Properties

Label 138.2.e.a.31.1
Level $138$
Weight $2$
Character 138.31
Analytic conductor $1.102$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [138,2,Mod(13,138)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(138, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("138.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 138.e (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.10193554789\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 31.1
Root \(0.142315 - 0.989821i\) of defining polynomial
Character \(\chi\) \(=\) 138.31
Dual form 138.2.e.a.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.142315 + 0.989821i) q^{2} +(0.415415 + 0.909632i) q^{3} +(-0.959493 - 0.281733i) q^{4} +(1.69894 + 1.96068i) q^{5} +(-0.959493 + 0.281733i) q^{6} +(-1.04019 - 0.668491i) q^{7} +(0.415415 - 0.909632i) q^{8} +(-0.654861 + 0.755750i) q^{9} +O(q^{10})\) \(q+(-0.142315 + 0.989821i) q^{2} +(0.415415 + 0.909632i) q^{3} +(-0.959493 - 0.281733i) q^{4} +(1.69894 + 1.96068i) q^{5} +(-0.959493 + 0.281733i) q^{6} +(-1.04019 - 0.668491i) q^{7} +(0.415415 - 0.909632i) q^{8} +(-0.654861 + 0.755750i) q^{9} +(-2.18251 + 1.40261i) q^{10} +(0.0886578 + 0.616629i) q^{11} +(-0.142315 - 0.989821i) q^{12} +(-1.11435 + 0.716152i) q^{13} +(0.809721 - 0.934468i) q^{14} +(-1.07773 + 2.35990i) q^{15} +(0.841254 + 0.540641i) q^{16} +(4.51691 - 1.32628i) q^{17} +(-0.654861 - 0.755750i) q^{18} +(-3.63667 - 1.06782i) q^{19} +(-1.07773 - 2.35990i) q^{20} +(0.175969 - 1.22389i) q^{21} -0.622970 q^{22} +(3.35197 - 3.42992i) q^{23} +1.00000 q^{24} +(-0.246298 + 1.71304i) q^{25} +(-0.550273 - 1.20493i) q^{26} +(-0.959493 - 0.281733i) q^{27} +(0.809721 + 0.934468i) q^{28} +(1.06699 - 0.313298i) q^{29} +(-2.18251 - 1.40261i) q^{30} +(3.92849 - 8.60219i) q^{31} +(-0.654861 + 0.755750i) q^{32} +(-0.524075 + 0.336803i) q^{33} +(0.669961 + 4.65968i) q^{34} +(-0.456526 - 3.17521i) q^{35} +(0.841254 - 0.540641i) q^{36} +(1.06560 - 1.22977i) q^{37} +(1.57450 - 3.44768i) q^{38} +(-1.11435 - 0.716152i) q^{39} +(2.48926 - 0.730913i) q^{40} +(7.75992 + 8.95543i) q^{41} +(1.18639 + 0.348356i) q^{42} +(-0.697393 - 1.52708i) q^{43} +(0.0886578 - 0.616629i) q^{44} -2.59435 q^{45} +(2.91797 + 3.80598i) q^{46} -6.94494 q^{47} +(-0.142315 + 0.989821i) q^{48} +(-2.27279 - 4.97671i) q^{49} +(-1.66055 - 0.487583i) q^{50} +(3.08282 + 3.55777i) q^{51} +(1.27098 - 0.373193i) q^{52} +(-9.46721 - 6.08421i) q^{53} +(0.415415 - 0.909632i) q^{54} +(-1.05839 + 1.22144i) q^{55} +(-1.04019 + 0.668491i) q^{56} +(-0.539401 - 3.75162i) q^{57} +(0.158260 + 1.10072i) q^{58} +(-8.19910 + 5.26924i) q^{59} +(1.69894 - 1.96068i) q^{60} +(-5.97099 + 13.0746i) q^{61} +(7.95555 + 5.11272i) q^{62} +(1.18639 - 0.348356i) q^{63} +(-0.654861 - 0.755750i) q^{64} +(-3.29736 - 0.968193i) q^{65} +(-0.258791 - 0.566673i) q^{66} +(0.871145 - 6.05895i) q^{67} -4.70760 q^{68} +(4.51242 + 1.62422i) q^{69} +3.20786 q^{70} +(-0.923986 + 6.42646i) q^{71} +(0.415415 + 0.909632i) q^{72} +(12.5598 + 3.68788i) q^{73} +(1.06560 + 1.22977i) q^{74} +(-1.66055 + 0.487583i) q^{75} +(3.18852 + 2.04913i) q^{76} +(0.319990 - 0.700679i) q^{77} +(0.867451 - 1.00109i) q^{78} +(-10.1643 + 6.53221i) q^{79} +(0.369215 + 2.56794i) q^{80} +(-0.142315 - 0.989821i) q^{81} +(-9.96863 + 6.40645i) q^{82} +(-4.83987 + 5.58551i) q^{83} +(-0.513652 + 1.12474i) q^{84} +(10.2744 + 6.60294i) q^{85} +(1.61078 - 0.472968i) q^{86} +(0.728231 + 0.840423i) q^{87} +(0.597735 + 0.175511i) q^{88} +(1.40618 + 3.07910i) q^{89} +(0.369215 - 2.56794i) q^{90} +1.63788 q^{91} +(-4.18251 + 2.34662i) q^{92} +9.45679 q^{93} +(0.988368 - 6.87425i) q^{94} +(-4.08482 - 8.94450i) q^{95} +(-0.959493 - 0.281733i) q^{96} +(-7.49539 - 8.65015i) q^{97} +(5.24950 - 1.54139i) q^{98} +(-0.524075 - 0.336803i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - q^{3} - q^{4} + 8 q^{5} - q^{6} + 8 q^{7} - q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - q^{2} - q^{3} - q^{4} + 8 q^{5} - q^{6} + 8 q^{7} - q^{8} - q^{9} - 3 q^{10} + 7 q^{11} - q^{12} + 3 q^{13} - 3 q^{14} - 3 q^{15} - q^{16} + 4 q^{17} - q^{18} - 3 q^{20} - 3 q^{21} - 26 q^{22} - 12 q^{23} + 10 q^{24} - 15 q^{25} + 3 q^{26} - q^{27} - 3 q^{28} - 25 q^{29} - 3 q^{30} + 6 q^{31} - q^{32} - 4 q^{33} - 7 q^{34} + 2 q^{35} - q^{36} + 9 q^{37} + 11 q^{38} + 3 q^{39} - 3 q^{40} + 24 q^{41} + 8 q^{42} - 30 q^{43} + 7 q^{44} - 14 q^{45} + 21 q^{46} - 48 q^{47} - q^{48} + 9 q^{49} + 7 q^{50} + 15 q^{51} + 14 q^{52} + 15 q^{53} - q^{54} - 23 q^{55} + 8 q^{56} - 11 q^{57} - 3 q^{58} + 5 q^{59} + 8 q^{60} + 12 q^{61} + 28 q^{62} + 8 q^{63} - q^{64} - 13 q^{65} + 18 q^{66} + 18 q^{67} - 18 q^{68} - q^{69} + 2 q^{70} + 28 q^{71} - q^{72} + 19 q^{73} + 9 q^{74} + 7 q^{75} + 22 q^{76} - 12 q^{77} - 8 q^{78} - 52 q^{79} + 8 q^{80} - q^{81} - 20 q^{82} + 7 q^{83} - 3 q^{84} + 23 q^{85} + 14 q^{86} + 30 q^{87} - 4 q^{88} + 3 q^{89} + 8 q^{90} + 42 q^{91} - 23 q^{92} - 16 q^{93} + 29 q^{94} + 22 q^{95} - q^{96} + 51 q^{97} - 2 q^{98} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/138\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.142315 + 0.989821i −0.100632 + 0.699909i
\(3\) 0.415415 + 0.909632i 0.239840 + 0.525176i
\(4\) −0.959493 0.281733i −0.479746 0.140866i
\(5\) 1.69894 + 1.96068i 0.759788 + 0.876843i 0.995479 0.0949856i \(-0.0302805\pi\)
−0.235690 + 0.971828i \(0.575735\pi\)
\(6\) −0.959493 + 0.281733i −0.391711 + 0.115017i
\(7\) −1.04019 0.668491i −0.393156 0.252666i 0.329096 0.944297i \(-0.393256\pi\)
−0.722251 + 0.691631i \(0.756893\pi\)
\(8\) 0.415415 0.909632i 0.146871 0.321603i
\(9\) −0.654861 + 0.755750i −0.218287 + 0.251917i
\(10\) −2.18251 + 1.40261i −0.690169 + 0.443545i
\(11\) 0.0886578 + 0.616629i 0.0267313 + 0.185921i 0.998812 0.0487255i \(-0.0155160\pi\)
−0.972081 + 0.234646i \(0.924607\pi\)
\(12\) −0.142315 0.989821i −0.0410828 0.285737i
\(13\) −1.11435 + 0.716152i −0.309066 + 0.198625i −0.685974 0.727626i \(-0.740624\pi\)
0.376908 + 0.926251i \(0.376987\pi\)
\(14\) 0.809721 0.934468i 0.216407 0.249747i
\(15\) −1.07773 + 2.35990i −0.278269 + 0.609325i
\(16\) 0.841254 + 0.540641i 0.210313 + 0.135160i
\(17\) 4.51691 1.32628i 1.09551 0.321671i 0.316444 0.948611i \(-0.397511\pi\)
0.779067 + 0.626940i \(0.215693\pi\)
\(18\) −0.654861 0.755750i −0.154352 0.178132i
\(19\) −3.63667 1.06782i −0.834308 0.244975i −0.163442 0.986553i \(-0.552260\pi\)
−0.670867 + 0.741578i \(0.734078\pi\)
\(20\) −1.07773 2.35990i −0.240988 0.527691i
\(21\) 0.175969 1.22389i 0.0383996 0.267075i
\(22\) −0.622970 −0.132818
\(23\) 3.35197 3.42992i 0.698933 0.715187i
\(24\) 1.00000 0.204124
\(25\) −0.246298 + 1.71304i −0.0492597 + 0.342608i
\(26\) −0.550273 1.20493i −0.107917 0.236306i
\(27\) −0.959493 0.281733i −0.184655 0.0542195i
\(28\) 0.809721 + 0.934468i 0.153023 + 0.176598i
\(29\) 1.06699 0.313298i 0.198136 0.0581779i −0.181159 0.983454i \(-0.557985\pi\)
0.379295 + 0.925276i \(0.376167\pi\)
\(30\) −2.18251 1.40261i −0.398469 0.256081i
\(31\) 3.92849 8.60219i 0.705578 1.54500i −0.127497 0.991839i \(-0.540694\pi\)
0.833075 0.553161i \(-0.186578\pi\)
\(32\) −0.654861 + 0.755750i −0.115764 + 0.133599i
\(33\) −0.524075 + 0.336803i −0.0912298 + 0.0586298i
\(34\) 0.669961 + 4.65968i 0.114897 + 0.799129i
\(35\) −0.456526 3.17521i −0.0771670 0.536708i
\(36\) 0.841254 0.540641i 0.140209 0.0901068i
\(37\) 1.06560 1.22977i 0.175183 0.202172i −0.661367 0.750063i \(-0.730023\pi\)
0.836550 + 0.547890i \(0.184569\pi\)
\(38\) 1.57450 3.44768i 0.255418 0.559288i
\(39\) −1.11435 0.716152i −0.178439 0.114676i
\(40\) 2.48926 0.730913i 0.393587 0.115568i
\(41\) 7.75992 + 8.95543i 1.21190 + 1.39860i 0.892540 + 0.450969i \(0.148921\pi\)
0.319357 + 0.947635i \(0.396533\pi\)
\(42\) 1.18639 + 0.348356i 0.183064 + 0.0537526i
\(43\) −0.697393 1.52708i −0.106351 0.232877i 0.848973 0.528436i \(-0.177221\pi\)
−0.955324 + 0.295559i \(0.904494\pi\)
\(44\) 0.0886578 0.616629i 0.0133657 0.0929603i
\(45\) −2.59435 −0.386743
\(46\) 2.91797 + 3.80598i 0.430231 + 0.561161i
\(47\) −6.94494 −1.01302 −0.506512 0.862233i \(-0.669065\pi\)
−0.506512 + 0.862233i \(0.669065\pi\)
\(48\) −0.142315 + 0.989821i −0.0205414 + 0.142868i
\(49\) −2.27279 4.97671i −0.324684 0.710958i
\(50\) −1.66055 0.487583i −0.234838 0.0689546i
\(51\) 3.08282 + 3.55777i 0.431681 + 0.498187i
\(52\) 1.27098 0.373193i 0.176253 0.0517525i
\(53\) −9.46721 6.08421i −1.30042 0.835730i −0.307163 0.951657i \(-0.599380\pi\)
−0.993258 + 0.115927i \(0.963016\pi\)
\(54\) 0.415415 0.909632i 0.0565308 0.123785i
\(55\) −1.05839 + 1.22144i −0.142713 + 0.164699i
\(56\) −1.04019 + 0.668491i −0.139002 + 0.0893309i
\(57\) −0.539401 3.75162i −0.0714454 0.496914i
\(58\) 0.158260 + 1.10072i 0.0207805 + 0.144532i
\(59\) −8.19910 + 5.26924i −1.06743 + 0.685997i −0.951621 0.307274i \(-0.900583\pi\)
−0.115811 + 0.993271i \(0.536947\pi\)
\(60\) 1.69894 1.96068i 0.219332 0.253123i
\(61\) −5.97099 + 13.0746i −0.764507 + 1.67404i −0.0261214 + 0.999659i \(0.508316\pi\)
−0.738386 + 0.674379i \(0.764412\pi\)
\(62\) 7.95555 + 5.11272i 1.01036 + 0.649317i
\(63\) 1.18639 0.348356i 0.149471 0.0438888i
\(64\) −0.654861 0.755750i −0.0818576 0.0944687i
\(65\) −3.29736 0.968193i −0.408988 0.120090i
\(66\) −0.258791 0.566673i −0.0318550 0.0697526i
\(67\) 0.871145 6.05895i 0.106427 0.740218i −0.864809 0.502101i \(-0.832561\pi\)
0.971236 0.238117i \(-0.0765303\pi\)
\(68\) −4.70760 −0.570880
\(69\) 4.51242 + 1.62422i 0.543231 + 0.195533i
\(70\) 3.20786 0.383413
\(71\) −0.923986 + 6.42646i −0.109657 + 0.762681i 0.858586 + 0.512669i \(0.171343\pi\)
−0.968243 + 0.250011i \(0.919566\pi\)
\(72\) 0.415415 + 0.909632i 0.0489571 + 0.107201i
\(73\) 12.5598 + 3.68788i 1.47001 + 0.431634i 0.916102 0.400944i \(-0.131318\pi\)
0.553907 + 0.832578i \(0.313136\pi\)
\(74\) 1.06560 + 1.22977i 0.123873 + 0.142957i
\(75\) −1.66055 + 0.487583i −0.191744 + 0.0563012i
\(76\) 3.18852 + 2.04913i 0.365748 + 0.235052i
\(77\) 0.319990 0.700679i 0.0364662 0.0798498i
\(78\) 0.867451 1.00109i 0.0982195 0.113351i
\(79\) −10.1643 + 6.53221i −1.14357 + 0.734931i −0.968350 0.249598i \(-0.919702\pi\)
−0.175225 + 0.984528i \(0.556065\pi\)
\(80\) 0.369215 + 2.56794i 0.0412795 + 0.287105i
\(81\) −0.142315 0.989821i −0.0158128 0.109980i
\(82\) −9.96863 + 6.40645i −1.10085 + 0.707474i
\(83\) −4.83987 + 5.58551i −0.531245 + 0.613089i −0.956410 0.292027i \(-0.905670\pi\)
0.425166 + 0.905116i \(0.360216\pi\)
\(84\) −0.513652 + 1.12474i −0.0560440 + 0.122719i
\(85\) 10.2744 + 6.60294i 1.11441 + 0.716189i
\(86\) 1.61078 0.472968i 0.173695 0.0510015i
\(87\) 0.728231 + 0.840423i 0.0780746 + 0.0901028i
\(88\) 0.597735 + 0.175511i 0.0637188 + 0.0187095i
\(89\) 1.40618 + 3.07910i 0.149055 + 0.326384i 0.969401 0.245483i \(-0.0789466\pi\)
−0.820346 + 0.571867i \(0.806219\pi\)
\(90\) 0.369215 2.56794i 0.0389186 0.270685i
\(91\) 1.63788 0.171697
\(92\) −4.18251 + 2.34662i −0.436057 + 0.244652i
\(93\) 9.45679 0.980623
\(94\) 0.988368 6.87425i 0.101942 0.709025i
\(95\) −4.08482 8.94450i −0.419093 0.917686i
\(96\) −0.959493 0.281733i −0.0979278 0.0287542i
\(97\) −7.49539 8.65015i −0.761042 0.878289i 0.234548 0.972105i \(-0.424639\pi\)
−0.995590 + 0.0938155i \(0.970094\pi\)
\(98\) 5.24950 1.54139i 0.530280 0.155704i
\(99\) −0.524075 0.336803i −0.0526716 0.0338500i
\(100\) 0.718941 1.57426i 0.0718941 0.157426i
\(101\) 1.16810 1.34806i 0.116230 0.134137i −0.694653 0.719345i \(-0.744442\pi\)
0.810883 + 0.585208i \(0.198987\pi\)
\(102\) −3.96028 + 2.54512i −0.392127 + 0.252004i
\(103\) −2.82502 19.6484i −0.278357 1.93602i −0.345830 0.938297i \(-0.612403\pi\)
0.0674723 0.997721i \(-0.478507\pi\)
\(104\) 0.188515 + 1.31115i 0.0184854 + 0.128569i
\(105\) 2.69862 1.73430i 0.263359 0.169250i
\(106\) 7.36960 8.50497i 0.715799 0.826076i
\(107\) −1.81089 + 3.96529i −0.175065 + 0.383339i −0.976742 0.214419i \(-0.931214\pi\)
0.801677 + 0.597758i \(0.203941\pi\)
\(108\) 0.841254 + 0.540641i 0.0809497 + 0.0520232i
\(109\) −6.20349 + 1.82151i −0.594186 + 0.174469i −0.564980 0.825105i \(-0.691116\pi\)
−0.0292063 + 0.999573i \(0.509298\pi\)
\(110\) −1.05839 1.22144i −0.100913 0.116460i
\(111\) 1.56130 + 0.458439i 0.148192 + 0.0435131i
\(112\) −0.513652 1.12474i −0.0485355 0.106278i
\(113\) 0.193894 1.34856i 0.0182400 0.126862i −0.978667 0.205453i \(-0.934133\pi\)
0.996907 + 0.0785914i \(0.0250422\pi\)
\(114\) 3.79020 0.354984
\(115\) 12.4198 + 0.744916i 1.15815 + 0.0694638i
\(116\) −1.11204 −0.103250
\(117\) 0.188515 1.31115i 0.0174282 0.121216i
\(118\) −4.04875 8.86554i −0.372718 0.816139i
\(119\) −5.58506 1.63992i −0.511982 0.150331i
\(120\) 1.69894 + 1.96068i 0.155091 + 0.178985i
\(121\) 10.1821 2.98972i 0.925641 0.271793i
\(122\) −12.0918 7.77093i −1.09474 0.703547i
\(123\) −4.92256 + 10.7789i −0.443852 + 0.971900i
\(124\) −6.19288 + 7.14696i −0.556137 + 0.641816i
\(125\) 7.13536 4.58562i 0.638206 0.410150i
\(126\) 0.175969 + 1.22389i 0.0156766 + 0.109033i
\(127\) −0.491724 3.42002i −0.0436335 0.303478i −0.999938 0.0111061i \(-0.996465\pi\)
0.956305 0.292371i \(-0.0944444\pi\)
\(128\) 0.841254 0.540641i 0.0743570 0.0477863i
\(129\) 1.09937 1.26874i 0.0967942 0.111706i
\(130\) 1.42760 3.12601i 0.125209 0.274169i
\(131\) 15.9396 + 10.2437i 1.39265 + 0.895000i 0.999698 0.0245608i \(-0.00781872\pi\)
0.392948 + 0.919561i \(0.371455\pi\)
\(132\) 0.597735 0.175511i 0.0520262 0.0152763i
\(133\) 3.06900 + 3.54182i 0.266116 + 0.307115i
\(134\) 5.87330 + 1.72456i 0.507376 + 0.148979i
\(135\) −1.07773 2.35990i −0.0927564 0.203108i
\(136\) 0.669961 4.65968i 0.0574487 0.399564i
\(137\) −11.3960 −0.973629 −0.486815 0.873505i \(-0.661841\pi\)
−0.486815 + 0.873505i \(0.661841\pi\)
\(138\) −2.24987 + 4.23534i −0.191522 + 0.360536i
\(139\) 5.30267 0.449766 0.224883 0.974386i \(-0.427800\pi\)
0.224883 + 0.974386i \(0.427800\pi\)
\(140\) −0.456526 + 3.17521i −0.0385835 + 0.268354i
\(141\) −2.88503 6.31734i −0.242964 0.532016i
\(142\) −6.22955 1.82916i −0.522772 0.153500i
\(143\) −0.540396 0.623650i −0.0451902 0.0521522i
\(144\) −0.959493 + 0.281733i −0.0799577 + 0.0234777i
\(145\) 2.42703 + 1.55976i 0.201554 + 0.129531i
\(146\) −5.43779 + 11.9071i −0.450034 + 0.985438i
\(147\) 3.58282 4.13480i 0.295506 0.341032i
\(148\) −1.36890 + 0.879739i −0.112523 + 0.0723141i
\(149\) −1.96659 13.6779i −0.161109 1.12054i −0.896548 0.442947i \(-0.853933\pi\)
0.735439 0.677591i \(-0.236976\pi\)
\(150\) −0.246298 1.71304i −0.0201102 0.139869i
\(151\) −4.57223 + 2.93840i −0.372083 + 0.239123i −0.713296 0.700863i \(-0.752799\pi\)
0.341213 + 0.939986i \(0.389162\pi\)
\(152\) −2.48205 + 2.86444i −0.201321 + 0.232337i
\(153\) −1.95561 + 4.28218i −0.158101 + 0.346194i
\(154\) 0.648008 + 0.416450i 0.0522180 + 0.0335585i
\(155\) 23.5404 6.91209i 1.89081 0.555192i
\(156\) 0.867451 + 1.00109i 0.0694517 + 0.0801515i
\(157\) −5.06808 1.48812i −0.404477 0.118765i 0.0731647 0.997320i \(-0.476690\pi\)
−0.477642 + 0.878555i \(0.658508\pi\)
\(158\) −5.01919 10.9905i −0.399305 0.874356i
\(159\) 1.60157 11.1391i 0.127013 0.883392i
\(160\) −2.59435 −0.205101
\(161\) −5.77956 + 1.32701i −0.455493 + 0.104583i
\(162\) 1.00000 0.0785674
\(163\) −1.29373 + 8.99811i −0.101333 + 0.704786i 0.874301 + 0.485383i \(0.161320\pi\)
−0.975634 + 0.219403i \(0.929589\pi\)
\(164\) −4.92256 10.7789i −0.384387 0.841690i
\(165\) −1.55073 0.455337i −0.120725 0.0354479i
\(166\) −4.83987 5.58551i −0.375647 0.433519i
\(167\) −2.76133 + 0.810798i −0.213678 + 0.0627415i −0.386819 0.922155i \(-0.626426\pi\)
0.173142 + 0.984897i \(0.444608\pi\)
\(168\) −1.04019 0.668491i −0.0802526 0.0515752i
\(169\) −4.67148 + 10.2291i −0.359345 + 0.786856i
\(170\) −7.99792 + 9.23009i −0.613413 + 0.707916i
\(171\) 3.18852 2.04913i 0.243832 0.156701i
\(172\) 0.238916 + 1.66170i 0.0182172 + 0.126703i
\(173\) −1.94440 13.5236i −0.147830 1.02818i −0.919762 0.392477i \(-0.871618\pi\)
0.771932 0.635705i \(-0.219291\pi\)
\(174\) −0.935507 + 0.601214i −0.0709206 + 0.0455779i
\(175\) 1.40135 1.61725i 0.105932 0.122252i
\(176\) −0.258791 + 0.566673i −0.0195071 + 0.0427146i
\(177\) −8.19910 5.26924i −0.616282 0.396060i
\(178\) −3.24788 + 0.953664i −0.243439 + 0.0714801i
\(179\) 13.3589 + 15.4169i 0.998488 + 1.15232i 0.988324 + 0.152369i \(0.0486901\pi\)
0.0101646 + 0.999948i \(0.496764\pi\)
\(180\) 2.48926 + 0.730913i 0.185539 + 0.0544791i
\(181\) 3.96163 + 8.67476i 0.294466 + 0.644790i 0.997816 0.0660534i \(-0.0210408\pi\)
−0.703350 + 0.710843i \(0.748313\pi\)
\(182\) −0.233095 + 1.62121i −0.0172782 + 0.120172i
\(183\) −14.3736 −1.06252
\(184\) −1.72750 4.47389i −0.127353 0.329820i
\(185\) 4.22157 0.310376
\(186\) −1.34584 + 9.36053i −0.0986818 + 0.686347i
\(187\) 1.21828 + 2.66767i 0.0890897 + 0.195079i
\(188\) 6.66362 + 1.95662i 0.485995 + 0.142701i
\(189\) 0.809721 + 0.934468i 0.0588986 + 0.0679726i
\(190\) 9.43479 2.77030i 0.684471 0.200979i
\(191\) 1.34015 + 0.861261i 0.0969697 + 0.0623186i 0.588227 0.808696i \(-0.299826\pi\)
−0.491257 + 0.871014i \(0.663463\pi\)
\(192\) 0.415415 0.909632i 0.0299800 0.0656470i
\(193\) −11.5112 + 13.2847i −0.828597 + 0.956252i −0.999579 0.0290223i \(-0.990761\pi\)
0.170982 + 0.985274i \(0.445306\pi\)
\(194\) 9.62880 6.18806i 0.691308 0.444277i
\(195\) −0.489075 3.40159i −0.0350234 0.243593i
\(196\) 0.778622 + 5.41543i 0.0556158 + 0.386817i
\(197\) 1.02768 0.660450i 0.0732191 0.0470551i −0.503519 0.863984i \(-0.667962\pi\)
0.576738 + 0.816929i \(0.304325\pi\)
\(198\) 0.407958 0.470809i 0.0289923 0.0334589i
\(199\) −0.0416361 + 0.0911703i −0.00295150 + 0.00646289i −0.911102 0.412181i \(-0.864767\pi\)
0.908151 + 0.418644i \(0.137494\pi\)
\(200\) 1.45592 + 0.935664i 0.102949 + 0.0661615i
\(201\) 5.87330 1.72456i 0.414271 0.121641i
\(202\) 1.16810 + 1.34806i 0.0821873 + 0.0948491i
\(203\) −1.31932 0.387386i −0.0925978 0.0271892i
\(204\) −1.95561 4.28218i −0.136920 0.299813i
\(205\) −4.37510 + 30.4295i −0.305570 + 2.12529i
\(206\) 19.8505 1.38305
\(207\) 0.397086 + 4.77936i 0.0275994 + 0.332189i
\(208\) −1.32463 −0.0918469
\(209\) 0.336030 2.33714i 0.0232437 0.161664i
\(210\) 1.33259 + 2.91797i 0.0919577 + 0.201359i
\(211\) 16.0208 + 4.70412i 1.10291 + 0.323845i 0.782010 0.623266i \(-0.214195\pi\)
0.320905 + 0.947111i \(0.396013\pi\)
\(212\) 7.36960 + 8.50497i 0.506146 + 0.584124i
\(213\) −6.22955 + 1.82916i −0.426842 + 0.125332i
\(214\) −3.66721 2.35677i −0.250685 0.161106i
\(215\) 1.80928 3.96177i 0.123392 0.270191i
\(216\) −0.654861 + 0.755750i −0.0445576 + 0.0514222i
\(217\) −9.83687 + 6.32178i −0.667771 + 0.429150i
\(218\) −0.920120 6.39957i −0.0623184 0.433434i
\(219\) 1.86290 + 12.9568i 0.125883 + 0.875537i
\(220\) 1.35964 0.873785i 0.0916666 0.0589106i
\(221\) −4.08361 + 4.71274i −0.274694 + 0.317013i
\(222\) −0.675969 + 1.48017i −0.0453681 + 0.0993423i
\(223\) 15.3177 + 9.84407i 1.02575 + 0.659207i 0.941422 0.337231i \(-0.109490\pi\)
0.0843248 + 0.996438i \(0.473127\pi\)
\(224\) 1.18639 0.348356i 0.0792692 0.0232755i
\(225\) −1.13334 1.30794i −0.0755560 0.0871963i
\(226\) 1.30724 + 0.383840i 0.0869563 + 0.0255327i
\(227\) 6.64052 + 14.5407i 0.440747 + 0.965101i 0.991461 + 0.130407i \(0.0416283\pi\)
−0.550714 + 0.834694i \(0.685644\pi\)
\(228\) −0.539401 + 3.75162i −0.0357227 + 0.248457i
\(229\) −17.7317 −1.17174 −0.585872 0.810404i \(-0.699248\pi\)
−0.585872 + 0.810404i \(0.699248\pi\)
\(230\) −2.50485 + 12.1873i −0.165165 + 0.803608i
\(231\) 0.770289 0.0506813
\(232\) 0.158260 1.10072i 0.0103903 0.0722658i
\(233\) −3.88183 8.50002i −0.254307 0.556855i 0.738819 0.673904i \(-0.235384\pi\)
−0.993126 + 0.117049i \(0.962657\pi\)
\(234\) 1.27098 + 0.373193i 0.0830864 + 0.0243964i
\(235\) −11.7990 13.6168i −0.769684 0.888263i
\(236\) 9.35150 2.74585i 0.608731 0.178739i
\(237\) −10.1643 6.53221i −0.660243 0.424312i
\(238\) 2.41807 5.29483i 0.156740 0.343213i
\(239\) 3.28022 3.78558i 0.212180 0.244869i −0.639676 0.768644i \(-0.720932\pi\)
0.851856 + 0.523776i \(0.175477\pi\)
\(240\) −2.18251 + 1.40261i −0.140880 + 0.0905382i
\(241\) −2.07440 14.4278i −0.133624 0.929375i −0.940775 0.339031i \(-0.889901\pi\)
0.807151 0.590345i \(-0.201008\pi\)
\(242\) 1.51023 + 10.5039i 0.0970814 + 0.675216i
\(243\) 0.841254 0.540641i 0.0539664 0.0346821i
\(244\) 9.41268 10.8628i 0.602585 0.695420i
\(245\) 5.89640 12.9113i 0.376707 0.824874i
\(246\) −9.96863 6.40645i −0.635577 0.408460i
\(247\) 4.81725 1.41447i 0.306515 0.0900008i
\(248\) −6.19288 7.14696i −0.393248 0.453833i
\(249\) −7.09131 2.08220i −0.449394 0.131954i
\(250\) 3.52348 + 7.71534i 0.222844 + 0.487961i
\(251\) 2.66634 18.5448i 0.168298 1.17054i −0.714103 0.700041i \(-0.753165\pi\)
0.882401 0.470499i \(-0.155926\pi\)
\(252\) −1.23648 −0.0778908
\(253\) 2.41216 + 1.76283i 0.151651 + 0.110828i
\(254\) 3.45519 0.216798
\(255\) −1.73811 + 12.0889i −0.108845 + 0.757033i
\(256\) 0.415415 + 0.909632i 0.0259634 + 0.0568520i
\(257\) 1.67895 + 0.492983i 0.104730 + 0.0307514i 0.333678 0.942687i \(-0.391710\pi\)
−0.228948 + 0.973439i \(0.573529\pi\)
\(258\) 1.09937 + 1.26874i 0.0684438 + 0.0789884i
\(259\) −1.93052 + 0.566850i −0.119956 + 0.0352224i
\(260\) 2.89102 + 1.85795i 0.179294 + 0.115225i
\(261\) −0.461958 + 1.01155i −0.0285945 + 0.0626132i
\(262\) −12.4079 + 14.3195i −0.766563 + 0.884661i
\(263\) −14.0110 + 9.00435i −0.863958 + 0.555232i −0.895899 0.444258i \(-0.853467\pi\)
0.0319412 + 0.999490i \(0.489831\pi\)
\(264\) 0.0886578 + 0.616629i 0.00545651 + 0.0379509i
\(265\) −4.15503 28.8989i −0.255241 1.77524i
\(266\) −3.94253 + 2.53371i −0.241732 + 0.155352i
\(267\) −2.21670 + 2.55821i −0.135660 + 0.156560i
\(268\) −2.54286 + 5.56809i −0.155330 + 0.340125i
\(269\) −22.4639 14.4367i −1.36965 0.880219i −0.370823 0.928703i \(-0.620924\pi\)
−0.998824 + 0.0484848i \(0.984561\pi\)
\(270\) 2.48926 0.730913i 0.151492 0.0444820i
\(271\) −17.6209 20.3356i −1.07039 1.23530i −0.970703 0.240283i \(-0.922760\pi\)
−0.0996919 0.995018i \(-0.531786\pi\)
\(272\) 4.51691 + 1.32628i 0.273878 + 0.0804178i
\(273\) 0.680401 + 1.48987i 0.0411798 + 0.0901711i
\(274\) 1.62183 11.2800i 0.0979781 0.681452i
\(275\) −1.07815 −0.0650147
\(276\) −3.87204 2.82972i −0.233069 0.170329i
\(277\) −2.13714 −0.128408 −0.0642042 0.997937i \(-0.520451\pi\)
−0.0642042 + 0.997937i \(0.520451\pi\)
\(278\) −0.754648 + 5.24869i −0.0452608 + 0.314796i
\(279\) 3.92849 + 8.60219i 0.235193 + 0.515000i
\(280\) −3.07792 0.903759i −0.183941 0.0540099i
\(281\) 18.1958 + 20.9990i 1.08547 + 1.25270i 0.965635 + 0.259902i \(0.0836904\pi\)
0.119833 + 0.992794i \(0.461764\pi\)
\(282\) 6.66362 1.95662i 0.396813 0.116515i
\(283\) 19.7538 + 12.6950i 1.17424 + 0.754638i 0.974319 0.225174i \(-0.0722950\pi\)
0.199921 + 0.979812i \(0.435931\pi\)
\(284\) 2.69710 5.90583i 0.160043 0.350446i
\(285\) 6.43931 7.43136i 0.381432 0.440196i
\(286\) 0.694209 0.446141i 0.0410494 0.0263809i
\(287\) −2.08519 14.5028i −0.123085 0.856074i
\(288\) −0.142315 0.989821i −0.00838598 0.0583258i
\(289\) 4.34212 2.79051i 0.255419 0.164148i
\(290\) −1.88929 + 2.18035i −0.110943 + 0.128035i
\(291\) 4.75475 10.4114i 0.278728 0.610330i
\(292\) −11.0120 7.07699i −0.644429 0.414150i
\(293\) 18.2115 5.34738i 1.06393 0.312398i 0.297496 0.954723i \(-0.403848\pi\)
0.766432 + 0.642325i \(0.222030\pi\)
\(294\) 3.58282 + 4.13480i 0.208954 + 0.241146i
\(295\) −24.2611 7.12369i −1.41253 0.414757i
\(296\) −0.675969 1.48017i −0.0392899 0.0860329i
\(297\) 0.0886578 0.616629i 0.00514445 0.0357804i
\(298\) 13.8186 0.800488
\(299\) −1.27894 + 6.22266i −0.0739628 + 0.359865i
\(300\) 1.73066 0.0999196
\(301\) −0.295415 + 2.05465i −0.0170274 + 0.118428i
\(302\) −2.25779 4.94387i −0.129921 0.284488i
\(303\) 1.71148 + 0.502537i 0.0983222 + 0.0288700i
\(304\) −2.48205 2.86444i −0.142355 0.164287i
\(305\) −35.7796 + 10.5058i −2.04873 + 0.601562i
\(306\) −3.96028 2.54512i −0.226394 0.145495i
\(307\) 6.19445 13.5640i 0.353536 0.774136i −0.646402 0.762997i \(-0.723727\pi\)
0.999938 0.0111390i \(-0.00354572\pi\)
\(308\) −0.504432 + 0.582145i −0.0287427 + 0.0331708i
\(309\) 16.6993 10.7320i 0.949990 0.610521i
\(310\) 3.49158 + 24.2845i 0.198309 + 1.37927i
\(311\) 0.752614 + 5.23455i 0.0426769 + 0.296824i 0.999970 + 0.00770598i \(0.00245292\pi\)
−0.957293 + 0.289118i \(0.906638\pi\)
\(312\) −1.11435 + 0.716152i −0.0630879 + 0.0405441i
\(313\) 5.80888 6.70380i 0.328337 0.378921i −0.567448 0.823410i \(-0.692069\pi\)
0.895785 + 0.444488i \(0.146614\pi\)
\(314\) 2.19424 4.80472i 0.123828 0.271146i
\(315\) 2.69862 + 1.73430i 0.152050 + 0.0977168i
\(316\) 11.5929 3.40399i 0.652153 0.191489i
\(317\) −1.99059 2.29726i −0.111802 0.129027i 0.697090 0.716984i \(-0.254478\pi\)
−0.808892 + 0.587957i \(0.799932\pi\)
\(318\) 10.7978 + 3.17053i 0.605513 + 0.177795i
\(319\) 0.287786 + 0.630163i 0.0161129 + 0.0352823i
\(320\) 0.369215 2.56794i 0.0206397 0.143552i
\(321\) −4.35922 −0.243308
\(322\) −0.490989 5.90958i −0.0273617 0.329328i
\(323\) −17.8427 −0.992795
\(324\) −0.142315 + 0.989821i −0.00790638 + 0.0549901i
\(325\) −0.952335 2.08532i −0.0528260 0.115673i
\(326\) −8.72240 2.56113i −0.483089 0.141848i
\(327\) −4.23392 4.88621i −0.234137 0.270208i
\(328\) 11.3697 3.33846i 0.627789 0.184335i
\(329\) 7.22407 + 4.64263i 0.398276 + 0.255957i
\(330\) 0.671395 1.47015i 0.0369591 0.0809290i
\(331\) −1.07480 + 1.24038i −0.0590762 + 0.0681776i −0.784518 0.620105i \(-0.787090\pi\)
0.725442 + 0.688283i \(0.241635\pi\)
\(332\) 6.21744 3.99571i 0.341226 0.219293i
\(333\) 0.231577 + 1.61065i 0.0126903 + 0.0882632i
\(334\) −0.409568 2.84861i −0.0224106 0.155869i
\(335\) 13.3597 8.58574i 0.729917 0.469089i
\(336\) 0.809721 0.934468i 0.0441739 0.0509794i
\(337\) 7.46526 16.3466i 0.406659 0.890458i −0.589893 0.807481i \(-0.700830\pi\)
0.996551 0.0829766i \(-0.0264427\pi\)
\(338\) −9.46018 6.07969i −0.514566 0.330692i
\(339\) 1.30724 0.383840i 0.0709995 0.0208473i
\(340\) −7.99792 9.23009i −0.433748 0.500572i
\(341\) 5.65265 + 1.65977i 0.306108 + 0.0898815i
\(342\) 1.57450 + 3.44768i 0.0851394 + 0.186429i
\(343\) −2.19453 + 15.2633i −0.118494 + 0.824142i
\(344\) −1.67879 −0.0905140
\(345\) 4.48175 + 11.6069i 0.241289 + 0.624892i
\(346\) 13.6627 0.734511
\(347\) −0.0317652 + 0.220932i −0.00170524 + 0.0118602i −0.990656 0.136382i \(-0.956452\pi\)
0.988951 + 0.148242i \(0.0473616\pi\)
\(348\) −0.461958 1.01155i −0.0247635 0.0542246i
\(349\) 19.4199 + 5.70221i 1.03953 + 0.305232i 0.756578 0.653903i \(-0.226870\pi\)
0.282947 + 0.959136i \(0.408688\pi\)
\(350\) 1.40135 + 1.61725i 0.0749054 + 0.0864454i
\(351\) 1.27098 0.373193i 0.0678398 0.0199196i
\(352\) −0.524075 0.336803i −0.0279333 0.0179516i
\(353\) 7.89861 17.2956i 0.420401 0.920549i −0.574387 0.818584i \(-0.694760\pi\)
0.994788 0.101966i \(-0.0325131\pi\)
\(354\) 6.38246 7.36575i 0.339224 0.391485i
\(355\) −14.1700 + 9.10652i −0.752067 + 0.483324i
\(356\) −0.481735 3.35054i −0.0255319 0.177578i
\(357\) −0.828393 5.76160i −0.0438432 0.304936i
\(358\) −17.1612 + 11.0288i −0.906997 + 0.582892i
\(359\) −3.36334 + 3.88150i −0.177510 + 0.204858i −0.837531 0.546389i \(-0.816002\pi\)
0.660021 + 0.751247i \(0.270547\pi\)
\(360\) −1.07773 + 2.35990i −0.0568015 + 0.124378i
\(361\) −3.89872 2.50556i −0.205196 0.131871i
\(362\) −9.15026 + 2.68676i −0.480927 + 0.141213i
\(363\) 6.94932 + 8.01995i 0.364745 + 0.420938i
\(364\) −1.57154 0.461445i −0.0823709 0.0241863i
\(365\) 14.1075 + 30.8912i 0.738422 + 1.61692i
\(366\) 2.04557 14.2273i 0.106924 0.743671i
\(367\) 24.7772 1.29336 0.646679 0.762762i \(-0.276157\pi\)
0.646679 + 0.762762i \(0.276157\pi\)
\(368\) 4.67421 1.07322i 0.243660 0.0559454i
\(369\) −11.8497 −0.616872
\(370\) −0.600791 + 4.17860i −0.0312337 + 0.217235i
\(371\) 5.78048 + 12.6575i 0.300108 + 0.657144i
\(372\) −9.07372 2.66428i −0.470450 0.138137i
\(373\) −24.3045 28.0489i −1.25844 1.45231i −0.838630 0.544702i \(-0.816643\pi\)
−0.419808 0.907613i \(-0.637903\pi\)
\(374\) −2.81390 + 0.826235i −0.145503 + 0.0427236i
\(375\) 7.13536 + 4.58562i 0.368469 + 0.236800i
\(376\) −2.88503 + 6.31734i −0.148784 + 0.325792i
\(377\) −0.964640 + 1.11325i −0.0496815 + 0.0573355i
\(378\) −1.04019 + 0.668491i −0.0535017 + 0.0343835i
\(379\) 4.43761 + 30.8642i 0.227945 + 1.58539i 0.706747 + 0.707467i \(0.250162\pi\)
−0.478802 + 0.877923i \(0.658929\pi\)
\(380\) 1.39940 + 9.73301i 0.0717875 + 0.499293i
\(381\) 2.90669 1.86802i 0.148914 0.0957013i
\(382\) −1.04322 + 1.20394i −0.0533756 + 0.0615988i
\(383\) −4.80062 + 10.5119i −0.245300 + 0.537132i −0.991732 0.128330i \(-0.959038\pi\)
0.746431 + 0.665462i \(0.231766\pi\)
\(384\) 0.841254 + 0.540641i 0.0429300 + 0.0275895i
\(385\) 1.91745 0.563014i 0.0977223 0.0286939i
\(386\) −11.5112 13.2847i −0.585907 0.676172i
\(387\) 1.61078 + 0.472968i 0.0818807 + 0.0240423i
\(388\) 4.75475 + 10.4114i 0.241386 + 0.528561i
\(389\) −3.38765 + 23.5616i −0.171761 + 1.19462i 0.703402 + 0.710792i \(0.251663\pi\)
−0.875163 + 0.483829i \(0.839246\pi\)
\(390\) 3.43657 0.174017
\(391\) 10.5915 19.9383i 0.535634 1.00832i
\(392\) −5.47112 −0.276333
\(393\) −2.69650 + 18.7545i −0.136020 + 0.946042i
\(394\) 0.507473 + 1.11121i 0.0255661 + 0.0559820i
\(395\) −30.0761 8.83114i −1.51329 0.444343i
\(396\) 0.407958 + 0.470809i 0.0205007 + 0.0236590i
\(397\) 21.2291 6.23343i 1.06546 0.312847i 0.298411 0.954437i \(-0.403543\pi\)
0.767047 + 0.641591i \(0.221725\pi\)
\(398\) −0.0843169 0.0541872i −0.00422642 0.00271616i
\(399\) −1.94684 + 4.26299i −0.0974640 + 0.213416i
\(400\) −1.13334 + 1.30794i −0.0566670 + 0.0653972i
\(401\) −8.99099 + 5.77816i −0.448989 + 0.288548i −0.745530 0.666473i \(-0.767803\pi\)
0.296541 + 0.955020i \(0.404167\pi\)
\(402\) 0.871145 + 6.05895i 0.0434488 + 0.302193i
\(403\) 1.78275 + 12.3993i 0.0888050 + 0.617652i
\(404\) −1.50058 + 0.964362i −0.0746565 + 0.0479788i
\(405\) 1.69894 1.96068i 0.0844209 0.0974270i
\(406\) 0.571201 1.25076i 0.0283482 0.0620740i
\(407\) 0.852783 + 0.548050i 0.0422709 + 0.0271658i
\(408\) 4.51691 1.32628i 0.223620 0.0656608i
\(409\) 10.3992 + 12.0014i 0.514209 + 0.593429i 0.952171 0.305564i \(-0.0988451\pi\)
−0.437962 + 0.898993i \(0.644300\pi\)
\(410\) −29.4971 8.66113i −1.45676 0.427743i
\(411\) −4.73409 10.3662i −0.233515 0.511327i
\(412\) −2.82502 + 19.6484i −0.139179 + 0.968009i
\(413\) 12.0511 0.592995
\(414\) −4.78723 0.287130i −0.235279 0.0141117i
\(415\) −19.1740 −0.941216
\(416\) 0.188515 1.31115i 0.00924272 0.0642845i
\(417\) 2.20281 + 4.82348i 0.107872 + 0.236207i
\(418\) 2.26553 + 0.665220i 0.110811 + 0.0325370i
\(419\) 3.03210 + 3.49923i 0.148128 + 0.170948i 0.824964 0.565185i \(-0.191195\pi\)
−0.676837 + 0.736133i \(0.736650\pi\)
\(420\) −3.07792 + 0.903759i −0.150187 + 0.0440989i
\(421\) −8.84060 5.68151i −0.430865 0.276900i 0.307180 0.951651i \(-0.400614\pi\)
−0.738045 + 0.674751i \(0.764251\pi\)
\(422\) −6.93623 + 15.1882i −0.337650 + 0.739351i
\(423\) 4.54797 5.24864i 0.221130 0.255197i
\(424\) −9.46721 + 6.08421i −0.459768 + 0.295475i
\(425\) 1.15947 + 8.06432i 0.0562427 + 0.391177i
\(426\) −0.923986 6.42646i −0.0447672 0.311363i
\(427\) 14.9513 9.60859i 0.723542 0.464992i
\(428\) 2.85468 3.29448i 0.137986 0.159245i
\(429\) 0.342803 0.750635i 0.0165507 0.0362410i
\(430\) 3.66396 + 2.35468i 0.176692 + 0.113553i
\(431\) −13.0764 + 3.83957i −0.629867 + 0.184946i −0.581058 0.813862i \(-0.697361\pi\)
−0.0488095 + 0.998808i \(0.515543\pi\)
\(432\) −0.654861 0.755750i −0.0315070 0.0363610i
\(433\) 8.26166 + 2.42584i 0.397030 + 0.116579i 0.474152 0.880443i \(-0.342755\pi\)
−0.0771217 + 0.997022i \(0.524573\pi\)
\(434\) −4.85750 10.6364i −0.233167 0.510565i
\(435\) −0.410581 + 2.85566i −0.0196859 + 0.136918i
\(436\) 6.46538 0.309636
\(437\) −15.8525 + 8.89416i −0.758329 + 0.425465i
\(438\) −13.0900 −0.625465
\(439\) 5.27024 36.6553i 0.251535 1.74946i −0.337472 0.941336i \(-0.609572\pi\)
0.589007 0.808128i \(-0.299519\pi\)
\(440\) 0.671395 + 1.47015i 0.0320075 + 0.0700866i
\(441\) 5.24950 + 1.54139i 0.249976 + 0.0733996i
\(442\) −4.08361 4.71274i −0.194238 0.224162i
\(443\) −13.8173 + 4.05713i −0.656481 + 0.192760i −0.592975 0.805221i \(-0.702047\pi\)
−0.0635066 + 0.997981i \(0.520228\pi\)
\(444\) −1.36890 0.879739i −0.0649651 0.0417505i
\(445\) −3.64812 + 7.98827i −0.172938 + 0.378680i
\(446\) −11.9238 + 13.7608i −0.564608 + 0.651593i
\(447\) 11.6249 7.47088i 0.549839 0.353360i
\(448\) 0.175969 + 1.22389i 0.00831377 + 0.0578235i
\(449\) −2.10099 14.6127i −0.0991516 0.689615i −0.977398 0.211407i \(-0.932196\pi\)
0.878247 0.478208i \(-0.158714\pi\)
\(450\) 1.45592 0.935664i 0.0686328 0.0441076i
\(451\) −4.83420 + 5.57896i −0.227633 + 0.262703i
\(452\) −0.565973 + 1.23931i −0.0266211 + 0.0582921i
\(453\) −4.57223 2.93840i −0.214822 0.138058i
\(454\) −15.3378 + 4.50357i −0.719836 + 0.211363i
\(455\) 2.78266 + 3.21136i 0.130453 + 0.150551i
\(456\) −3.63667 1.06782i −0.170302 0.0500053i
\(457\) 2.75189 + 6.02580i 0.128728 + 0.281875i 0.963011 0.269461i \(-0.0868455\pi\)
−0.834283 + 0.551336i \(0.814118\pi\)
\(458\) 2.52348 17.5512i 0.117915 0.820114i
\(459\) −4.70760 −0.219732
\(460\) −11.7068 4.21379i −0.545832 0.196469i
\(461\) 7.35627 0.342616 0.171308 0.985218i \(-0.445201\pi\)
0.171308 + 0.985218i \(0.445201\pi\)
\(462\) −0.109624 + 0.762448i −0.00510015 + 0.0354723i
\(463\) 14.3882 + 31.5059i 0.668678 + 1.46420i 0.874209 + 0.485551i \(0.161381\pi\)
−0.205530 + 0.978651i \(0.565892\pi\)
\(464\) 1.06699 + 0.313298i 0.0495340 + 0.0145445i
\(465\) 16.0665 + 18.5417i 0.745066 + 0.859852i
\(466\) 8.96595 2.63264i 0.415340 0.121955i
\(467\) −11.8642 7.62464i −0.549008 0.352826i 0.236545 0.971621i \(-0.423985\pi\)
−0.785553 + 0.618794i \(0.787621\pi\)
\(468\) −0.550273 + 1.20493i −0.0254364 + 0.0556979i
\(469\) −4.95651 + 5.72012i −0.228870 + 0.264131i
\(470\) 15.1574 9.74106i 0.699158 0.449322i
\(471\) −0.751713 5.22828i −0.0346371 0.240906i
\(472\) 1.38704 + 9.64709i 0.0638438 + 0.444043i
\(473\) 0.879810 0.565420i 0.0404537 0.0259980i
\(474\) 7.91225 9.13122i 0.363422 0.419411i
\(475\) 2.72493 5.96676i 0.125028 0.273774i
\(476\) 4.89681 + 3.14699i 0.224445 + 0.144242i
\(477\) 10.7978 3.17053i 0.494399 0.145169i
\(478\) 3.28022 + 3.78558i 0.150034 + 0.173148i
\(479\) 16.3570 + 4.80286i 0.747372 + 0.219448i 0.633174 0.774010i \(-0.281752\pi\)
0.114198 + 0.993458i \(0.463570\pi\)
\(480\) −1.07773 2.35990i −0.0491915 0.107714i
\(481\) −0.306755 + 2.13353i −0.0139868 + 0.0972804i
\(482\) 14.5761 0.663925
\(483\) −3.60801 4.70601i −0.164170 0.214131i
\(484\) −10.6119 −0.482359
\(485\) 4.22595 29.3921i 0.191891 1.33463i
\(486\) 0.415415 + 0.909632i 0.0188436 + 0.0412617i
\(487\) 11.8285 + 3.47316i 0.536000 + 0.157384i 0.538520 0.842613i \(-0.318984\pi\)
−0.00251946 + 0.999997i \(0.500802\pi\)
\(488\) 9.41268 + 10.8628i 0.426092 + 0.491736i
\(489\) −8.72240 + 2.56113i −0.394441 + 0.115818i
\(490\) 11.9408 + 7.67386i 0.539428 + 0.346670i
\(491\) −2.69768 + 5.90709i −0.121744 + 0.266583i −0.960685 0.277639i \(-0.910448\pi\)
0.838941 + 0.544223i \(0.183175\pi\)
\(492\) 7.75992 8.95543i 0.349844 0.403742i
\(493\) 4.40399 2.83027i 0.198346 0.127469i
\(494\) 0.714509 + 4.96952i 0.0321473 + 0.223589i
\(495\) −0.230010 1.59975i −0.0103382 0.0719035i
\(496\) 7.95555 5.11272i 0.357215 0.229568i
\(497\) 5.25715 6.06708i 0.235816 0.272146i
\(498\) 3.07020 6.72280i 0.137579 0.301256i
\(499\) −11.4414 7.35297i −0.512189 0.329164i 0.258886 0.965908i \(-0.416645\pi\)
−0.771076 + 0.636744i \(0.780281\pi\)
\(500\) −8.13825 + 2.38961i −0.363954 + 0.106866i
\(501\) −1.88462 2.17497i −0.0841988 0.0971706i
\(502\) 17.9766 + 5.27841i 0.802336 + 0.235587i
\(503\) 1.25141 + 2.74021i 0.0557977 + 0.122180i 0.935477 0.353387i \(-0.114970\pi\)
−0.879679 + 0.475567i \(0.842243\pi\)
\(504\) 0.175969 1.22389i 0.00783830 0.0545165i
\(505\) 4.62764 0.205927
\(506\) −2.08817 + 2.13673i −0.0928306 + 0.0949894i
\(507\) −11.2453 −0.499423
\(508\) −0.491724 + 3.42002i −0.0218167 + 0.151739i
\(509\) 17.8751 + 39.1410i 0.792300 + 1.73490i 0.669946 + 0.742410i \(0.266317\pi\)
0.122354 + 0.992486i \(0.460956\pi\)
\(510\) −11.7184 3.44085i −0.518901 0.152363i
\(511\) −10.5993 12.2322i −0.468884 0.541121i
\(512\) −0.959493 + 0.281733i −0.0424040 + 0.0124509i
\(513\) 3.18852 + 2.04913i 0.140776 + 0.0904715i
\(514\) −0.726904 + 1.59170i −0.0320623 + 0.0702068i
\(515\) 33.7248 38.9205i 1.48609 1.71504i
\(516\) −1.41228 + 0.907620i −0.0621723 + 0.0399557i
\(517\) −0.615723 4.28245i −0.0270795 0.188342i
\(518\) −0.286340 1.99154i −0.0125810 0.0875031i
\(519\) 11.4938 7.38661i 0.504521 0.324236i
\(520\) −2.25047 + 2.59718i −0.0986898 + 0.113894i
\(521\) −6.29609 + 13.7865i −0.275837 + 0.603998i −0.995955 0.0898530i \(-0.971360\pi\)
0.720118 + 0.693851i \(0.244088\pi\)
\(522\) −0.935507 0.601214i −0.0409460 0.0263144i
\(523\) −15.0544 + 4.42038i −0.658284 + 0.193290i −0.593779 0.804628i \(-0.702365\pi\)
−0.0645043 + 0.997917i \(0.520547\pi\)
\(524\) −12.4079 14.3195i −0.542042 0.625550i
\(525\) 2.05324 + 0.602886i 0.0896107 + 0.0263121i
\(526\) −6.91872 15.1499i −0.301670 0.660566i
\(527\) 6.33568 44.0656i 0.275987 1.91953i
\(528\) −0.622970 −0.0271113
\(529\) −0.528643 22.9939i −0.0229845 0.999736i
\(530\) 29.1960 1.26819
\(531\) 1.38704 9.64709i 0.0601925 0.418648i
\(532\) −1.94684 4.26299i −0.0844063 0.184824i
\(533\) −15.0607 4.42223i −0.652353 0.191548i
\(534\) −2.21670 2.55821i −0.0959261 0.110705i
\(535\) −10.8512 + 3.18621i −0.469140 + 0.137752i
\(536\) −5.14953 3.30940i −0.222426 0.142944i
\(537\) −8.47428 + 18.5561i −0.365692 + 0.800754i
\(538\) 17.4867 20.1807i 0.753903 0.870051i
\(539\) 2.86728 1.84269i 0.123502 0.0793702i
\(540\) 0.369215 + 2.56794i 0.0158885 + 0.110507i
\(541\) 3.09092 + 21.4978i 0.132889 + 0.924265i 0.941762 + 0.336281i \(0.109169\pi\)
−0.808873 + 0.587984i \(0.799922\pi\)
\(542\) 22.6364 14.5475i 0.972315 0.624869i
\(543\) −6.24512 + 7.20725i −0.268004 + 0.309293i
\(544\) −1.95561 + 4.28218i −0.0838460 + 0.183597i
\(545\) −14.1107 9.06842i −0.604438 0.388449i
\(546\) −1.57154 + 0.461445i −0.0672556 + 0.0197480i
\(547\) −7.99651 9.22846i −0.341906 0.394581i 0.558591 0.829443i \(-0.311342\pi\)
−0.900497 + 0.434863i \(0.856797\pi\)
\(548\) 10.9344 + 3.21064i 0.467095 + 0.137152i
\(549\) −5.97099 13.0746i −0.254836 0.558012i
\(550\) 0.153436 1.06717i 0.00654255 0.0455044i
\(551\) −4.21485 −0.179559
\(552\) 3.35197 3.42992i 0.142669 0.145987i
\(553\) 14.9396 0.635295
\(554\) 0.304147 2.11539i 0.0129220 0.0898742i
\(555\) 1.75370 + 3.84007i 0.0744405 + 0.163002i
\(556\) −5.08787 1.49393i −0.215774 0.0633569i
\(557\) −10.6515 12.2924i −0.451317 0.520848i 0.483804 0.875176i \(-0.339255\pi\)
−0.935121 + 0.354329i \(0.884709\pi\)
\(558\) −9.07372 + 2.66428i −0.384121 + 0.112788i
\(559\) 1.87076 + 1.20226i 0.0791247 + 0.0508504i
\(560\) 1.33259 2.91797i 0.0563123 0.123307i
\(561\) −1.92050 + 2.21638i −0.0810838 + 0.0935756i
\(562\) −23.3748 + 15.0221i −0.986007 + 0.633668i
\(563\) −4.50622 31.3414i −0.189914 1.32088i −0.832224 0.554439i \(-0.812933\pi\)
0.642310 0.766445i \(-0.277976\pi\)
\(564\) 0.988368 + 6.87425i 0.0416178 + 0.289458i
\(565\) 2.97351 1.91096i 0.125096 0.0803946i
\(566\) −15.3770 + 17.7460i −0.646344 + 0.745921i
\(567\) −0.513652 + 1.12474i −0.0215714 + 0.0472347i
\(568\) 5.46188 + 3.51014i 0.229175 + 0.147282i
\(569\) −35.3667 + 10.3846i −1.48265 + 0.435345i −0.920187 0.391479i \(-0.871964\pi\)
−0.562461 + 0.826824i \(0.690145\pi\)
\(570\) 6.43931 + 7.43136i 0.269713 + 0.311265i
\(571\) −29.6036 8.69239i −1.23887 0.363765i −0.404280 0.914635i \(-0.632478\pi\)
−0.834591 + 0.550870i \(0.814296\pi\)
\(572\) 0.342803 + 0.750635i 0.0143333 + 0.0313856i
\(573\) −0.226713 + 1.57682i −0.00947106 + 0.0658727i
\(574\) 14.6519 0.611560
\(575\) 5.05001 + 6.58684i 0.210600 + 0.274690i
\(576\) 1.00000 0.0416667
\(577\) 6.50139 45.2182i 0.270657 1.88246i −0.170996 0.985272i \(-0.554698\pi\)
0.441652 0.897186i \(-0.354392\pi\)
\(578\) 2.14416 + 4.69505i 0.0891853 + 0.195288i
\(579\) −16.8661 4.95234i −0.700931 0.205812i
\(580\) −1.88929 2.18035i −0.0784484 0.0905342i
\(581\) 8.76825 2.57459i 0.363769 0.106812i
\(582\) 9.62880 + 6.18806i 0.399127 + 0.256503i
\(583\) 2.91235 6.37716i 0.120617 0.264115i
\(584\) 8.57213 9.89277i 0.354717 0.409366i
\(585\) 2.89102 1.85795i 0.119529 0.0768167i
\(586\) 2.70119 + 18.7872i 0.111585 + 0.776091i
\(587\) 4.32880 + 30.1075i 0.178669 + 1.24267i 0.859848 + 0.510551i \(0.170558\pi\)
−0.681179 + 0.732117i \(0.738532\pi\)
\(588\) −4.60260 + 2.95791i −0.189808 + 0.121982i
\(589\) −23.4722 + 27.0884i −0.967156 + 1.11616i
\(590\) 10.5039 23.0003i 0.432438 0.946908i
\(591\) 1.02768 + 0.660450i 0.0422731 + 0.0271673i
\(592\) 1.56130 0.458439i 0.0641691 0.0188417i
\(593\) 18.2190 + 21.0258i 0.748163 + 0.863426i 0.994389 0.105786i \(-0.0337359\pi\)
−0.246226 + 0.969213i \(0.579190\pi\)
\(594\) 0.597735 + 0.175511i 0.0245254 + 0.00720130i
\(595\) −6.27332 13.7366i −0.257181 0.563147i
\(596\) −1.96659 + 13.6779i −0.0805545 + 0.560269i
\(597\) −0.100228 −0.00410205
\(598\) −5.97731 2.15149i −0.244430 0.0879812i
\(599\) −11.1914 −0.457270 −0.228635 0.973512i \(-0.573426\pi\)
−0.228635 + 0.973512i \(0.573426\pi\)
\(600\) −0.246298 + 1.71304i −0.0100551 + 0.0699347i
\(601\) −17.0438 37.3206i −0.695229 1.52234i −0.845661 0.533720i \(-0.820794\pi\)
0.150432 0.988620i \(-0.451934\pi\)
\(602\) −1.99170 0.584816i −0.0811756 0.0238353i
\(603\) 4.00857 + 4.62614i 0.163242 + 0.188391i
\(604\) 5.21487 1.53122i 0.212190 0.0623046i
\(605\) 23.1606 + 14.8844i 0.941611 + 0.605137i
\(606\) −0.740992 + 1.62255i −0.0301007 + 0.0659114i
\(607\) −24.0132 + 27.7127i −0.974667 + 1.12483i 0.0174926 + 0.999847i \(0.494432\pi\)
−0.992159 + 0.124979i \(0.960114\pi\)
\(608\) 3.18852 2.04913i 0.129311 0.0831034i
\(609\) −0.195685 1.36102i −0.00792955 0.0551512i
\(610\) −5.30693 36.9105i −0.214871 1.49446i
\(611\) 7.73912 4.97363i 0.313091 0.201212i
\(612\) 3.08282 3.55777i 0.124616 0.143814i
\(613\) −0.0971676 + 0.212767i −0.00392456 + 0.00859360i −0.911584 0.411114i \(-0.865140\pi\)
0.907660 + 0.419707i \(0.137867\pi\)
\(614\) 12.5443 + 8.06176i 0.506248 + 0.325346i
\(615\) −29.4971 + 8.66113i −1.18944 + 0.349250i
\(616\) −0.504432 0.582145i −0.0203241 0.0234553i
\(617\) 41.8810 + 12.2974i 1.68606 + 0.495073i 0.977564 0.210637i \(-0.0675539\pi\)
0.708500 + 0.705711i \(0.249372\pi\)
\(618\) 8.24619 + 18.0566i 0.331710 + 0.726345i
\(619\) 0.169206 1.17685i 0.00680096 0.0473017i −0.986138 0.165925i \(-0.946939\pi\)
0.992939 + 0.118623i \(0.0378481\pi\)
\(620\) −24.5342 −0.985318
\(621\) −4.18251 + 2.34662i −0.167838 + 0.0941667i
\(622\) −5.28838 −0.212045
\(623\) 0.595655 4.14287i 0.0238644 0.165981i
\(624\) −0.550273 1.20493i −0.0220286 0.0482358i
\(625\) 29.4162 + 8.63739i 1.17665 + 0.345496i
\(626\) 5.80888 + 6.70380i 0.232169 + 0.267938i
\(627\) 2.26553 0.665220i 0.0904766 0.0265663i
\(628\) 4.44354 + 2.85569i 0.177316 + 0.113954i
\(629\) 3.18219 6.96803i 0.126882 0.277834i
\(630\) −2.10070 + 2.42434i −0.0836940 + 0.0965880i
\(631\) 14.0184 9.00907i 0.558063 0.358646i −0.231003 0.972953i \(-0.574201\pi\)
0.789067 + 0.614307i \(0.210565\pi\)
\(632\) 1.71950 + 11.9594i 0.0683979 + 0.475718i
\(633\) 2.37625 + 16.5272i 0.0944473 + 0.656896i
\(634\) 2.55717 1.64339i 0.101558 0.0652674i
\(635\) 5.87015 6.77452i 0.232950 0.268838i
\(636\) −4.67495 + 10.2367i −0.185374 + 0.405912i
\(637\) 6.09676 + 3.91815i 0.241563 + 0.155243i
\(638\) −0.664705 + 0.195175i −0.0263159 + 0.00772705i
\(639\) −4.25171 4.90674i −0.168195 0.194108i
\(640\) 2.48926 + 0.730913i 0.0983967 + 0.0288919i
\(641\) −12.3967 27.1451i −0.489641 1.07217i −0.979699 0.200475i \(-0.935751\pi\)
0.490057 0.871690i \(-0.336976\pi\)
\(642\) 0.620382 4.31485i 0.0244845 0.170294i
\(643\) −36.9937 −1.45889 −0.729445 0.684040i \(-0.760221\pi\)
−0.729445 + 0.684040i \(0.760221\pi\)
\(644\) 5.91931 + 0.355030i 0.233253 + 0.0139902i
\(645\) 4.35536 0.171492
\(646\) 2.53928 17.6611i 0.0999068 0.694867i
\(647\) 12.8336 + 28.1016i 0.504540 + 1.10479i 0.974967 + 0.222349i \(0.0713725\pi\)
−0.470427 + 0.882439i \(0.655900\pi\)
\(648\) −0.959493 0.281733i −0.0376924 0.0110675i
\(649\) −3.97608 4.58864i −0.156075 0.180120i
\(650\) 2.19963 0.645869i 0.0862765 0.0253331i
\(651\) −9.83687 6.32178i −0.385538 0.247770i
\(652\) 3.77639 8.26913i 0.147895 0.323844i
\(653\) 16.9793 19.5952i 0.664452 0.766819i −0.319045 0.947739i \(-0.603362\pi\)
0.983498 + 0.180921i \(0.0579077\pi\)
\(654\) 5.43902 3.49545i 0.212683 0.136683i
\(655\) 6.99566 + 48.6559i 0.273343 + 1.90114i
\(656\) 1.68639 + 11.7291i 0.0658426 + 0.457945i
\(657\) −11.0120 + 7.07699i −0.429620 + 0.276100i
\(658\) −5.62347 + 6.48983i −0.219226 + 0.253000i
\(659\) −8.46149 + 18.5281i −0.329613 + 0.721752i −0.999791 0.0204488i \(-0.993490\pi\)
0.670178 + 0.742200i \(0.266218\pi\)
\(660\) 1.35964 + 0.873785i 0.0529237 + 0.0340120i
\(661\) −40.3726 + 11.8545i −1.57031 + 0.461085i −0.947092 0.320962i \(-0.895994\pi\)
−0.623220 + 0.782047i \(0.714176\pi\)
\(662\) −1.07480 1.24038i −0.0417732 0.0482088i
\(663\) −5.98325 1.75684i −0.232370 0.0682301i
\(664\) 3.07020 + 6.72280i 0.119147 + 0.260895i
\(665\) −1.73032 + 12.0347i −0.0670991 + 0.466684i
\(666\) −1.62721 −0.0630533
\(667\) 2.50194 4.70986i 0.0968756 0.182367i
\(668\) 2.87790 0.111349
\(669\) −2.59129 + 18.0228i −0.100185 + 0.696802i
\(670\) 6.59707 + 14.4456i 0.254867 + 0.558081i
\(671\) −8.59158 2.52272i −0.331674 0.0973883i
\(672\) 0.809721 + 0.934468i 0.0312357 + 0.0360479i
\(673\) −19.5196 + 5.73148i −0.752426 + 0.220932i −0.635386 0.772195i \(-0.719159\pi\)
−0.117040 + 0.993127i \(0.537341\pi\)
\(674\) 15.1178 + 9.71564i 0.582317 + 0.374233i
\(675\) 0.718941 1.57426i 0.0276721 0.0605934i
\(676\) 7.36413 8.49866i 0.283236 0.326872i
\(677\) 9.29082 5.97085i 0.357075 0.229478i −0.349788 0.936829i \(-0.613746\pi\)
0.706863 + 0.707351i \(0.250110\pi\)
\(678\) 0.193894 + 1.34856i 0.00744644 + 0.0517911i
\(679\) 2.01411 + 14.0084i 0.0772943 + 0.537594i
\(680\) 10.2744 6.60294i 0.394004 0.253211i
\(681\) −10.4681 + 12.0809i −0.401139 + 0.462940i
\(682\) −2.44733 + 5.35891i −0.0937131 + 0.205203i
\(683\) −9.04131 5.81050i −0.345956 0.222332i 0.356110 0.934444i \(-0.384103\pi\)
−0.702066 + 0.712111i \(0.747739\pi\)
\(684\) −3.63667 + 1.06782i −0.139051 + 0.0408292i
\(685\) −19.3612 22.3440i −0.739752 0.853720i
\(686\) −14.7956 4.34439i −0.564900 0.165870i
\(687\) −7.36601 16.1293i −0.281031 0.615372i
\(688\) 0.238916 1.66170i 0.00910859 0.0633516i
\(689\) 14.9070 0.567913
\(690\) −12.1265 + 2.78431i −0.461649 + 0.105997i
\(691\) −21.3444 −0.811980 −0.405990 0.913878i \(-0.633073\pi\)
−0.405990 + 0.913878i \(0.633073\pi\)
\(692\) −1.94440 + 13.5236i −0.0739151 + 0.514091i
\(693\) 0.319990 + 0.700679i 0.0121554 + 0.0266166i
\(694\) −0.214162 0.0628837i −0.00812948 0.00238703i
\(695\) 9.00891 + 10.3968i 0.341727 + 0.394374i
\(696\) 1.06699 0.313298i 0.0404443 0.0118755i
\(697\) 46.9283 + 30.1590i 1.77754 + 1.14235i
\(698\) −8.40791 + 18.4108i −0.318244 + 0.696857i
\(699\) 6.11932 7.06208i 0.231454 0.267112i
\(700\) −1.80022 + 1.15693i −0.0680418 + 0.0437278i
\(701\) 4.68799 + 32.6057i 0.177063 + 1.23150i 0.863515 + 0.504324i \(0.168258\pi\)
−0.686452 + 0.727175i \(0.740833\pi\)
\(702\) 0.188515 + 1.31115i 0.00711505 + 0.0494862i
\(703\) −5.18840 + 3.33438i −0.195684 + 0.125759i
\(704\) 0.407958 0.470809i 0.0153755 0.0177443i
\(705\) 7.48479 16.3894i 0.281893 0.617261i
\(706\) 15.9954 + 10.2796i 0.601996 + 0.386879i
\(707\) −2.11621 + 0.621377i −0.0795884 + 0.0233693i
\(708\) 6.38246 + 7.36575i 0.239868 + 0.276822i
\(709\) 39.8126 + 11.6900i 1.49519 + 0.439028i 0.924194 0.381923i \(-0.124738\pi\)
0.570998 + 0.820951i \(0.306556\pi\)
\(710\) −6.99723 15.3218i −0.262601 0.575017i
\(711\) 1.71950 11.9594i 0.0644862 0.448511i
\(712\) 3.38500 0.126858
\(713\) −16.3366 42.3087i −0.611812 1.58447i
\(714\) 5.82085 0.217840
\(715\) 0.304679 2.11909i 0.0113943 0.0792493i
\(716\) −8.47428 18.5561i −0.316699 0.693473i
\(717\) 4.80613 + 1.41121i 0.179488 + 0.0527025i
\(718\) −3.36334 3.88150i −0.125519 0.144856i
\(719\) 26.8918 7.89614i 1.00289 0.294476i 0.261251 0.965271i \(-0.415865\pi\)
0.741643 + 0.670795i \(0.234047\pi\)
\(720\) −2.18251 1.40261i −0.0813372 0.0522723i
\(721\) −10.1962 + 22.3267i −0.379728 + 0.831488i
\(722\) 3.03490 3.50246i 0.112947 0.130348i
\(723\) 12.2622 7.88046i 0.456037 0.293077i
\(724\) −1.35719 9.43949i −0.0504397 0.350816i
\(725\) 0.273893 + 1.90497i 0.0101721 + 0.0707488i
\(726\) −8.92731 + 5.73723i −0.331323 + 0.212929i
\(727\) −6.50261 + 7.50441i −0.241168 + 0.278323i −0.863411 0.504501i \(-0.831676\pi\)
0.622242 + 0.782825i \(0.286222\pi\)
\(728\) 0.680401 1.48987i 0.0252173 0.0552183i
\(729\) 0.841254 + 0.540641i 0.0311575 + 0.0200237i
\(730\) −32.5845 + 9.56766i −1.20600 + 0.354115i
\(731\) −5.17540 5.97273i −0.191419 0.220909i
\(732\) 13.7913 + 4.04950i 0.509742 + 0.149674i
\(733\) 7.39687 + 16.1969i 0.273209 + 0.598245i 0.995648 0.0931894i \(-0.0297062\pi\)
−0.722439 + 0.691435i \(0.756979\pi\)
\(734\) −3.52616 + 24.5250i −0.130153 + 0.905234i
\(735\) 14.1940 0.523554
\(736\) 0.397086 + 4.77936i 0.0146368 + 0.176170i
\(737\) 3.81336 0.140467
\(738\) 1.68639 11.7291i 0.0620770 0.431755i
\(739\) 9.04059 + 19.7961i 0.332564 + 0.728213i 0.999863 0.0165773i \(-0.00527697\pi\)
−0.667299 + 0.744790i \(0.732550\pi\)
\(740\) −4.05056 1.18935i −0.148902 0.0437215i
\(741\) 3.28781 + 3.79433i 0.120781 + 0.139388i
\(742\) −13.3513 + 3.92030i −0.490142 + 0.143919i
\(743\) −13.9637 8.97393i −0.512279 0.329222i 0.258832 0.965922i \(-0.416662\pi\)
−0.771111 + 0.636701i \(0.780299\pi\)
\(744\) 3.92849 8.60219i 0.144025 0.315372i
\(745\) 23.4769 27.0938i 0.860126 0.992639i
\(746\) 31.2222 20.0653i 1.14313 0.734644i
\(747\) −1.05180 7.31546i −0.0384835 0.267659i
\(748\) −0.417365 2.90284i −0.0152604 0.106138i
\(749\) 4.53443 2.91410i 0.165684 0.106479i
\(750\) −5.55441 + 6.41013i −0.202818 + 0.234065i
\(751\) −1.69926 + 3.72086i −0.0620068 + 0.135776i −0.938099 0.346368i \(-0.887415\pi\)
0.876092 + 0.482144i \(0.160142\pi\)
\(752\) −5.84246 3.75472i −0.213052 0.136921i
\(753\) 17.9766 5.27841i 0.655104 0.192356i
\(754\) −0.964640 1.11325i −0.0351301 0.0405423i
\(755\) −13.5292 3.97253i −0.492378 0.144575i
\(756\) −0.513652 1.12474i −0.0186813 0.0409064i
\(757\) −1.41901 + 9.86945i −0.0515749 + 0.358711i 0.947649 + 0.319315i \(0.103453\pi\)
−0.999224 + 0.0393966i \(0.987456\pi\)
\(758\) −31.1816 −1.13257
\(759\) −0.601478 + 2.92649i −0.0218323 + 0.106225i
\(760\) −9.83310 −0.356684
\(761\) −6.54762 + 45.5397i −0.237351 + 1.65081i 0.427632 + 0.903953i \(0.359348\pi\)
−0.664983 + 0.746859i \(0.731561\pi\)
\(762\) 1.43534 + 3.14295i 0.0519968 + 0.113857i
\(763\) 7.67048 + 2.25226i 0.277690 + 0.0815372i
\(764\) −1.04322 1.20394i −0.0377423 0.0435569i
\(765\) −11.7184 + 3.44085i −0.423681 + 0.124404i
\(766\) −9.72169 6.24775i −0.351259 0.225740i
\(767\)