$$ −6.78166 + 7.82645i −0.363014 + 0.418940i −0.907647 0.419734i $$-0.862123\pi$$
0.544633 + 0.838674i $$0.316669\pi$$
$$350$$ 5.91418 + 3.80081i 0.316126 + 0.203162i
$$351$$ 3.15843 + 3.64502i 0.168585 + 0.194557i
$$352$$ 0.712591 + 4.95618i 0.0379812 + 0.264165i
$$353$$ 28.1818 + 8.27493i 1.49997 + 0.440430i 0.925707 0.378242i $$-0.123471\pi$$
0.574261 + 0.818673i $$0.305290\pi$$
$$354$$ 3.34938 2.15252i 0.178018 0.114405i
$$355$$ −1.26737 + 8.81478i −0.0672652 + 0.467840i
$$356$$ −2.17575 + 4.76423i −0.115315 + 0.252504i
$$357$$ 0.930830 2.03823i 0.0492648 0.107875i
$$358$$ −1.02684 + 7.14180i −0.0542699 + 0.377456i
$$359$$ −8.41063 + 5.40518i −0.443896 + 0.285275i −0.743434 0.668810i $$-0.766804\pi$$
0.299537 + 0.954085i $$0.403168\pi$$
$$360$$ −1.45204 0.426356i −0.0765290 0.0224710i
$$361$$ −4.27260 29.7166i −0.224874 1.56403i
$$362$$ −2.18762 2.52465i −0.114979 0.132692i
$$363$$ 11.8377 + 7.60761i 0.621317 + 0.399296i
$$364$$ −8.19408 + 9.45647i −0.429487 + 0.495654i
$$365$$ −20.8823 + 6.13160i −1.09303 + 0.320943i
$$366$$ −3.01686 6.60601i −0.157694 0.345302i
$$367$$ 16.7049 0.871991 0.435995 0.899949i $$-0.356396\pi$$
0.435995 + 0.899949i $$0.356396\pi$$
$$368$$ −1.76381 4.45971i −0.0919450 0.232478i
$$369$$ 5.29335 0.275561
$$370$$ −0.378532 0.828870i −0.0196790 0.0430909i
$$371$$ 10.5366 3.09382i 0.547032 0.160623i
$$372$$ 0.768989 0.887461i 0.0398702 0.0460127i
$$373$$ 27.9494 + 17.9620i 1.44717 + 0.930037i 0.999355 + 0.0359089i $$0.0114326\pi$$
0.447811 + 0.894128i $$0.352204\pi$$
$$374$$ −2.83203 3.26834i −0.146441 0.169002i
$$375$$ 1.66046 + 11.5488i 0.0857460 + 0.596377i
$$376$$ 12.1660 + 3.57227i 0.627416 + 0.184226i
$$377$$ −12.6333 + 8.11890i −0.650646 + 0.418145i
$$378$$ 0.369215 2.56794i 0.0189904 0.132081i
$$379$$ 3.51150 7.68911i 0.180374 0.394963i −0.797750 0.602989i $$-0.793976\pi$$
0.978123 + 0.208026i $$0.0667037\pi$$
$$380$$ −4.40164 + 9.63824i −0.225799 + 0.494431i
$$381$$ −0.957798 + 6.66163i −0.0490695 + 0.341286i
$$382$$ −14.3117 + 9.19757i −0.732250 + 0.470588i
$$383$$ 4.22491 + 1.24055i 0.215883 + 0.0633889i 0.387886 0.921708i $$-0.373206\pi$$
−0.172003 + 0.985096i $$0.555024\pi$$
$$384$$ −0.142315 0.989821i −0.00726247 0.0505116i
$$385$$ −12.8737 14.8570i −0.656104 0.757185i
$$386$$ −19.1315 12.2951i −0.973769 0.625803i
$$387$$ −0.955607 + 1.10283i −0.0485762 + 0.0560600i
$$388$$ −14.3461 + 4.21241i −0.728315 + 0.213852i
$$389$$ 8.42800 + 18.4548i 0.427317 + 0.935693i 0.993754 + 0.111589i $$0.0355939\pi$$
−0.566438 + 0.824105i $$0.691679\pi$$
$$390$$ −7.29891 −0.369595
$$391$$ 3.36401 + 2.41675i 0.170125 + 0.122220i
$$392$$ −0.269342 −0.0136038
$$393$$ 7.89159 + 17.2802i 0.398078 + 0.871669i
$$394$$ −9.67095 + 2.83965i −0.487216 + 0.143059i
$$395$$ −10.2474 + 11.8261i −0.515602 + 0.595036i
$$396$$ −4.21228 2.70707i −0.211675 0.136035i
$$397$$ 9.40180 + 10.8503i 0.471863 + 0.544559i 0.940929 0.338604i $$-0.109955\pi$$
−0.469066 + 0.883163i $$0.655409\pi$$
$$398$$ 1.34237 + 9.33640i 0.0672870 + 0.467992i
$$399$$ −17.4288 5.11755i −0.872530 0.256198i
$$400$$ −2.27964 + 1.46503i −0.113982 + 0.0732517i
$$401$$ 1.64117 11.4146i 0.0819562 0.570018i −0.906923 0.421296i $$-0.861575\pi$$
0.988879 0.148721i $$-0.0475157\pi$$
$$402$$ −6.70359 + 14.6788i −0.334344 + 0.732112i
$$403$$ 2.35275 5.15181i 0.117199 0.256630i
$$404$$ 0.0754672 0.524886i 0.00375463 0.0261140i
$$405$$ 1.27310 0.818172i 0.0632609 0.0406553i
$$406$$ 7.75062 + 2.27579i 0.384657 + 0.112945i
$$407$$ −0.429067 2.98423i −0.0212681 0.147923i
$$408$$ 0.565599 + 0.652736i 0.0280013 + 0.0323152i
$$409$$ −19.9128 12.7972i −0.984624 0.632779i −0.0539169 0.998545i $$-0.517171\pi$$
−0.930707 + 0.365766i $$0.880807\pi$$
$$410$$ −5.24585 + 6.05403i −0.259074 + 0.298987i
$$411$$ 2.52043 0.740066i 0.124324 0.0365048i
$$412$$ 0.382147 + 0.836786i 0.0188270 + 0.0412255i
$$413$$ −10.3292 −0.508267
$$414$$ 4.52547 + 1.58749i 0.222415 + 0.0780207i
$$415$$ 3.99674 0.196192
$$416$$ −2.00357 4.38721i −0.0982331 0.215101i
$$417$$ 17.6804 5.19143i 0.865813 0.254226i
$$418$$ −22.9581 + 26.4950i −1.12292 + 1.29591i
$$419$$ −1.87628 1.20581i −0.0916621 0.0589076i 0.494007 0.869458i $$-0.335532\pi$$
−0.585669 + 0.810550i $$0.699168\pi$$
$$420$$ 2.57107 + 2.96717i 0.125455 + 0.144783i
$$421$$ 2.56625 + 17.8486i 0.125071 + 0.869889i 0.951675 + 0.307106i $$0.0993605\pi$$
−0.826604 + 0.562784i $$0.809730\pi$$
$$422$$ 3.24237 + 0.952047i 0.157836 + 0.0463449i
$$423$$ −10.6668 + 6.85514i −0.518638 + 0.333309i
$$424$$ −0.602392 + 4.18973i −0.0292547 + 0.203471i
$$425$$ 0.972256 2.12894i 0.0471614 0.103269i
$$426$$ 2.44456 5.35285i 0.118439 0.259346i
$$427$$ −2.68134 + 18.6492i −0.129759 + 0.902496i
$$428$$ 11.3200 7.27495i 0.547175 0.351648i
$$429$$ −23.1715 6.80377i −1.11873 0.328489i
$$430$$ −0.314280 2.18586i −0.0151559 0.105412i
$$431$$ −14.6477 16.9043i −0.705553 0.814252i 0.283938 0.958842i $$-0.408359\pi$$
−0.989492 + 0.144591i $$0.953813\pi$$
$$432$$ 0.841254 + 0.540641i 0.0404748 + 0.0260116i
$$433$$ −11.4632 + 13.2292i −0.550887 + 0.635757i −0.961089 0.276237i $$-0.910912\pi$$
0.410203 + 0.911994i $$0.365458\pi$$
$$434$$ −2.92309 + 0.858296i −0.140313 + 0.0411995i
$$435$$ 1.95742 + 4.28615i 0.0938510 + 0.205505i
$$436$$ −4.97597 −0.238306
$$437$$ 15.5111 29.7811i 0.741996 1.42462i
$$438$$ 14.3814 0.687170
$$439$$ −6.27863 13.7483i −0.299662 0.656169i 0.698574 0.715538i $$-0.253818\pi$$
−0.998236 + 0.0593689i $$0.981091\pi$$
$$440$$ 7.27055 2.13483i 0.346610 0.101774i
$$441$$ 0.176382 0.203555i 0.00839912 0.00969311i
$$442$$ 3.50436 + 2.25212i 0.166686 + 0.107122i
$$443$$ 7.74333 + 8.93627i 0.367897 + 0.424575i 0.909270 0.416207i $$-0.136641\pi$$
−0.541373 + 0.840782i $$0.682095\pi$$
$$444$$ 0.0856910 + 0.595994i 0.00406671 + 0.0282846i
$$445$$ 7.60510 + 2.23306i 0.360516 + 0.105857i
$$446$$ −14.5785 + 9.36906i −0.690314 + 0.443638i
$$447$$ 0.563000 3.91575i 0.0266290 0.185209i
$$448$$ −1.07773 + 2.35990i −0.0509181 + 0.111495i
$$449$$ −1.94712 + 4.26359i −0.0918900 + 0.201211i −0.949996 0.312261i $$-0.898914\pi$$
0.858106 + 0.513472i $$0.171641\pi$$
$$450$$ 0.385646 2.68223i 0.0181795 0.126441i
$$451$$ −22.2971 + 14.3295i −1.04993 + 0.674748i
$$452$$ 13.0527 + 3.83263i 0.613949 + 0.180272i
$$453$$ 2.31220 + 16.0817i 0.108637 + 0.755585i
$$454$$ −7.80632 9.00898i −0.366369 0.422812i
$$455$$ 15.9299 + 10.2375i 0.746807 + 0.479943i
$$456$$ 4.58506 5.29144i 0.214715 0.247795i
$$457$$ 27.6933 8.13149i 1.29544 0.380375i 0.439869 0.898062i $$-0.355025\pi$$
0.855570 + 0.517687i $$0.173207\pi$$
$$458$$ 7.02050 + 15.3727i 0.328046 + 0.718321i
$$459$$ −0.863693 −0.0403138
$$460$$ −6.30047 + 3.60256i −0.293761 + 0.167970i
$$461$$ −1.23414 −0.0574794 −0.0287397 0.999587i $$-0.509149\pi$$
−0.0287397 + 0.999587i $$0.509149\pi$$
$$462$$ 5.39636 + 11.8164i 0.251061 + 0.549748i
$$463$$ −0.523678 + 0.153766i −0.0243374 + 0.00714610i −0.293879 0.955843i $$-0.594946\pi$$
0.269541 + 0.962989i $$0.413128\pi$$
$$464$$ −2.03899 + 2.35312i −0.0946577 + 0.109241i
$$465$$ −1.49497 0.960762i −0.0693278 0.0445543i
$$466$$ −18.6586 21.5331i −0.864341 0.997502i
$$467$$ −2.26688 15.7665i −0.104899 0.729586i −0.972597 0.232496i $$-0.925311\pi$$
0.867699 0.497090i $$-0.165598\pi$$
$$468$$ 4.62769 + 1.35881i 0.213915 + 0.0628111i
$$469$$ 35.2193 22.6341i 1.62628 1.04514i
$$470$$ 2.73082 18.9933i 0.125964 0.876095i
$$471$$ 8.45046 18.5039i 0.389377 0.852616i
$$472$$ 1.65394 3.62163i 0.0761288 0.166699i
$$473$$ 1.03985 7.23231i 0.0478123 0.332542i
$$474$$ 8.69872 5.59033i 0.399546 0.256772i
$$475$$ −18.2044 5.34530i −0.835276 0.245259i
$$476$$ −0.318888 2.21792i −0.0146162 0.101658i
$$477$$ −2.77190 3.19895i −0.126917 0.146470i
$$478$$ −18.5912 11.9478i −0.850341 0.546481i
$$479$$ 0.167294 0.193068i 0.00764388 0.00882150i −0.751915 0.659260i $$-0.770870\pi$$
0.759559 + 0.650439i $$0.225415\pi$$
$$480$$ −1.45204 + 0.426356i −0.0662761 + 0.0194604i
$$481$$ 1.20640 + 2.64164i 0.0550069 + 0.120448i
$$482$$ −1.59815 −0.0727935
$$483$$ −7.65024 9.81218i −0.348098 0.446470i
$$484$$ 14.0715 0.639612
$$485$$ 9.39964 + 20.5823i 0.426815 + 0.934596i
$$486$$ −0.959493 + 0.281733i −0.0435235 + 0.0127796i
$$487$$ −16.7486 + 19.3289i −0.758952 + 0.875877i −0.995404 0.0957661i $$-0.969470\pi$$
0.236452 + 0.971643i $$0.424015\pi$$
$$488$$ −6.10943 3.92629i −0.276561 0.177735i
$$489$$ 9.79193 + 11.3005i 0.442807 + 0.511026i
$$490$$ 0.0580083 + 0.403457i 0.00262055 + 0.0182263i
$$491$$ 7.22173 + 2.12049i 0.325912 + 0.0956964i 0.440596 0.897706i $$-0.354767\pi$$
−0.114684 + 0.993402i $$0.536585\pi$$
$$492$$ 4.45305 2.86180i 0.200759 0.129020i
$$493$$ 0.382715 2.66184i 0.0172366 0.119883i
$$494$$ 14.0282 30.7174i 0.631157 1.38204i
$$495$$ −3.14780 + 6.89273i −0.141483 + 0.309805i
$$496$$ 0.167117 1.16233i 0.00750379 0.0521900i
$$497$$ −12.8432 + 8.25385i −0.576098 + 0.370236i
$$498$$ −2.53403 0.744058i −0.113553 0.0333420i
$$499$$ 5.71269 + 39.7326i 0.255735 + 1.77868i 0.562406 + 0.826861i $$0.309876\pi$$
−0.306671 + 0.951815i $$0.599215\pi$$
$$500$$ 7.64062 + 8.81774i 0.341699 + 0.394341i
$$501$$ −10.1373 6.51486i −0.452902 0.291062i
$$502$$ 11.5181 13.2927i 0.514080 0.593280i
$$503$$ 23.1700 6.80333i 1.03310 0.303346i 0.279129 0.960254i $$-0.409954\pi$$
0.753971 + 0.656908i $$0.228136\pi$$
$$504$$ −1.07773 2.35990i −0.0480060 0.105119i
$$505$$ −0.802497 −0.0357107
$$506$$ −23.3600 + 5.56381i −1.03848 + 0.247342i
$$507$$ 10.2619 0.455747
$$508$$ 2.79580 + 6.12195i 0.124044 + 0.271617i
$$509$$ −0.614059 + 0.180304i −0.0272177 + 0.00799183i −0.295313 0.955401i $$-0.595424\pi$$
0.268095 + 0.963392i $$0.413606\pi$$
$$510$$ 0.855942 0.987809i 0.0379017 0.0437409i
$$511$$ −31.3875 20.1715i −1.38850 0.892336i
$$512$$ −0.654861 0.755750i −0.0289410 0.0333997i
$$513$$ 0.996429 + 6.93032i 0.0439934 + 0.305981i
$$514$$ 19.8581 + 5.83086i 0.875902 + 0.257188i
$$515$$ 1.17115 0.752650i 0.0516069 0.0331657i
$$516$$ −0.207673 + 1.44440i −0.00914231 + 0.0635861i
$$517$$ 26.3742 57.7515i 1.15994 2.53991i
$$518$$ 0.648927 1.42095i 0.0285122 0.0624330i
$$519$$ −2.20607 + 15.3436i −0.0968358 + 0.673508i
$$520$$ −6.14024 + 3.94609i −0.269267 + 0.173048i
$$521$$ −21.8174 6.40617i −0.955838 0.280659i −0.233622 0.972327i $$-0.575058\pi$$
−0.722216 + 0.691668i $$0.756876\pi$$
$$522$$ −0.443115 3.08193i −0.0193946 0.134892i
$$523$$ −0.550626 0.635456i −0.0240772 0.0277866i 0.743583 0.668643i $$-0.233125\pi$$
−0.767660 + 0.640857i $$0.778579\pi$$
$$524$$ 15.9812 + 10.2705i 0.698141 + 0.448668i
$$525$$ −4.60380 + 5.31307i −0.200926 + 0.231881i
$$526$$ 26.4097 7.75459i 1.15152 0.338116i
$$527$$ 0.421321 + 0.922564i 0.0183530 + 0.0401875i
$$528$$ −5.00714 −0.217908
$$529$$ 20.5306 10.3680i 0.892634 0.450782i
$$530$$ 6.40567 0.278245
$$531$$ 1.65394 + 3.62163i 0.0717750 + 0.157165i
$$532$$ −17.4288 + 5.11755i −0.755633 + 0.221874i
$$533$$ 16.7187 19.2944i 0.724167 0.835733i
$$534$$ −4.40610 2.83163i −0.190670 0.122536i
$$535$$ −13.3354 15.3899i −0.576539 0.665362i
$$536$$ 2.29655 + 15.9728i 0.0991957 + 0.689921i
$$537$$ −6.92297 2.03277i −0.298748 0.0877204i
$$538$$ −11.1682 + 7.17739i −0.481497 + 0.309439i
$$539$$ −0.191931 + 1.33491i −0.00826704 + 0.0574985i
$$540$$ 0.628663 1.37658i 0.0270533 0.0592386i
$$541$$ 9.49585 20.7930i 0.408259 0.893962i −0.588107 0.808783i $$-0.700127\pi$$
0.996366 0.0851787i $$-0.0271461\pi$$
$$542$$ −3.42674 + 23.8335i −0.147191 + 1.02374i
$$543$$ 2.81028 1.80606i 0.120601 0.0775053i
$$544$$ 0.828708 + 0.243331i 0.0355305 + 0.0104327i
$$545$$ 1.07168 + 7.45367i 0.0459055 + 0.319280i
$$546$$ −8.19408 9.45647i −0.350674 0.404700i
$$547$$ 8.80067 + 5.65585i 0.376289 + 0.241827i 0.715091 0.699031i $$-0.246385\pi$$
−0.338802 + 0.940858i $$0.610022\pi$$
$$548$$ 1.72021 1.98523i 0.0734839 0.0848050i
$$549$$ 6.96812 2.04602i 0.297392 0.0873221i
$$550$$ 5.63652 + 12.3423i 0.240342 + 0.526276i
$$551$$ −21.8003 −0.928723
$$552$$ 4.66533 1.11118i 0.198570 0.0472948i
$$553$$ −26.8261 −1.14076
$$554$$ −7.61887 16.6830i −0.323695 0.708793i
$$555$$ 0.874304 0.256719i 0.0371121 0.0108971i
$$556$$ 12.0670 13.9261i 0.511755 0.590597i
$$557$$ −22.1144 14.2120i −0.937015 0.602183i −0.0194682 0.999810i $$-0.506197\pi$$
−0.917547 + 0.397627i $$0.869834\pi$$
$$558$$ 0.768989 + 0.887461i 0.0325539 + 0.0375692i
$$559$$ 1.00162 + 6.96642i 0.0423640 + 0.294648i
$$560$$ 3.76709 + 1.10612i 0.159189 + 0.0467420i
$$561$$ 3.63811 2.33807i 0.153601 0.0987136i
$$562$$ 0.00284250 0.0197700i 0.000119904 0.000833948i
$$563$$ −11.5774 + 25.3509i −0.487928 + 1.06841i 0.492279 + 0.870437i $$0.336164\pi$$
−0.980207 + 0.197976i $$0.936563\pi$$
$$564$$ −5.26732 + 11.5338i −0.221794 + 0.485662i
$$565$$ 2.92985 20.3776i 0.123260 0.857291i
$$566$$ 14.7671 9.49024i 0.620708 0.398905i
$$567$$ 2.48926 + 0.730913i 0.104539 + 0.0306955i
$$568$$ −0.837470 5.82473i −0.0351395 0.244400i
$$569$$ 21.0907 + 24.3399i 0.884166 + 1.02038i 0.999634 + 0.0270710i $$0.00861801\pi$$
−0.115467 + 0.993311i $$0.536837\pi$$
$$570$$ −8.91372 5.72850i −0.373354 0.239940i
$$571$$ −10.8030 + 12.4673i −0.452091 + 0.521740i −0.935344 0.353740i $$-0.884910\pi$$
0.483253 + 0.875481i $$0.339455\pi$$
$$572$$ −23.1715 + 6.80377i −0.968849 + 0.284480i
$$573$$ −7.06718 15.4750i −0.295236 0.646476i
$$574$$ −13.7328 −0.573197
$$575$$ −7.99071 10.2489i −0.333236 0.427407i
$$576$$ 1.00000 0.0416667
$$577$$ −2.73102 5.98010i −0.113694 0.248955i 0.844228 0.535984i $$-0.180059\pi$$
−0.957922 + 0.287030i $$0.907332\pi$$
$$578$$ 15.5956 4.57929i 0.648693 0.190473i
$$579$$ 14.8926 17.1870i 0.618917 0.714268i
$$580$$ 3.96395 + 2.54748i 0.164594 + 0.105778i
$$581$$ 4.48691 + 5.17817i 0.186148 + 0.214827i
$$582$$ −2.12786 14.7996i −0.0882027 0.613463i
$$583$$ 20.3358 + 5.97112i 0.842222 + 0.247299i
$$584$$ 12.0984 7.77517i 0.500636 0.321739i
$$585$$ 1.03874 7.22462i 0.0429468 0.298701i
$$586$$ −1.20738 + 2.64380i −0.0498765 + 0.109214i
$$587$$ −6.40693 + 14.0292i −0.264442 + 0.579048i −0.994547 0.104287i $$-0.966744\pi$$
0.730105 + 0.683335i $$0.239471\pi$$
$$588$$ 0.0383314 0.266601i 0.00158076 0.0109944i
$$589$$ 6.91663 4.44505i 0.284995 0.183155i
$$590$$ −5.78117 1.69750i −0.238007 0.0698851i
$$591$$ −1.43442 9.97664i −0.0590043 0.410384i
$$592$$ 0.394306 + 0.455054i 0.0162059 + 0.0187026i
$$593$$ −12.0884 7.76876i −0.496412 0.319025i 0.268368 0.963317i $$-0.413516\pi$$
−0.764780 + 0.644292i $$0.777152\pi$$
$$594$$ 3.27898 3.78415i 0.134538 0.155265i
$$595$$ −3.25361 + 0.955347i −0.133385 + 0.0391654i
$$596$$ −1.64339 3.59852i −0.0673158 0.147401i
$$597$$ −9.43241 −0.386043
$$598$$ 20.0798 11.4815i 0.821125 0.469513i
$$599$$ 7.73316 0.315968 0.157984 0.987442i $$-0.449500\pi$$
0.157984 + 0.987442i $$0.449500\pi$$
$$600$$ −1.12570 2.46493i −0.0459564 0.100630i
$$601$$ −30.7273 + 9.02234i −1.25339 + 0.368029i −0.840031 0.542538i $$-0.817463\pi$$
−0.413361 + 0.910567i $$0.635645\pi$$
$$602$$ 2.47918 2.86113i 0.101044 0.116611i
$$603$$ −13.5754 8.72436i −0.552832 0.355284i
$$604$$ 10.6396 + 12.2787i 0.432918 + 0.499614i
$$605$$ −3.03058 21.0781i −0.123210 0.856948i
$$606$$ 0.508803 + 0.149398i 0.0206687 + 0.00606888i
$$607$$ −0.772604 + 0.496522i −0.0313590 + 0.0201532i −0.556226 0.831031i $$-0.687751\pi$$
0.524867 + 0.851184i $$0.324115\pi$$
$$608$$ 0.996429 6.93032i 0.0404105 0.281061i
$$609$$ −3.35565 + 7.34785i −0.135978 + 0.297750i
$$610$$ −4.56553 + 9.99712i −0.184853 + 0.404772i
$$611$$ −8.70323 + 60.5323i −0.352095 + 2.44887i
$$612$$ −0.726585 + 0.466948i −0.0293705 + 0.0188752i
$$613$$ −18.9616 5.56762i −0.765850 0.224874i −0.124601 0.992207i $$-0.539765\pi$$
−0.641249 + 0.767333i $$0.721583\pi$$
$$614$$ 1.80910 + 12.5826i 0.0730094 + 0.507792i
$$615$$ −5.24585 6.05403i −0.211533 0.244122i
$$616$$ 10.9281 + 7.02308i 0.440307 + 0.282968i
$$617$$ −4.51857 + 5.21471i −0.181911 + 0.209936i −0.839380 0.543545i $$-0.817082\pi$$
0.657469 + 0.753482i $$0.271627\pi$$
$$618$$ −0.882654 + 0.259171i −0.0355055 + 0.0104254i
$$619$$ 9.44337 + 20.6781i 0.379561 + 0.831123i 0.998940 + 0.0460306i $$0.0146572\pi$$
−0.619379 + 0.785092i $$0.712616\pi$$
$$620$$ −1.77708 −0.0713693
$$621$$ −2.21537 + 4.25348i −0.0888997 + 0.170686i
$$622$$ −21.3006 −0.854077
$$623$$ 5.64466 + 12.3601i 0.226149 + 0.495197i
$$624$$ 4.62769 1.35881i 0.185256 0.0543960i
$$625$$ 2.69008 3.10452i 0.107603 0.124181i
$$626$$ 1.59110 + 1.02253i 0.0635929 + 0.0408687i
$$627$$ −22.9581 26.4950i −0.916856 1.05811i
$$628$$ −2.89500 20.1352i −0.115523 0.803481i
$$629$$ −0.498984 0.146515i −0.0198958 0.00584193i
$$630$$ −3.30287 + 2.12262i −0.131589 + 0.0845674i
$$631$$ −4.79472 + 33.3480i −0.190875 + 1.32756i 0.638825 + 0.769352i $$0.279421\pi$$
−0.829700 + 0.558210i $$0.811488\pi$$
$$632$$ 4.29547 9.40577i 0.170865 0.374141i
$$633$$ −1.40379 + 3.07388i −0.0557958 + 0.122176i
$$634$$ 3.10410 21.5895i 0.123279 0.857427i
$$635$$ 8.56814 5.50641i 0.340016 0.218515i
$$636$$ −4.06135 1.19252i −0.161043 0.0472865i
$$637$$ −0.184875 1.28583i −0.00732499 0.0509465i
$$638$$ 10.2095 + 11.7824i 0.404198 + 0.466470i
$$639$$ 4.95046 + 3.18147i 0.195837 + 0.125857i
$$640$$ −0.991025 + 1.14370i −0.0391737 + 0.0452089i
$$641$$ 4.06760 1.19436i 0.160661 0.0471742i −0.200413 0.979711i $$-0.564228\pi$$
0.361074 + 0.932537i $$0.382410\pi$$
$$642$$ 5.58989 + 12.2401i 0.220615 + 0.483080i
$$643$$ 40.0914 1.58105 0.790525 0.612430i $$-0.209808\pi$$
0.790525 + 0.612430i $$0.209808\pi$$
$$644$$ −11.7407 4.11850i −0.462647 0.162292i
$$645$$ 2.20834 0.0869533
$$646$$ 2.51211 + 5.50074i 0.0988375 + 0.216424i
$$647$$ 5.46621 1.60502i 0.214899 0.0631000i −0.172511 0.985008i $$-0.555188\pi$$
0.387410 + 0.921908i $$0.373370\pi$$
$$648$$ −0.654861 + 0.755750i −0.0257254 + 0.0296886i
$$649$$ −16.7708 10.7780i −0.658313 0.423072i
$$650$$ −8.55875 9.87733i −0.335702 0.387421i
$$651$$ −0.433561 3.01548i −0.0169926 0.118186i
$$652$$ 14.3470 + 4.21266i 0.561872 + 0.164981i
$$653$$ 27.1715 17.4620i 1.06330 0.683343i 0.112660 0.993634i $$-0.464063\pi$$
0.950642 + 0.310291i $$0.100426\pi$$
$$654$$ 0.708154 4.92532i 0.0276910 0.192595i
$$655$$ 11.9426 26.1507i 0.466637 1.02179i
$$656$$ 2.19894 4.81500i 0.0858541 0.187994i
$$657$$ −2.04669 + 14.2350i −0.0798489 + 0.555361i
$$658$$ 27.6735 17.7847i 1.07882 0.693318i
$$659$$ −8.86774 2.60380i −0.345438 0.101430i 0.104411 0.994534i $$-0.466704\pi$$
−0.449849 + 0.893104i $$0.648522\pi$$
$$660$$ 1.07839 + 7.50037i 0.0419763 + 0.291951i
$$661$$ 21.2094 + 24.4770i 0.824952 + 0.952045i 0.999468 0.0326090i $$-0.0103816\pi$$
−0.174516 + 0.984654i $$0.555836\pi$$
$$662$$ 14.6532 + 9.41704i 0.569513 + 0.366004i
$$663$$ −2.72792 + 3.14818i −0.105943 + 0.122265i
$$664$$ −2.53403 + 0.744058i −0.0983394 + 0.0288750i
$$665$$ 11.4194 + 25.0050i 0.442825 + 0.969651i
$$666$$ −0.602123 −0.0233318
$$667$$ −12.1273 8.71240i −0.469570 0.337345i
$$668$$ −12.0503 −0.466238
$$669$$ −7.19895 15.7635i −0.278328 0.609452i
$$670$$ 23.4316 6.88015i 0.905243 0.265803i
$$671$$ −23.8129 + 27.4816i −0.919287 + 1.06091i
$$672$$ −2.18251 1.40261i −0.0841920 0.0541069i
$$673$$ −25.3577 29.2644i −0.977468 1.12806i −0.991753 0.128161i $$-0.959093\pi$$
0.0142851 0.999898i $$-0.495453\pi$$
$$674$$ 2.55426 + 17.7653i 0.0983866 + 0.684294i
$$675$$ 2.60004 + 0.763442i 0.100076 + 0.0293849i
$$676$$ 8.63285 5.54800i 0.332033 0.213385i
$$677$$ −4.16456 + 28.9652i −0.160057 + 1.11322i 0.738465 + 0.674292i $$0.235551\pi$$
−0.898522 + 0.438929i $$0.855358\pi$$
$$678$$ −5.65122 + 12.3744i −0.217034 + 0.475238i
$$679$$ −16.1140 + 35.2848i −0.618400 + 1.35411i
$$680$$ 0.186014 1.29376i 0.00713331 0.0496132i
$$681$$ 10.0282 6.44475i 0.384283 0.246964i
$$682$$ −5.64161 1.65653i −0.216028 0.0634317i
$$683$$ 4.68194 + 32.5636i 0.179150 + 1.24601i 0.858736 + 0.512418i $$0.171250\pi$$
−0.679587 + 0.733595i $$0.737841\pi$$
$$684$$ 4.58506 + 5.29144i 0.175314 + 0.202323i
$$685$$ −3.34423 2.14921i −0.127776 0.0821170i
$$686$$ −12.3502 + 14.2529i −0.471532 + 0.544176i
$$687$$ −16.2154 + 4.76127i −0.618656 + 0.181654i
$$688$$ 0.606195 + 1.32738i 0.0231110 + 0.0506060i
$$689$$ −20.4151 −0.777754
$$690$$ −2.66924 6.74904i −0.101616 0.256931i
$$691$$ −12.3215 −0.468730 −0.234365 0.972149i $$-0.575301\pi$$
−0.234365 + 0.972149i $$0.575301\pi$$
$$692$$ 6.43950 + 14.1005i 0.244793 + 0.536022i
$$693$$ −12.4641 + 3.65979i −0.473471 + 0.139024i
$$694$$ 3.15982 3.64663i 0.119945 0.138424i
$$695$$ −23.4592 15.0763i −0.889858 0.571877i
$$696$$ −2.03899 2.35312i −0.0772877 0.0891947i
$$697$$ 0.650640 + 4.52530i 0.0246447 + 0.171408i
$$698$$ −9.93639 2.91759i −0.376098 0.110432i
$$699$$ 23.9693 15.4042i 0.906603 0.582639i
$$700$$ −1.00050 + 6.95864i −0.0378154 + 0.263012i
$$701$$ −11.3429 + 24.8375i −0.428415 + 0.938098i 0.565166 + 0.824977i $$0.308812\pi$$
−0.993581 + 0.113121i $$0.963915\pi$$
$$702$$ −2.00357 + 4.38721i −0.0756199 + 0.165585i
$$703$$ −0.599972 + 4.17290i −0.0226284 + 0.157384i
$$704$$ −4.21228 + 2.70707i −0.158756 + 0.102026i
$$705$$ 18.4113 + 5.40606i 0.693411 + 0.203604i
$$706$$ 4.18001 + 29.0726i 0.157317 + 1.09416i
$$707$$ −0.900919 1.03972i −0.0338825 0.0391025i
$$708$$ 3.34938 + 2.15252i 0.125878 + 0.0808966i
$$709$$ −7.28814 + 8.41096i −0.273712 + 0.315880i −0.875918 0.482461i $$-0.839743\pi$$
0.602206 + 0.798341i $$0.294289\pi$$
$$710$$ −8.54469 + 2.50895i −0.320677 + 0.0941592i
$$711$$ 4.29547 + 9.40577i 0.161093 + 0.352744i
$$712$$ −5.23754 −0.196285
$$713$$ 5.62410 + 0.291468i 0.210624 + 0.0109156i
$$714$$ 2.24072 0.0838570
$$715$$ 15.1820 + 33.2440i 0.567776 + 1.24326i
$$716$$ −6.92297 + 2.03277i −0.258724 + 0.0759681i
$$717$$ 14.4720 16.7016i 0.540467 0.623732i
$$718$$ −8.41063 5.40518i −0.313882 0.201720i
$$719$$ −16.8352 19.4289i −0.627848 0.724575i 0.349330 0.937000i $$-0.386409\pi$$
−0.977177 + 0.212425i $$0.931864\pi$$
$$720$$ −0.215370 1.49793i −0.00802638 0.0558247i
$$721$$ 2.28991 + 0.672380i 0.0852809 + 0.0250407i
$$722$$ 25.2562 16.2312i 0.939940 0.604063i
$$723$$ 0.227440 1.58188i 0.00845858 0.0588307i
$$724$$ 1.38773 3.03870i 0.0515745 0.112933i
$$725$$ −3.50499 + 7.67486i −0.130172 + 0.285037i
$$726$$ −2.00258 + 13.9282i −0.0743227 + 0.516926i
$$727$$ 0.0404181 0.0259751i 0.00149903 0.000963365i −0.539891 0.841735i $$-0.681535\pi$$
0.541390 + 0.840772i $$0.317898\pi$$
$$728$$ −12.0059 3.52524i −0.444967 0.130654i
$$729$$ −0.142315 0.989821i −0.00527092 0.0366601i
$$730$$ −14.2523 16.4481i −0.527502 0.608770i
$$731$$ −1.06027 0.681395i −0.0392155 0.0252023i
$$732$$ 4.75579 5.48847i 0.175779 0.202860i
$$733$$ −29.3610 + 8.62117i −1.08447 + 0.318430i −0.774667 0.632370i $$-0.782082\pi$$
−0.309806 + 0.950800i $$0.600264\pi$$
$$734$$ 6.93948 + 15.1953i 0.256141 + 0.560870i
$$735$$ −0.407605 −0.0150348
$$736$$ 3.32398 3.45705i 0.122523 0.127428i
$$737$$ 80.8007 2.97633
$$738$$ 2.19894 + 4.81500i 0.0809441 + 0.177243i
$$739$$ 11.5414 3.38886i 0.424557 0.124661i −0.0624723 0.998047i $$-0.519899\pi$$
0.487030 + 0.873385i $$0.338080\pi$$
$$740$$ 0.596719 0.688650i 0.0219358 0.0253153i
$$741$$ 28.4083 + 18.2569i 1.04361 + 0.670685i
$$742$$ 7.19129 + 8.29919i 0.264001 + 0.304673i
$$743$$ 1.44897 + 10.0778i 0.0531576 + 0.369719i 0.998985 + 0.0450487i $$0.0143443\pi$$
−0.945827 + 0.324670i $$0.894747\pi$$
$$744$$ 1.12671 + 0.330833i 0.0413073 + 0.0121289i
$$745$$ −5.03641 + 3.23670i −0.184520 + 0.118584i
$$746$$ −4.72820 + 32.8854i −0.173112 + 1.20402i
$$747$$ 1.09711 2.40235i 0.0401413 0.0878972i
$$748$$ 1.79652 3.93383i 0.0656872 0.143835i
$$749$$ 4.96821 34.5547i 0.181534 1.26260i
$$750$$ −9.81536 + 6.30795i −0.358406 + 0.230334i
$$751$$ 8.70241 + 2.55526i 0.317555 + 0.0932427i 0.436626 0.899643i $$-0.356173\pi$$
−0.119071 + 0.992886i $$0.537992\pi$$
$$752$$ 1.80450 + 12.5506i 0.0658035 + 0.457673i
$$753$$ 11.5181 + 13.2927i 0.419745 + 0.484411i
$$754$$ −12.6333 8.11890i −0.460076 0.295673i
$$755$$ 16.1013 18.5819i 0.585985 0.676263i
$$756$$ 2.48926 0.730913i 0.0905336 0.0265831i
$$757$$ 7.27301 + 15.9257i 0.264342 + 0.578829i 0.994534 0.104414i $$-0.0332966\pi$$
−0.730192 + 0.683242i $$0.760569\pi$$
$$758$$ 8.45299 0.307026
$$759$$ −2.18271 23.9140i −0.0792274 0.868023i
$$760$$ −10.5958 −0.384348
$$761$$ −10.3746 22.7172i −0.376080 0.823499i −0.999146 0.0413301i $$-0.986840\pi$$
0.623066 0.782169i $$-0.285887\pi$$
$$762$$ −6.45752 + 1.89610i −0.233931 + 0.0686884i
$$763$$ −8.45386 + 9.75628i −0.306050 + 0.353201i
$$764$$ −14.3117 9.19757i −0.517779 0.332756i
$$765$$ 0.855942 + 0.987809i 0.0309466 + 0.0357143i
$$766$$ 0.626651 + 4.35846i 0.0226418 + 0.157477i
$$767$$ 18.4248 + 5.41000i 0.665280 + 0.195344i
$$768$$ 0.841254 0.540641i 0.0303561 0.0195087i
$$769$$ 1.21150 8.42615i 0.0436877 0.303855i −0.956248 0.292556i $$-0.905494\pi$$
0.999936 0.0112988i $$-0.00359661\pi$$
$$770$$