Properties

Label 138.2.e.a.121.1
Level $138$
Weight $2$
Character 138.121
Analytic conductor $1.102$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 138.e (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.10193554789\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 121.1
Root \(-0.415415 + 0.909632i\) of defining polynomial
Character \(\chi\) \(=\) 138.121
Dual form 138.2.e.a.73.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.415415 - 0.909632i) q^{2} +(-0.959493 - 0.281733i) q^{3} +(-0.654861 - 0.755750i) q^{4} +(1.27310 - 0.818172i) q^{5} +(-0.654861 + 0.755750i) q^{6} +(0.369215 - 2.56794i) q^{7} +(-0.959493 + 0.281733i) q^{8} +(0.841254 + 0.540641i) q^{9} +O(q^{10})\) \(q+(0.415415 - 0.909632i) q^{2} +(-0.959493 - 0.281733i) q^{3} +(-0.654861 - 0.755750i) q^{4} +(1.27310 - 0.818172i) q^{5} +(-0.654861 + 0.755750i) q^{6} +(0.369215 - 2.56794i) q^{7} +(-0.959493 + 0.281733i) q^{8} +(0.841254 + 0.540641i) q^{9} +(-0.215370 - 1.49793i) q^{10} +(-2.08004 - 4.55466i) q^{11} +(0.415415 + 0.909632i) q^{12} +(0.686393 + 4.77397i) q^{13} +(-2.18251 - 1.40261i) q^{14} +(-1.45204 + 0.426356i) q^{15} +(-0.142315 + 0.989821i) q^{16} +(0.565599 - 0.652736i) q^{17} +(0.841254 - 0.540641i) q^{18} +(4.58506 + 5.29144i) q^{19} +(-1.45204 - 0.426356i) q^{20} +(-1.07773 + 2.35990i) q^{21} -5.00714 q^{22} +(4.66533 + 1.11118i) q^{23} +1.00000 q^{24} +(-1.12570 + 2.46493i) q^{25} +(4.62769 + 1.35881i) q^{26} +(-0.654861 - 0.755750i) q^{27} +(-2.18251 + 1.40261i) q^{28} +(-2.03899 + 2.35312i) q^{29} +(-0.215370 + 1.49793i) q^{30} +(1.12671 - 0.330833i) q^{31} +(0.841254 + 0.540641i) q^{32} +(0.712591 + 4.95618i) q^{33} +(-0.358791 - 0.785643i) q^{34} +(-1.63097 - 3.57133i) q^{35} +(-0.142315 - 0.989821i) q^{36} +(-0.506538 - 0.325532i) q^{37} +(6.71797 - 1.97257i) q^{38} +(0.686393 - 4.77397i) q^{39} +(-0.991025 + 1.14370i) q^{40} +(4.45305 - 2.86180i) q^{41} +(1.69894 + 1.96068i) q^{42} +(-1.40014 - 0.411119i) q^{43} +(-2.08004 + 4.55466i) q^{44} +1.51334 q^{45} +(2.94881 - 3.78213i) q^{46} -12.6797 q^{47} +(0.415415 - 0.909632i) q^{48} +(0.258432 + 0.0758824i) q^{49} +(1.77455 + 2.04794i) q^{50} +(-0.726585 + 0.466948i) q^{51} +(3.15843 - 3.64502i) q^{52} +(-0.602392 + 4.18973i) q^{53} +(-0.959493 + 0.281733i) q^{54} +(-6.37459 - 4.09670i) q^{55} +(0.369215 + 2.56794i) q^{56} +(-2.90856 - 6.36886i) q^{57} +(1.29345 + 2.83225i) q^{58} +(-0.566615 - 3.94090i) q^{59} +(1.27310 + 0.818172i) q^{60} +(6.96812 - 2.04602i) q^{61} +(0.167117 - 1.16233i) q^{62} +(1.69894 - 1.96068i) q^{63} +(0.841254 - 0.540641i) q^{64} +(4.77977 + 5.51615i) q^{65} +(4.80432 + 1.41067i) q^{66} +(-6.70359 + 14.6788i) q^{67} -0.863693 q^{68} +(-4.16330 - 2.38054i) q^{69} -3.92613 q^{70} +(2.44456 - 5.35285i) q^{71} +(-0.959493 - 0.281733i) q^{72} +(-9.41782 - 10.8687i) q^{73} +(-0.506538 + 0.325532i) q^{74} +(1.77455 - 2.04794i) q^{75} +(0.996429 - 6.93032i) q^{76} +(-12.4641 + 3.65979i) q^{77} +(-4.05742 - 2.60754i) q^{78} +(-1.47156 - 10.2349i) q^{79} +(0.628663 + 1.37658i) q^{80} +(0.415415 + 0.909632i) q^{81} +(-0.753323 - 5.23948i) q^{82} +(2.22176 + 1.42784i) q^{83} +(2.48926 - 0.730913i) q^{84} +(0.186014 - 1.29376i) q^{85} +(-0.955607 + 1.10283i) q^{86} +(2.61935 - 1.68335i) q^{87} +(3.27898 + 3.78415i) q^{88} +(5.02538 + 1.47559i) q^{89} +(0.628663 - 1.37658i) q^{90} +12.5127 q^{91} +(-2.21537 - 4.25348i) q^{92} -1.17428 q^{93} +(-5.26732 + 11.5338i) q^{94} +(10.1666 + 2.98517i) q^{95} +(-0.654861 - 0.755750i) q^{96} +(12.5782 - 8.08355i) q^{97} +(0.176382 - 0.203555i) q^{98} +(0.712591 - 4.95618i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - q^{3} - q^{4} + 8 q^{5} - q^{6} + 8 q^{7} - q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - q^{2} - q^{3} - q^{4} + 8 q^{5} - q^{6} + 8 q^{7} - q^{8} - q^{9} - 3 q^{10} + 7 q^{11} - q^{12} + 3 q^{13} - 3 q^{14} - 3 q^{15} - q^{16} + 4 q^{17} - q^{18} - 3 q^{20} - 3 q^{21} - 26 q^{22} - 12 q^{23} + 10 q^{24} - 15 q^{25} + 3 q^{26} - q^{27} - 3 q^{28} - 25 q^{29} - 3 q^{30} + 6 q^{31} - q^{32} - 4 q^{33} - 7 q^{34} + 2 q^{35} - q^{36} + 9 q^{37} + 11 q^{38} + 3 q^{39} - 3 q^{40} + 24 q^{41} + 8 q^{42} - 30 q^{43} + 7 q^{44} - 14 q^{45} + 21 q^{46} - 48 q^{47} - q^{48} + 9 q^{49} + 7 q^{50} + 15 q^{51} + 14 q^{52} + 15 q^{53} - q^{54} - 23 q^{55} + 8 q^{56} - 11 q^{57} - 3 q^{58} + 5 q^{59} + 8 q^{60} + 12 q^{61} + 28 q^{62} + 8 q^{63} - q^{64} - 13 q^{65} + 18 q^{66} + 18 q^{67} - 18 q^{68} - q^{69} + 2 q^{70} + 28 q^{71} - q^{72} + 19 q^{73} + 9 q^{74} + 7 q^{75} + 22 q^{76} - 12 q^{77} - 8 q^{78} - 52 q^{79} + 8 q^{80} - q^{81} - 20 q^{82} + 7 q^{83} - 3 q^{84} + 23 q^{85} + 14 q^{86} + 30 q^{87} - 4 q^{88} + 3 q^{89} + 8 q^{90} + 42 q^{91} - 23 q^{92} - 16 q^{93} + 29 q^{94} + 22 q^{95} - q^{96} + 51 q^{97} - 2 q^{98} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/138\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.415415 0.909632i 0.293743 0.643207i
\(3\) −0.959493 0.281733i −0.553964 0.162658i
\(4\) −0.654861 0.755750i −0.327430 0.377875i
\(5\) 1.27310 0.818172i 0.569348 0.365898i −0.224072 0.974573i \(-0.571935\pi\)
0.793420 + 0.608675i \(0.208299\pi\)
\(6\) −0.654861 + 0.755750i −0.267346 + 0.308533i
\(7\) 0.369215 2.56794i 0.139550 0.970592i −0.792915 0.609332i \(-0.791438\pi\)
0.932465 0.361260i \(-0.117653\pi\)
\(8\) −0.959493 + 0.281733i −0.339232 + 0.0996075i
\(9\) 0.841254 + 0.540641i 0.280418 + 0.180214i
\(10\) −0.215370 1.49793i −0.0681061 0.473688i
\(11\) −2.08004 4.55466i −0.627156 1.37328i −0.910198 0.414173i \(-0.864071\pi\)
0.283042 0.959108i \(-0.408656\pi\)
\(12\) 0.415415 + 0.909632i 0.119920 + 0.262588i
\(13\) 0.686393 + 4.77397i 0.190371 + 1.32406i 0.831027 + 0.556232i \(0.187753\pi\)
−0.640656 + 0.767828i \(0.721337\pi\)
\(14\) −2.18251 1.40261i −0.583300 0.374864i
\(15\) −1.45204 + 0.426356i −0.374914 + 0.110085i
\(16\) −0.142315 + 0.989821i −0.0355787 + 0.247455i
\(17\) 0.565599 0.652736i 0.137178 0.158312i −0.683004 0.730415i \(-0.739327\pi\)
0.820182 + 0.572103i \(0.193872\pi\)
\(18\) 0.841254 0.540641i 0.198285 0.127430i
\(19\) 4.58506 + 5.29144i 1.05189 + 1.21394i 0.976214 + 0.216807i \(0.0695644\pi\)
0.0756708 + 0.997133i \(0.475890\pi\)
\(20\) −1.45204 0.426356i −0.324685 0.0953362i
\(21\) −1.07773 + 2.35990i −0.235180 + 0.514973i
\(22\) −5.00714 −1.06753
\(23\) 4.66533 + 1.11118i 0.972788 + 0.231696i
\(24\) 1.00000 0.204124
\(25\) −1.12570 + 2.46493i −0.225139 + 0.492986i
\(26\) 4.62769 + 1.35881i 0.907565 + 0.266485i
\(27\) −0.654861 0.755750i −0.126028 0.145444i
\(28\) −2.18251 + 1.40261i −0.412455 + 0.265069i
\(29\) −2.03899 + 2.35312i −0.378631 + 0.436963i −0.912795 0.408417i \(-0.866081\pi\)
0.534165 + 0.845381i \(0.320626\pi\)
\(30\) −0.215370 + 1.49793i −0.0393211 + 0.273484i
\(31\) 1.12671 0.330833i 0.202364 0.0594193i −0.178980 0.983853i \(-0.557280\pi\)
0.381343 + 0.924433i \(0.375462\pi\)
\(32\) 0.841254 + 0.540641i 0.148714 + 0.0955727i
\(33\) 0.712591 + 4.95618i 0.124046 + 0.862760i
\(34\) −0.358791 0.785643i −0.0615322 0.134737i
\(35\) −1.63097 3.57133i −0.275685 0.603665i
\(36\) −0.142315 0.989821i −0.0237191 0.164970i
\(37\) −0.506538 0.325532i −0.0832743 0.0535171i 0.498341 0.866981i \(-0.333943\pi\)
−0.581615 + 0.813464i \(0.697579\pi\)
\(38\) 6.71797 1.97257i 1.08980 0.319994i
\(39\) 0.686393 4.77397i 0.109911 0.764446i
\(40\) −0.991025 + 1.14370i −0.156695 + 0.180835i
\(41\) 4.45305 2.86180i 0.695450 0.446939i −0.144570 0.989495i \(-0.546180\pi\)
0.840020 + 0.542556i \(0.182543\pi\)
\(42\) 1.69894 + 1.96068i 0.262152 + 0.302539i
\(43\) −1.40014 0.411119i −0.213520 0.0626951i 0.173223 0.984883i \(-0.444582\pi\)
−0.386743 + 0.922188i \(0.626400\pi\)
\(44\) −2.08004 + 4.55466i −0.313578 + 0.686640i
\(45\) 1.51334 0.225595
\(46\) 2.94881 3.78213i 0.434778 0.557645i
\(47\) −12.6797 −1.84952 −0.924760 0.380552i \(-0.875734\pi\)
−0.924760 + 0.380552i \(0.875734\pi\)
\(48\) 0.415415 0.909632i 0.0599600 0.131294i
\(49\) 0.258432 + 0.0758824i 0.0369188 + 0.0108403i
\(50\) 1.77455 + 2.04794i 0.250959 + 0.289622i
\(51\) −0.726585 + 0.466948i −0.101742 + 0.0653858i
\(52\) 3.15843 3.64502i 0.437996 0.505474i
\(53\) −0.602392 + 4.18973i −0.0827449 + 0.575504i 0.905700 + 0.423920i \(0.139346\pi\)
−0.988444 + 0.151583i \(0.951563\pi\)
\(54\) −0.959493 + 0.281733i −0.130570 + 0.0383389i
\(55\) −6.37459 4.09670i −0.859550 0.552399i
\(56\) 0.369215 + 2.56794i 0.0493384 + 0.343156i
\(57\) −2.90856 6.36886i −0.385249 0.843577i
\(58\) 1.29345 + 2.83225i 0.169838 + 0.371893i
\(59\) −0.566615 3.94090i −0.0737670 0.513061i −0.992885 0.119078i \(-0.962006\pi\)
0.919118 0.393983i \(-0.128903\pi\)
\(60\) 1.27310 + 0.818172i 0.164357 + 0.105626i
\(61\) 6.96812 2.04602i 0.892176 0.261966i 0.196655 0.980473i \(-0.436992\pi\)
0.695520 + 0.718506i \(0.255174\pi\)
\(62\) 0.167117 1.16233i 0.0212239 0.147616i
\(63\) 1.69894 1.96068i 0.214046 0.247022i
\(64\) 0.841254 0.540641i 0.105157 0.0675801i
\(65\) 4.77977 + 5.51615i 0.592858 + 0.684194i
\(66\) 4.80432 + 1.41067i 0.591371 + 0.173642i
\(67\) −6.70359 + 14.6788i −0.818973 + 1.79330i −0.256360 + 0.966581i \(0.582523\pi\)
−0.562614 + 0.826720i \(0.690204\pi\)
\(68\) −0.863693 −0.104738
\(69\) −4.16330 2.38054i −0.501202 0.286583i
\(70\) −3.92613 −0.469262
\(71\) 2.44456 5.35285i 0.290116 0.635266i −0.707315 0.706899i \(-0.750094\pi\)
0.997431 + 0.0716327i \(0.0228209\pi\)
\(72\) −0.959493 0.281733i −0.113077 0.0332025i
\(73\) −9.41782 10.8687i −1.10227 1.27209i −0.959308 0.282362i \(-0.908882\pi\)
−0.142964 0.989728i \(-0.545663\pi\)
\(74\) −0.506538 + 0.325532i −0.0588838 + 0.0378423i
\(75\) 1.77455 2.04794i 0.204907 0.236476i
\(76\) 0.996429 6.93032i 0.114298 0.794962i
\(77\) −12.4641 + 3.65979i −1.42041 + 0.417071i
\(78\) −4.05742 2.60754i −0.459412 0.295246i
\(79\) −1.47156 10.2349i −0.165564 1.15152i −0.887919 0.459999i \(-0.847850\pi\)
0.722356 0.691522i \(-0.243059\pi\)
\(80\) 0.628663 + 1.37658i 0.0702867 + 0.153906i
\(81\) 0.415415 + 0.909632i 0.0461572 + 0.101070i
\(82\) −0.753323 5.23948i −0.0831906 0.578603i
\(83\) 2.22176 + 1.42784i 0.243870 + 0.156725i 0.656866 0.754007i \(-0.271882\pi\)
−0.412997 + 0.910732i \(0.635518\pi\)
\(84\) 2.48926 0.730913i 0.271601 0.0797492i
\(85\) 0.186014 1.29376i 0.0201760 0.140327i
\(86\) −0.955607 + 1.10283i −0.103046 + 0.118921i
\(87\) 2.61935 1.68335i 0.280823 0.180474i
\(88\) 3.27898 + 3.78415i 0.349541 + 0.403391i
\(89\) 5.02538 + 1.47559i 0.532689 + 0.156412i 0.537005 0.843579i \(-0.319556\pi\)
−0.00431578 + 0.999991i \(0.501374\pi\)
\(90\) 0.628663 1.37658i 0.0662669 0.145104i
\(91\) 12.5127 1.31169
\(92\) −2.21537 4.25348i −0.230968 0.443456i
\(93\) −1.17428 −0.121767
\(94\) −5.26732 + 11.5338i −0.543283 + 1.18962i
\(95\) 10.1666 + 2.98517i 1.04307 + 0.306272i
\(96\) −0.654861 0.755750i −0.0668364 0.0771334i
\(97\) 12.5782 8.08355i 1.27713 0.820760i 0.286597 0.958051i \(-0.407476\pi\)
0.990531 + 0.137291i \(0.0438397\pi\)
\(98\) 0.176382 0.203555i 0.0178172 0.0205622i
\(99\) 0.712591 4.95618i 0.0716180 0.498114i
\(100\) 2.60004 0.763442i 0.260004 0.0763442i
\(101\) −0.446103 0.286693i −0.0443889 0.0285270i 0.518258 0.855224i \(-0.326581\pi\)
−0.562647 + 0.826697i \(0.690217\pi\)
\(102\) 0.122916 + 0.854902i 0.0121705 + 0.0846479i
\(103\) 0.382147 + 0.836786i 0.0376541 + 0.0824510i 0.927524 0.373763i \(-0.121933\pi\)
−0.889870 + 0.456214i \(0.849205\pi\)
\(104\) −2.00357 4.38721i −0.196466 0.430201i
\(105\) 0.558746 + 3.88617i 0.0545281 + 0.379251i
\(106\) 3.56087 + 2.28843i 0.345862 + 0.222272i
\(107\) −12.9111 + 3.79104i −1.24816 + 0.366493i −0.838076 0.545554i \(-0.816319\pi\)
−0.410086 + 0.912047i \(0.634501\pi\)
\(108\) −0.142315 + 0.989821i −0.0136943 + 0.0952456i
\(109\) 3.25857 3.76059i 0.312114 0.360199i −0.577920 0.816094i \(-0.696135\pi\)
0.890034 + 0.455895i \(0.150681\pi\)
\(110\) −6.37459 + 4.09670i −0.607794 + 0.390605i
\(111\) 0.394306 + 0.455054i 0.0374259 + 0.0431918i
\(112\) 2.48926 + 0.730913i 0.235213 + 0.0690648i
\(113\) −5.65122 + 12.3744i −0.531622 + 1.16409i 0.433227 + 0.901285i \(0.357375\pi\)
−0.964849 + 0.262805i \(0.915352\pi\)
\(114\) −7.00158 −0.655758
\(115\) 6.84856 2.40240i 0.638632 0.224025i
\(116\) 3.11362 0.289093
\(117\) −2.00357 + 4.38721i −0.185230 + 0.405598i
\(118\) −3.82014 1.12170i −0.351673 0.103260i
\(119\) −1.46736 1.69343i −0.134513 0.155236i
\(120\) 1.27310 0.818172i 0.116218 0.0746885i
\(121\) −9.21485 + 10.6345i −0.837714 + 0.966773i
\(122\) 1.03353 7.18837i 0.0935715 0.650804i
\(123\) −5.07894 + 1.49131i −0.457952 + 0.134467i
\(124\) −0.987866 0.634863i −0.0887130 0.0570124i
\(125\) 1.66046 + 11.5488i 0.148516 + 1.03295i
\(126\) −1.07773 2.35990i −0.0960120 0.210237i
\(127\) 2.79580 + 6.12195i 0.248087 + 0.543235i 0.992176 0.124845i \(-0.0398435\pi\)
−0.744089 + 0.668080i \(0.767116\pi\)
\(128\) −0.142315 0.989821i −0.0125790 0.0874887i
\(129\) 1.22760 + 0.788932i 0.108084 + 0.0694615i
\(130\) 7.00326 2.05634i 0.614226 0.180353i
\(131\) −2.70354 + 18.8035i −0.236209 + 1.64287i 0.434155 + 0.900838i \(0.357047\pi\)
−0.670364 + 0.742032i \(0.733862\pi\)
\(132\) 3.27898 3.78415i 0.285399 0.329368i
\(133\) 15.2810 9.82050i 1.32503 0.851546i
\(134\) 10.5675 + 12.1956i 0.912896 + 1.05354i
\(135\) −1.45204 0.426356i −0.124971 0.0366949i
\(136\) −0.358791 + 0.785643i −0.0307661 + 0.0673683i
\(137\) −2.62684 −0.224426 −0.112213 0.993684i \(-0.535794\pi\)
−0.112213 + 0.993684i \(0.535794\pi\)
\(138\) −3.89491 + 2.79816i −0.331557 + 0.238195i
\(139\) −18.4268 −1.56294 −0.781471 0.623941i \(-0.785530\pi\)
−0.781471 + 0.623941i \(0.785530\pi\)
\(140\) −1.63097 + 3.57133i −0.137842 + 0.301833i
\(141\) 12.1660 + 3.57227i 1.02457 + 0.300840i
\(142\) −3.85361 4.44731i −0.323388 0.373210i
\(143\) 20.3161 13.0563i 1.69891 1.09183i
\(144\) −0.654861 + 0.755750i −0.0545717 + 0.0629791i
\(145\) −0.670582 + 4.66400i −0.0556888 + 0.387324i
\(146\) −13.7989 + 4.05171i −1.14200 + 0.335322i
\(147\) −0.226585 0.145617i −0.0186884 0.0120103i
\(148\) 0.0856910 + 0.595994i 0.00704376 + 0.0489904i
\(149\) −1.64339 3.59852i −0.134632 0.294802i 0.830294 0.557326i \(-0.188173\pi\)
−0.964926 + 0.262524i \(0.915445\pi\)
\(150\) −1.12570 2.46493i −0.0919127 0.201261i
\(151\) 2.31220 + 16.0817i 0.188164 + 1.30871i 0.836756 + 0.547575i \(0.184449\pi\)
−0.648592 + 0.761136i \(0.724642\pi\)
\(152\) −5.89011 3.78534i −0.477751 0.307032i
\(153\) 0.828708 0.243331i 0.0669970 0.0196721i
\(154\) −1.84871 + 12.8581i −0.148973 + 1.03613i
\(155\) 1.16374 1.34303i 0.0934738 0.107875i
\(156\) −4.05742 + 2.60754i −0.324853 + 0.208770i
\(157\) −13.3213 15.3736i −1.06316 1.22695i −0.972948 0.231026i \(-0.925792\pi\)
−0.0902098 0.995923i \(-0.528754\pi\)
\(158\) −9.92134 2.91317i −0.789299 0.231759i
\(159\) 1.75837 3.85030i 0.139448 0.305349i
\(160\) 1.51334 0.119640
\(161\) 4.57594 11.5700i 0.360635 0.911847i
\(162\) 1.00000 0.0785674
\(163\) −6.21157 + 13.6015i −0.486528 + 1.06535i 0.494089 + 0.869412i \(0.335502\pi\)
−0.980617 + 0.195936i \(0.937225\pi\)
\(164\) −5.07894 1.49131i −0.396598 0.116452i
\(165\) 4.96220 + 5.72669i 0.386307 + 0.445822i
\(166\) 2.22176 1.42784i 0.172442 0.110822i
\(167\) 7.89124 9.10698i 0.610642 0.704719i −0.363260 0.931688i \(-0.618336\pi\)
0.973902 + 0.226969i \(0.0728816\pi\)
\(168\) 0.369215 2.56794i 0.0284855 0.198121i
\(169\) −9.84622 + 2.89111i −0.757401 + 0.222393i
\(170\) −1.09957 0.706649i −0.0843330 0.0541975i
\(171\) 0.996429 + 6.93032i 0.0761988 + 0.529975i
\(172\) 0.606195 + 1.32738i 0.0462220 + 0.101212i
\(173\) 6.43950 + 14.1005i 0.489586 + 1.07204i 0.979715 + 0.200394i \(0.0642221\pi\)
−0.490130 + 0.871650i \(0.663051\pi\)
\(174\) −0.443115 3.08193i −0.0335924 0.233640i
\(175\) 5.91418 + 3.80081i 0.447070 + 0.287314i
\(176\) 4.80432 1.41067i 0.362139 0.106334i
\(177\) −0.566615 + 3.94090i −0.0425894 + 0.296216i
\(178\) 3.42986 3.95827i 0.257079 0.296685i
\(179\) 6.06984 3.90085i 0.453681 0.291563i −0.293775 0.955875i \(-0.594911\pi\)
0.747456 + 0.664311i \(0.231275\pi\)
\(180\) −0.991025 1.14370i −0.0738666 0.0852467i
\(181\) −3.20527 0.941152i −0.238246 0.0699552i 0.160430 0.987047i \(-0.448712\pi\)
−0.398676 + 0.917092i \(0.630530\pi\)
\(182\) 5.19797 11.3820i 0.385299 0.843687i
\(183\) −7.26229 −0.536844
\(184\) −4.78940 + 0.248210i −0.353080 + 0.0182983i
\(185\) −0.911214 −0.0669938
\(186\) −0.487813 + 1.06816i −0.0357682 + 0.0783214i
\(187\) −4.14946 1.21839i −0.303438 0.0890975i
\(188\) 8.30342 + 9.58265i 0.605589 + 0.698887i
\(189\) −2.18251 + 1.40261i −0.158754 + 0.102025i
\(190\) 6.93874 8.00774i 0.503389 0.580942i
\(191\) 2.42111 16.8392i 0.175185 1.21844i −0.692534 0.721385i \(-0.743506\pi\)
0.867719 0.497055i \(-0.165585\pi\)
\(192\) −0.959493 + 0.281733i −0.0692454 + 0.0203323i
\(193\) −19.1315 12.2951i −1.37712 0.885020i −0.377950 0.925826i \(-0.623371\pi\)
−0.999167 + 0.0408061i \(0.987007\pi\)
\(194\) −2.12786 14.7996i −0.152772 1.06255i
\(195\) −3.03208 6.63933i −0.217132 0.475452i
\(196\) −0.111889 0.245002i −0.00799205 0.0175002i
\(197\) −1.43442 9.97664i −0.102198 0.710806i −0.974915 0.222578i \(-0.928553\pi\)
0.872716 0.488228i \(-0.162356\pi\)
\(198\) −4.21228 2.70707i −0.299353 0.192383i
\(199\) 9.05033 2.65742i 0.641561 0.188379i 0.0552593 0.998472i \(-0.482401\pi\)
0.586302 + 0.810093i \(0.300583\pi\)
\(200\) 0.385646 2.68223i 0.0272693 0.189662i
\(201\) 10.5675 12.1956i 0.745377 0.860211i
\(202\) −0.446103 + 0.286693i −0.0313877 + 0.0201716i
\(203\) 5.28985 + 6.10482i 0.371275 + 0.428474i
\(204\) 0.828708 + 0.243331i 0.0580211 + 0.0170365i
\(205\) 3.32774 7.28672i 0.232419 0.508927i
\(206\) 0.919917 0.0640937
\(207\) 3.32398 + 3.45705i 0.231032 + 0.240281i
\(208\) −4.82306 −0.334419
\(209\) 14.5636 31.8898i 1.00738 2.20586i
\(210\) 3.76709 + 1.10612i 0.259954 + 0.0763294i
\(211\) 2.21294 + 2.55387i 0.152345 + 0.175816i 0.826792 0.562508i \(-0.190163\pi\)
−0.674447 + 0.738323i \(0.735618\pi\)
\(212\) 3.56087 2.28843i 0.244561 0.157170i
\(213\) −3.85361 + 4.44731i −0.264045 + 0.304724i
\(214\) −1.91501 + 13.3192i −0.130907 + 0.910481i
\(215\) −2.11889 + 0.622162i −0.144507 + 0.0424311i
\(216\) 0.841254 + 0.540641i 0.0572401 + 0.0367859i
\(217\) −0.433561 3.01548i −0.0294320 0.204704i
\(218\) −2.06709 4.52630i −0.140001 0.306560i
\(219\) 5.97425 + 13.0818i 0.403702 + 0.883985i
\(220\) 1.07839 + 7.50037i 0.0727050 + 0.505675i
\(221\) 3.50436 + 2.25212i 0.235729 + 0.151494i
\(222\) 0.577732 0.169638i 0.0387749 0.0113853i
\(223\) 2.46625 17.1532i 0.165152 1.14866i −0.723582 0.690238i \(-0.757506\pi\)
0.888735 0.458422i \(-0.151585\pi\)
\(224\) 1.69894 1.96068i 0.113515 0.131003i
\(225\) −2.27964 + 1.46503i −0.151976 + 0.0976690i
\(226\) 8.90859 + 10.2811i 0.592591 + 0.683886i
\(227\) −11.4377 3.35842i −0.759148 0.222906i −0.120824 0.992674i \(-0.538554\pi\)
−0.638324 + 0.769768i \(0.720372\pi\)
\(228\) −2.90856 + 6.36886i −0.192624 + 0.421788i
\(229\) 16.9000 1.11678 0.558390 0.829578i \(-0.311419\pi\)
0.558390 + 0.829578i \(0.311419\pi\)
\(230\) 0.659693 7.22767i 0.0434989 0.476578i
\(231\) 12.9903 0.854698
\(232\) 1.29345 2.83225i 0.0849188 0.185946i
\(233\) −27.3383 8.02724i −1.79099 0.525882i −0.794324 0.607494i \(-0.792175\pi\)
−0.996664 + 0.0816122i \(0.973993\pi\)
\(234\) 3.15843 + 3.64502i 0.206473 + 0.238283i
\(235\) −16.1425 + 10.3741i −1.05302 + 0.676735i
\(236\) −2.60728 + 3.00896i −0.169719 + 0.195866i
\(237\) −1.47156 + 10.2349i −0.0955883 + 0.664831i
\(238\) −2.14996 + 0.631285i −0.139361 + 0.0409201i
\(239\) −18.5912 11.9478i −1.20256 0.772841i −0.223165 0.974781i \(-0.571639\pi\)
−0.979398 + 0.201940i \(0.935275\pi\)
\(240\) −0.215370 1.49793i −0.0139021 0.0966912i
\(241\) −0.663894 1.45372i −0.0427651 0.0936426i 0.887044 0.461686i \(-0.152755\pi\)
−0.929809 + 0.368043i \(0.880028\pi\)
\(242\) 5.84550 + 12.7999i 0.375763 + 0.822806i
\(243\) −0.142315 0.989821i −0.00912950 0.0634971i
\(244\) −6.10943 3.92629i −0.391116 0.251355i
\(245\) 0.391095 0.114836i 0.0249861 0.00733659i
\(246\) −0.753323 + 5.23948i −0.0480301 + 0.334057i
\(247\) −22.1140 + 25.5209i −1.40708 + 1.62386i
\(248\) −0.987866 + 0.634863i −0.0627296 + 0.0403139i
\(249\) −1.72949 1.99594i −0.109602 0.126488i
\(250\) 11.1949 + 3.28713i 0.708029 + 0.207896i
\(251\) −7.30661 + 15.9992i −0.461189 + 1.00986i 0.526026 + 0.850469i \(0.323682\pi\)
−0.987215 + 0.159395i \(0.949046\pi\)
\(252\) −2.59435 −0.163429
\(253\) −4.64306 23.5603i −0.291907 1.48122i
\(254\) 6.73013 0.422286
\(255\) −0.542972 + 1.18894i −0.0340022 + 0.0744545i
\(256\) −0.959493 0.281733i −0.0599683 0.0176083i
\(257\) 13.5533 + 15.6413i 0.845430 + 0.975678i 0.999924 0.0123156i \(-0.00392026\pi\)
−0.154494 + 0.987994i \(0.549375\pi\)
\(258\) 1.22760 0.788932i 0.0764271 0.0491167i
\(259\) −1.02297 + 1.18057i −0.0635642 + 0.0733570i
\(260\) 1.03874 7.22462i 0.0644201 0.448052i
\(261\) −2.98750 + 0.877209i −0.184922 + 0.0542979i
\(262\) 15.9812 + 10.2705i 0.987321 + 0.634513i
\(263\) 3.91717 + 27.2445i 0.241543 + 1.67997i 0.644387 + 0.764699i \(0.277113\pi\)
−0.402844 + 0.915269i \(0.631978\pi\)
\(264\) −2.08004 4.55466i −0.128018 0.280320i
\(265\) 2.66101 + 5.82680i 0.163465 + 0.357938i
\(266\) −2.58509 17.9797i −0.158502 1.10240i
\(267\) −4.40610 2.83163i −0.269649 0.173293i
\(268\) 15.4834 4.54634i 0.945800 0.277712i
\(269\) 1.88933 13.1406i 0.115194 0.801195i −0.847537 0.530736i \(-0.821915\pi\)
0.962731 0.270459i \(-0.0871755\pi\)
\(270\) −0.991025 + 1.14370i −0.0603119 + 0.0696036i
\(271\) 20.2562 13.0179i 1.23048 0.790779i 0.246511 0.969140i \(-0.420716\pi\)
0.983965 + 0.178361i \(0.0570795\pi\)
\(272\) 0.565599 + 0.652736i 0.0342945 + 0.0395779i
\(273\) −12.0059 3.52524i −0.726627 0.213357i
\(274\) −1.09123 + 2.38946i −0.0659235 + 0.144352i
\(275\) 13.5684 0.818206
\(276\) 0.927287 + 4.70533i 0.0558161 + 0.283228i
\(277\) −18.3404 −1.10197 −0.550983 0.834516i \(-0.685747\pi\)
−0.550983 + 0.834516i \(0.685747\pi\)
\(278\) −7.65478 + 16.7616i −0.459103 + 1.00530i
\(279\) 1.12671 + 0.330833i 0.0674545 + 0.0198064i
\(280\) 2.57107 + 2.96717i 0.153651 + 0.177322i
\(281\) −0.0168026 + 0.0107984i −0.00100236 + 0.000644178i −0.541142 0.840931i \(-0.682008\pi\)
0.540140 + 0.841575i \(0.318371\pi\)
\(282\) 8.30342 9.58265i 0.494461 0.570639i
\(283\) −2.49815 + 17.3750i −0.148500 + 1.03284i 0.770178 + 0.637829i \(0.220167\pi\)
−0.918678 + 0.395008i \(0.870742\pi\)
\(284\) −5.64626 + 1.65789i −0.335044 + 0.0983778i
\(285\) −8.91372 5.72850i −0.528003 0.339327i
\(286\) −3.43687 23.9039i −0.203226 1.41347i
\(287\) −5.70482 12.4918i −0.336745 0.737368i
\(288\) 0.415415 + 0.909632i 0.0244786 + 0.0536006i
\(289\) 2.31319 + 16.0886i 0.136070 + 0.946388i
\(290\) 3.96395 + 2.54748i 0.232771 + 0.149593i
\(291\) −14.3461 + 4.21241i −0.840985 + 0.246936i
\(292\) −2.04669 + 14.2350i −0.119773 + 0.833042i
\(293\) 1.90332 2.19655i 0.111193 0.128324i −0.697424 0.716658i \(-0.745671\pi\)
0.808618 + 0.588335i \(0.200216\pi\)
\(294\) −0.226585 + 0.145617i −0.0132147 + 0.00849258i
\(295\) −3.94569 4.55357i −0.229727 0.265119i
\(296\) 0.577732 + 0.169638i 0.0335800 + 0.00985998i
\(297\) −2.08004 + 4.55466i −0.120696 + 0.264288i
\(298\) −3.95602 −0.229166
\(299\) −2.10247 + 23.0348i −0.121589 + 1.33214i
\(300\) −2.70981 −0.156451
\(301\) −1.57268 + 3.44370i −0.0906480 + 0.198491i
\(302\) 15.5890 + 4.57733i 0.897044 + 0.263396i
\(303\) 0.347262 + 0.400761i 0.0199497 + 0.0230231i
\(304\) −5.89011 + 3.78534i −0.337821 + 0.217104i
\(305\) 7.19711 8.30591i 0.412105 0.475595i
\(306\) 0.122916 0.854902i 0.00702666 0.0488715i
\(307\) 12.1970 3.58138i 0.696122 0.204400i 0.0855190 0.996337i \(-0.472745\pi\)
0.610603 + 0.791937i \(0.290927\pi\)
\(308\) 10.9281 + 7.02308i 0.622688 + 0.400177i
\(309\) −0.130918 0.910554i −0.00744766 0.0517996i
\(310\) −0.738226 1.61649i −0.0419284 0.0918104i
\(311\) −8.84860 19.3757i −0.501758 1.09870i −0.975894 0.218245i \(-0.929967\pi\)
0.474136 0.880452i \(-0.342760\pi\)
\(312\) 0.686393 + 4.77397i 0.0388593 + 0.270273i
\(313\) 1.59110 + 1.02253i 0.0899340 + 0.0577971i 0.584835 0.811152i \(-0.301159\pi\)
−0.494901 + 0.868949i \(0.664796\pi\)
\(314\) −19.5182 + 5.73107i −1.10148 + 0.323423i
\(315\) 0.558746 3.88617i 0.0314818 0.218961i
\(316\) −6.77138 + 7.81459i −0.380920 + 0.439605i
\(317\) −18.3490 + 11.7922i −1.03058 + 0.662314i −0.942640 0.333811i \(-0.891665\pi\)
−0.0879413 + 0.996126i \(0.528029\pi\)
\(318\) −2.77190 3.19895i −0.155441 0.179388i
\(319\) 14.9588 + 4.39231i 0.837534 + 0.245922i
\(320\) 0.628663 1.37658i 0.0351433 0.0769532i
\(321\) 13.4562 0.751049
\(322\) −8.62356 8.96879i −0.480572 0.499811i
\(323\) 6.04722 0.336476
\(324\) 0.415415 0.909632i 0.0230786 0.0505351i
\(325\) −12.5402 3.68213i −0.695603 0.204248i
\(326\) 9.79193 + 11.3005i 0.542325 + 0.625876i
\(327\) −4.18605 + 2.69021i −0.231489 + 0.148769i
\(328\) −3.46641 + 4.00045i −0.191400 + 0.220888i
\(329\) −4.68152 + 32.5607i −0.258100 + 1.79513i
\(330\) 7.27055 2.13483i 0.400231 0.117518i
\(331\) 14.6532 + 9.41704i 0.805413 + 0.517608i 0.877378 0.479800i \(-0.159291\pi\)
−0.0719651 + 0.997407i \(0.522927\pi\)
\(332\) −0.375855 2.61413i −0.0206277 0.143469i
\(333\) −0.250131 0.547710i −0.0137071 0.0300143i
\(334\) −5.00586 10.9613i −0.273908 0.599776i
\(335\) 3.47545 + 24.1723i 0.189884 + 1.32067i
\(336\) −2.18251 1.40261i −0.119066 0.0765188i
\(337\) 17.2210 5.05653i 0.938086 0.275447i 0.223268 0.974757i \(-0.428328\pi\)
0.714818 + 0.699310i \(0.246509\pi\)
\(338\) −1.46042 + 10.1574i −0.0794364 + 0.552492i
\(339\) 8.90859 10.2811i 0.483848 0.558391i
\(340\) −1.09957 + 0.706649i −0.0596325 + 0.0383234i
\(341\) −3.85044 4.44364i −0.208513 0.240637i
\(342\) 6.71797 + 1.97257i 0.363266 + 0.106665i
\(343\) 7.83441 17.1550i 0.423018 0.926281i
\(344\) 1.45925 0.0786776
\(345\) −7.24798 + 0.375626i −0.390218 + 0.0202230i
\(346\) 15.5014 0.833358
\(347\) −2.00445 + 4.38914i −0.107605 + 0.235621i −0.955773 0.294105i \(-0.904978\pi\)
0.848168 + 0.529727i \(0.177706\pi\)
\(348\) −2.98750 0.877209i −0.160147 0.0470233i
\(349\) −6.78166 7.82645i −0.363014 0.418940i 0.544633 0.838674i \(-0.316669\pi\)
−0.907647 + 0.419734i \(0.862123\pi\)
\(350\) 5.91418 3.80081i 0.316126 0.203162i
\(351\) 3.15843 3.64502i 0.168585 0.194557i
\(352\) 0.712591 4.95618i 0.0379812 0.264165i
\(353\) 28.1818 8.27493i 1.49997 0.440430i 0.574261 0.818673i \(-0.305290\pi\)
0.925707 + 0.378242i \(0.123471\pi\)
\(354\) 3.34938 + 2.15252i 0.178018 + 0.114405i
\(355\) −1.26737 8.81478i −0.0672652 0.467840i
\(356\) −2.17575 4.76423i −0.115315 0.252504i
\(357\) 0.930830 + 2.03823i 0.0492648 + 0.107875i
\(358\) −1.02684 7.14180i −0.0542699 0.377456i
\(359\) −8.41063 5.40518i −0.443896 0.285275i 0.299537 0.954085i \(-0.403168\pi\)
−0.743434 + 0.668810i \(0.766804\pi\)
\(360\) −1.45204 + 0.426356i −0.0765290 + 0.0224710i
\(361\) −4.27260 + 29.7166i −0.224874 + 1.56403i
\(362\) −2.18762 + 2.52465i −0.114979 + 0.132692i
\(363\) 11.8377 7.60761i 0.621317 0.399296i
\(364\) −8.19408 9.45647i −0.429487 0.495654i
\(365\) −20.8823 6.13160i −1.09303 0.320943i
\(366\) −3.01686 + 6.60601i −0.157694 + 0.345302i
\(367\) 16.7049 0.871991 0.435995 0.899949i \(-0.356396\pi\)
0.435995 + 0.899949i \(0.356396\pi\)
\(368\) −1.76381 + 4.45971i −0.0919450 + 0.232478i
\(369\) 5.29335 0.275561
\(370\) −0.378532 + 0.828870i −0.0196790 + 0.0430909i
\(371\) 10.5366 + 3.09382i 0.547032 + 0.160623i
\(372\) 0.768989 + 0.887461i 0.0398702 + 0.0460127i
\(373\) 27.9494 17.9620i 1.44717 0.930037i 0.447811 0.894128i \(-0.352204\pi\)
0.999355 0.0359089i \(-0.0114326\pi\)
\(374\) −2.83203 + 3.26834i −0.146441 + 0.169002i
\(375\) 1.66046 11.5488i 0.0857460 0.596377i
\(376\) 12.1660 3.57227i 0.627416 0.184226i
\(377\) −12.6333 8.11890i −0.650646 0.418145i
\(378\) 0.369215 + 2.56794i 0.0189904 + 0.132081i
\(379\) 3.51150 + 7.68911i 0.180374 + 0.394963i 0.978123 0.208026i \(-0.0667037\pi\)
−0.797750 + 0.602989i \(0.793976\pi\)
\(380\) −4.40164 9.63824i −0.225799 0.494431i
\(381\) −0.957798 6.66163i −0.0490695 0.341286i
\(382\) −14.3117 9.19757i −0.732250 0.470588i
\(383\) 4.22491 1.24055i 0.215883 0.0633889i −0.172003 0.985096i \(-0.555024\pi\)
0.387886 + 0.921708i \(0.373206\pi\)
\(384\) −0.142315 + 0.989821i −0.00726247 + 0.0505116i
\(385\) −12.8737 + 14.8570i −0.656104 + 0.757185i
\(386\) −19.1315 + 12.2951i −0.973769 + 0.625803i
\(387\) −0.955607 1.10283i −0.0485762 0.0560600i
\(388\) −14.3461 4.21241i −0.728315 0.213852i
\(389\) 8.42800 18.4548i 0.427317 0.935693i −0.566438 0.824105i \(-0.691679\pi\)
0.993754 0.111589i \(-0.0355939\pi\)
\(390\) −7.29891 −0.369595
\(391\) 3.36401 2.41675i 0.170125 0.122220i
\(392\) −0.269342 −0.0136038
\(393\) 7.89159 17.2802i 0.398078 0.871669i
\(394\) −9.67095 2.83965i −0.487216 0.143059i
\(395\) −10.2474 11.8261i −0.515602 0.595036i
\(396\) −4.21228 + 2.70707i −0.211675 + 0.136035i
\(397\) 9.40180 10.8503i 0.471863 0.544559i −0.469066 0.883163i \(-0.655409\pi\)
0.940929 + 0.338604i \(0.109955\pi\)
\(398\) 1.34237 9.33640i 0.0672870 0.467992i
\(399\) −17.4288 + 5.11755i −0.872530 + 0.256198i
\(400\) −2.27964 1.46503i −0.113982 0.0732517i
\(401\) 1.64117 + 11.4146i 0.0819562 + 0.570018i 0.988879 + 0.148721i \(0.0475157\pi\)
−0.906923 + 0.421296i \(0.861575\pi\)
\(402\) −6.70359 14.6788i −0.334344 0.732112i
\(403\) 2.35275 + 5.15181i 0.117199 + 0.256630i
\(404\) 0.0754672 + 0.524886i 0.00375463 + 0.0261140i
\(405\) 1.27310 + 0.818172i 0.0632609 + 0.0406553i
\(406\) 7.75062 2.27579i 0.384657 0.112945i
\(407\) −0.429067 + 2.98423i −0.0212681 + 0.147923i
\(408\) 0.565599 0.652736i 0.0280013 0.0323152i
\(409\) −19.9128 + 12.7972i −0.984624 + 0.632779i −0.930707 0.365766i \(-0.880807\pi\)
−0.0539169 + 0.998545i \(0.517171\pi\)
\(410\) −5.24585 6.05403i −0.259074 0.298987i
\(411\) 2.52043 + 0.740066i 0.124324 + 0.0365048i
\(412\) 0.382147 0.836786i 0.0188270 0.0412255i
\(413\) −10.3292 −0.508267
\(414\) 4.52547 1.58749i 0.222415 0.0780207i
\(415\) 3.99674 0.196192
\(416\) −2.00357 + 4.38721i −0.0982331 + 0.215101i
\(417\) 17.6804 + 5.19143i 0.865813 + 0.254226i
\(418\) −22.9581 26.4950i −1.12292 1.29591i
\(419\) −1.87628 + 1.20581i −0.0916621 + 0.0589076i −0.585669 0.810550i \(-0.699168\pi\)
0.494007 + 0.869458i \(0.335532\pi\)
\(420\) 2.57107 2.96717i 0.125455 0.144783i
\(421\) 2.56625 17.8486i 0.125071 0.869889i −0.826604 0.562784i \(-0.809730\pi\)
0.951675 0.307106i \(-0.0993605\pi\)
\(422\) 3.24237 0.952047i 0.157836 0.0463449i
\(423\) −10.6668 6.85514i −0.518638 0.333309i
\(424\) −0.602392 4.18973i −0.0292547 0.203471i
\(425\) 0.972256 + 2.12894i 0.0471614 + 0.103269i
\(426\) 2.44456 + 5.35285i 0.118439 + 0.259346i
\(427\) −2.68134 18.6492i −0.129759 0.902496i
\(428\) 11.3200 + 7.27495i 0.547175 + 0.351648i
\(429\) −23.1715 + 6.80377i −1.11873 + 0.328489i
\(430\) −0.314280 + 2.18586i −0.0151559 + 0.105412i
\(431\) −14.6477 + 16.9043i −0.705553 + 0.814252i −0.989492 0.144591i \(-0.953813\pi\)
0.283938 + 0.958842i \(0.408359\pi\)
\(432\) 0.841254 0.540641i 0.0404748 0.0260116i
\(433\) −11.4632 13.2292i −0.550887 0.635757i 0.410203 0.911994i \(-0.365458\pi\)
−0.961089 + 0.276237i \(0.910912\pi\)
\(434\) −2.92309 0.858296i −0.140313 0.0411995i
\(435\) 1.95742 4.28615i 0.0938510 0.205505i
\(436\) −4.97597 −0.238306
\(437\) 15.5111 + 29.7811i 0.741996 + 1.42462i
\(438\) 14.3814 0.687170
\(439\) −6.27863 + 13.7483i −0.299662 + 0.656169i −0.998236 0.0593689i \(-0.981091\pi\)
0.698574 + 0.715538i \(0.253818\pi\)
\(440\) 7.27055 + 2.13483i 0.346610 + 0.101774i
\(441\) 0.176382 + 0.203555i 0.00839912 + 0.00969311i
\(442\) 3.50436 2.25212i 0.166686 0.107122i
\(443\) 7.74333 8.93627i 0.367897 0.424575i −0.541373 0.840782i \(-0.682095\pi\)
0.909270 + 0.416207i \(0.136641\pi\)
\(444\) 0.0856910 0.595994i 0.00406671 0.0282846i
\(445\) 7.60510 2.23306i 0.360516 0.105857i
\(446\) −14.5785 9.36906i −0.690314 0.443638i
\(447\) 0.563000 + 3.91575i 0.0266290 + 0.185209i
\(448\) −1.07773 2.35990i −0.0509181 0.111495i
\(449\) −1.94712 4.26359i −0.0918900 0.201211i 0.858106 0.513472i \(-0.171641\pi\)
−0.949996 + 0.312261i \(0.898914\pi\)
\(450\) 0.385646 + 2.68223i 0.0181795 + 0.126441i
\(451\) −22.2971 14.3295i −1.04993 0.674748i
\(452\) 13.0527 3.83263i 0.613949 0.180272i
\(453\) 2.31220 16.0817i 0.108637 0.755585i
\(454\) −7.80632 + 9.00898i −0.366369 + 0.422812i
\(455\) 15.9299 10.2375i 0.746807 0.479943i
\(456\) 4.58506 + 5.29144i 0.214715 + 0.247795i
\(457\) 27.6933 + 8.13149i 1.29544 + 0.380375i 0.855570 0.517687i \(-0.173207\pi\)
0.439869 + 0.898062i \(0.355025\pi\)
\(458\) 7.02050 15.3727i 0.328046 0.718321i
\(459\) −0.863693 −0.0403138
\(460\) −6.30047 3.60256i −0.293761 0.167970i
\(461\) −1.23414 −0.0574794 −0.0287397 0.999587i \(-0.509149\pi\)
−0.0287397 + 0.999587i \(0.509149\pi\)
\(462\) 5.39636 11.8164i 0.251061 0.549748i
\(463\) −0.523678 0.153766i −0.0243374 0.00714610i 0.269541 0.962989i \(-0.413128\pi\)
−0.293879 + 0.955843i \(0.594946\pi\)
\(464\) −2.03899 2.35312i −0.0946577 0.109241i
\(465\) −1.49497 + 0.960762i −0.0693278 + 0.0445543i
\(466\) −18.6586 + 21.5331i −0.864341 + 0.997502i
\(467\) −2.26688 + 15.7665i −0.104899 + 0.729586i 0.867699 + 0.497090i \(0.165598\pi\)
−0.972597 + 0.232496i \(0.925311\pi\)
\(468\) 4.62769 1.35881i 0.213915 0.0628111i
\(469\) 35.2193 + 22.6341i 1.62628 + 1.04514i
\(470\) 2.73082 + 18.9933i 0.125964 + 0.876095i
\(471\) 8.45046 + 18.5039i 0.389377 + 0.852616i
\(472\) 1.65394 + 3.62163i 0.0761288 + 0.166699i
\(473\) 1.03985 + 7.23231i 0.0478123 + 0.332542i
\(474\) 8.69872 + 5.59033i 0.399546 + 0.256772i
\(475\) −18.2044 + 5.34530i −0.835276 + 0.245259i
\(476\) −0.318888 + 2.21792i −0.0146162 + 0.101658i
\(477\) −2.77190 + 3.19895i −0.126917 + 0.146470i
\(478\) −18.5912 + 11.9478i −0.850341 + 0.546481i
\(479\) 0.167294 + 0.193068i 0.00764388 + 0.00882150i 0.759559 0.650439i \(-0.225415\pi\)
−0.751915 + 0.659260i \(0.770870\pi\)
\(480\) −1.45204 0.426356i −0.0662761 0.0194604i
\(481\) 1.20640 2.64164i 0.0550069 0.120448i
\(482\) −1.59815 −0.0727935
\(483\) −7.65024 + 9.81218i −0.348098 + 0.446470i
\(484\) 14.0715 0.639612
\(485\) 9.39964 20.5823i 0.426815 0.934596i
\(486\) −0.959493 0.281733i −0.0435235 0.0127796i
\(487\) −16.7486 19.3289i −0.758952 0.875877i 0.236452 0.971643i \(-0.424015\pi\)
−0.995404 + 0.0957661i \(0.969470\pi\)
\(488\) −6.10943 + 3.92629i −0.276561 + 0.177735i
\(489\) 9.79193 11.3005i 0.442807 0.511026i
\(490\) 0.0580083 0.403457i 0.00262055 0.0182263i
\(491\) 7.22173 2.12049i 0.325912 0.0956964i −0.114684 0.993402i \(-0.536585\pi\)
0.440596 + 0.897706i \(0.354767\pi\)
\(492\) 4.45305 + 2.86180i 0.200759 + 0.129020i
\(493\) 0.382715 + 2.66184i 0.0172366 + 0.119883i
\(494\) 14.0282 + 30.7174i 0.631157 + 1.38204i
\(495\) −3.14780 6.89273i −0.141483 0.309805i
\(496\) 0.167117 + 1.16233i 0.00750379 + 0.0521900i
\(497\) −12.8432 8.25385i −0.576098 0.370236i
\(498\) −2.53403 + 0.744058i −0.113553 + 0.0333420i
\(499\) 5.71269 39.7326i 0.255735 1.77868i −0.306671 0.951815i \(-0.599215\pi\)
0.562406 0.826861i \(-0.309876\pi\)
\(500\) 7.64062 8.81774i 0.341699 0.394341i
\(501\) −10.1373 + 6.51486i −0.452902 + 0.291062i
\(502\) 11.5181 + 13.2927i 0.514080 + 0.593280i
\(503\) 23.1700 + 6.80333i 1.03310 + 0.303346i 0.753971 0.656908i \(-0.228136\pi\)
0.279129 + 0.960254i \(0.409954\pi\)
\(504\) −1.07773 + 2.35990i −0.0480060 + 0.105119i
\(505\) −0.802497 −0.0357107
\(506\) −23.3600 5.56381i −1.03848 0.247342i
\(507\) 10.2619 0.455747
\(508\) 2.79580 6.12195i 0.124044 0.271617i
\(509\) −0.614059 0.180304i −0.0272177 0.00799183i 0.268095 0.963392i \(-0.413606\pi\)
−0.295313 + 0.955401i \(0.595424\pi\)
\(510\) 0.855942 + 0.987809i 0.0379017 + 0.0437409i
\(511\) −31.3875 + 20.1715i −1.38850 + 0.892336i
\(512\) −0.654861 + 0.755750i −0.0289410 + 0.0333997i
\(513\) 0.996429 6.93032i 0.0439934 0.305981i
\(514\) 19.8581 5.83086i 0.875902 0.257188i
\(515\) 1.17115 + 0.752650i 0.0516069 + 0.0331657i
\(516\) −0.207673 1.44440i −0.00914231 0.0635861i
\(517\) 26.3742 + 57.7515i 1.15994 + 2.53991i
\(518\) 0.648927 + 1.42095i 0.0285122 + 0.0624330i
\(519\) −2.20607 15.3436i −0.0968358 0.673508i
\(520\) −6.14024 3.94609i −0.269267 0.173048i
\(521\) −21.8174 + 6.40617i −0.955838 + 0.280659i −0.722216 0.691668i \(-0.756876\pi\)
−0.233622 + 0.972327i \(0.575058\pi\)
\(522\) −0.443115 + 3.08193i −0.0193946 + 0.134892i
\(523\) −0.550626 + 0.635456i −0.0240772 + 0.0277866i −0.767660 0.640857i \(-0.778579\pi\)
0.743583 + 0.668643i \(0.233125\pi\)
\(524\) 15.9812 10.2705i 0.698141 0.448668i
\(525\) −4.60380 5.31307i −0.200926 0.231881i
\(526\) 26.4097 + 7.75459i 1.15152 + 0.338116i
\(527\) 0.421321 0.922564i 0.0183530 0.0401875i
\(528\) −5.00714 −0.217908
\(529\) 20.5306 + 10.3680i 0.892634 + 0.450782i
\(530\) 6.40567 0.278245
\(531\) 1.65394 3.62163i 0.0717750 0.157165i
\(532\) −17.4288 5.11755i −0.755633 0.221874i
\(533\) 16.7187 + 19.2944i 0.724167 + 0.835733i
\(534\) −4.40610 + 2.83163i −0.190670 + 0.122536i
\(535\) −13.3354 + 15.3899i −0.576539 + 0.665362i
\(536\) 2.29655 15.9728i 0.0991957 0.689921i
\(537\) −6.92297 + 2.03277i −0.298748 + 0.0877204i
\(538\) −11.1682 7.17739i −0.481497 0.309439i
\(539\) −0.191931 1.33491i −0.00826704 0.0574985i
\(540\) 0.628663 + 1.37658i 0.0270533 + 0.0592386i
\(541\) 9.49585 + 20.7930i 0.408259 + 0.893962i 0.996366 + 0.0851787i \(0.0271461\pi\)
−0.588107 + 0.808783i \(0.700127\pi\)
\(542\) −3.42674 23.8335i −0.147191 1.02374i
\(543\) 2.81028 + 1.80606i 0.120601 + 0.0775053i
\(544\) 0.828708 0.243331i 0.0355305 0.0104327i
\(545\) 1.07168 7.45367i 0.0459055 0.319280i
\(546\) −8.19408 + 9.45647i −0.350674 + 0.404700i
\(547\) 8.80067 5.65585i 0.376289 0.241827i −0.338802 0.940858i \(-0.610022\pi\)
0.715091 + 0.699031i \(0.246385\pi\)
\(548\) 1.72021 + 1.98523i 0.0734839 + 0.0848050i
\(549\) 6.96812 + 2.04602i 0.297392 + 0.0873221i
\(550\) 5.63652 12.3423i 0.240342 0.526276i
\(551\) −21.8003 −0.928723
\(552\) 4.66533 + 1.11118i 0.198570 + 0.0472948i
\(553\) −26.8261 −1.14076
\(554\) −7.61887 + 16.6830i −0.323695 + 0.708793i
\(555\) 0.874304 + 0.256719i 0.0371121 + 0.0108971i
\(556\) 12.0670 + 13.9261i 0.511755 + 0.590597i
\(557\) −22.1144 + 14.2120i −0.937015 + 0.602183i −0.917547 0.397627i \(-0.869834\pi\)
−0.0194682 + 0.999810i \(0.506197\pi\)
\(558\) 0.768989 0.887461i 0.0325539 0.0375692i
\(559\) 1.00162 6.96642i 0.0423640 0.294648i
\(560\) 3.76709 1.10612i 0.159189 0.0467420i
\(561\) 3.63811 + 2.33807i 0.153601 + 0.0987136i
\(562\) 0.00284250 + 0.0197700i 0.000119904 + 0.000833948i
\(563\) −11.5774 25.3509i −0.487928 1.06841i −0.980207 0.197976i \(-0.936563\pi\)
0.492279 0.870437i \(-0.336164\pi\)
\(564\) −5.26732 11.5338i −0.221794 0.485662i
\(565\) 2.92985 + 20.3776i 0.123260 + 0.857291i
\(566\) 14.7671 + 9.49024i 0.620708 + 0.398905i
\(567\) 2.48926 0.730913i 0.104539 0.0306955i
\(568\) −0.837470 + 5.82473i −0.0351395 + 0.244400i
\(569\) 21.0907 24.3399i 0.884166 1.02038i −0.115467 0.993311i \(-0.536837\pi\)
0.999634 0.0270710i \(-0.00861801\pi\)
\(570\) −8.91372 + 5.72850i −0.373354 + 0.239940i
\(571\) −10.8030 12.4673i −0.452091 0.521740i 0.483253 0.875481i \(-0.339455\pi\)
−0.935344 + 0.353740i \(0.884910\pi\)
\(572\) −23.1715 6.80377i −0.968849 0.284480i
\(573\) −7.06718 + 15.4750i −0.295236 + 0.646476i
\(574\) −13.7328 −0.573197
\(575\) −7.99071 + 10.2489i −0.333236 + 0.427407i
\(576\) 1.00000 0.0416667
\(577\) −2.73102 + 5.98010i −0.113694 + 0.248955i −0.957922 0.287030i \(-0.907332\pi\)
0.844228 + 0.535984i \(0.180059\pi\)
\(578\) 15.5956 + 4.57929i 0.648693 + 0.190473i
\(579\) 14.8926 + 17.1870i 0.618917 + 0.714268i
\(580\) 3.96395 2.54748i 0.164594 0.105778i
\(581\) 4.48691 5.17817i 0.186148 0.214827i
\(582\) −2.12786 + 14.7996i −0.0882027 + 0.613463i
\(583\) 20.3358 5.97112i 0.842222 0.247299i
\(584\) 12.0984 + 7.77517i 0.500636 + 0.321739i
\(585\) 1.03874 + 7.22462i 0.0429468 + 0.298701i
\(586\) −1.20738 2.64380i −0.0498765 0.109214i
\(587\) −6.40693 14.0292i −0.264442 0.579048i 0.730105 0.683335i \(-0.239471\pi\)
−0.994547 + 0.104287i \(0.966744\pi\)
\(588\) 0.0383314 + 0.266601i 0.00158076 + 0.0109944i
\(589\) 6.91663 + 4.44505i 0.284995 + 0.183155i
\(590\) −5.78117 + 1.69750i −0.238007 + 0.0698851i
\(591\) −1.43442 + 9.97664i −0.0590043 + 0.410384i
\(592\) 0.394306 0.455054i 0.0162059 0.0187026i
\(593\) −12.0884 + 7.76876i −0.496412 + 0.319025i −0.764780 0.644292i \(-0.777152\pi\)
0.268368 + 0.963317i \(0.413516\pi\)
\(594\) 3.27898 + 3.78415i 0.134538 + 0.155265i
\(595\) −3.25361 0.955347i −0.133385 0.0391654i
\(596\) −1.64339 + 3.59852i −0.0673158 + 0.147401i
\(597\) −9.43241 −0.386043
\(598\) 20.0798 + 11.4815i 0.821125 + 0.469513i
\(599\) 7.73316 0.315968 0.157984 0.987442i \(-0.449500\pi\)
0.157984 + 0.987442i \(0.449500\pi\)
\(600\) −1.12570 + 2.46493i −0.0459564 + 0.100630i
\(601\) −30.7273 9.02234i −1.25339 0.368029i −0.413361 0.910567i \(-0.635645\pi\)
−0.840031 + 0.542538i \(0.817463\pi\)
\(602\) 2.47918 + 2.86113i 0.101044 + 0.116611i
\(603\) −13.5754 + 8.72436i −0.552832 + 0.355284i
\(604\) 10.6396 12.2787i 0.432918 0.499614i
\(605\) −3.03058 + 21.0781i −0.123210 + 0.856948i
\(606\) 0.508803 0.149398i 0.0206687 0.00606888i
\(607\) −0.772604 0.496522i −0.0313590 0.0201532i 0.524867 0.851184i \(-0.324115\pi\)
−0.556226 + 0.831031i \(0.687751\pi\)
\(608\) 0.996429 + 6.93032i 0.0404105 + 0.281061i
\(609\) −3.35565 7.34785i −0.135978 0.297750i
\(610\) −4.56553 9.99712i −0.184853 0.404772i
\(611\) −8.70323 60.5323i −0.352095 2.44887i
\(612\) −0.726585 0.466948i −0.0293705 0.0188752i
\(613\) −18.9616 + 5.56762i −0.765850 + 0.224874i −0.641249 0.767333i \(-0.721583\pi\)
−0.124601 + 0.992207i \(0.539765\pi\)
\(614\) 1.80910 12.5826i 0.0730094 0.507792i
\(615\) −5.24585 + 6.05403i −0.211533 + 0.244122i
\(616\) 10.9281 7.02308i 0.440307 0.282968i
\(617\) −4.51857 5.21471i −0.181911 0.209936i 0.657469 0.753482i \(-0.271627\pi\)
−0.839380 + 0.543545i \(0.817082\pi\)
\(618\) −0.882654 0.259171i −0.0355055 0.0104254i
\(619\) 9.44337 20.6781i 0.379561 0.831123i −0.619379 0.785092i \(-0.712616\pi\)
0.998940 0.0460306i \(-0.0146572\pi\)
\(620\) −1.77708 −0.0713693
\(621\) −2.21537 4.25348i −0.0888997 0.170686i
\(622\) −21.3006 −0.854077
\(623\) 5.64466 12.3601i 0.226149 0.495197i
\(624\) 4.62769 + 1.35881i 0.185256 + 0.0543960i
\(625\) 2.69008 + 3.10452i 0.107603 + 0.124181i
\(626\) 1.59110 1.02253i 0.0635929 0.0408687i
\(627\) −22.9581 + 26.4950i −0.916856 + 1.05811i
\(628\) −2.89500 + 20.1352i −0.115523 + 0.803481i
\(629\) −0.498984 + 0.146515i −0.0198958 + 0.00584193i
\(630\) −3.30287 2.12262i −0.131589 0.0845674i
\(631\) −4.79472 33.3480i −0.190875 1.32756i −0.829700 0.558210i \(-0.811488\pi\)
0.638825 0.769352i \(-0.279421\pi\)
\(632\) 4.29547 + 9.40577i 0.170865 + 0.374141i
\(633\) −1.40379 3.07388i −0.0557958 0.122176i
\(634\) 3.10410 + 21.5895i 0.123279 + 0.857427i
\(635\) 8.56814 + 5.50641i 0.340016 + 0.218515i
\(636\) −4.06135 + 1.19252i −0.161043 + 0.0472865i
\(637\) −0.184875 + 1.28583i −0.00732499 + 0.0509465i
\(638\) 10.2095 11.7824i 0.404198 0.466470i
\(639\) 4.95046 3.18147i 0.195837 0.125857i
\(640\) −0.991025 1.14370i −0.0391737 0.0452089i
\(641\) 4.06760 + 1.19436i 0.160661 + 0.0471742i 0.361074 0.932537i \(-0.382410\pi\)
−0.200413 + 0.979711i \(0.564228\pi\)
\(642\) 5.58989 12.2401i 0.220615 0.483080i
\(643\) 40.0914 1.58105 0.790525 0.612430i \(-0.209808\pi\)
0.790525 + 0.612430i \(0.209808\pi\)
\(644\) −11.7407 + 4.11850i −0.462647 + 0.162292i
\(645\) 2.20834 0.0869533
\(646\) 2.51211 5.50074i 0.0988375 0.216424i
\(647\) 5.46621 + 1.60502i 0.214899 + 0.0631000i 0.387410 0.921908i \(-0.373370\pi\)
−0.172511 + 0.985008i \(0.555188\pi\)
\(648\) −0.654861 0.755750i −0.0257254 0.0296886i
\(649\) −16.7708 + 10.7780i −0.658313 + 0.423072i
\(650\) −8.55875 + 9.87733i −0.335702 + 0.387421i
\(651\) −0.433561 + 3.01548i −0.0169926 + 0.118186i
\(652\) 14.3470 4.21266i 0.561872 0.164981i
\(653\) 27.1715 + 17.4620i 1.06330 + 0.683343i 0.950642 0.310291i \(-0.100426\pi\)
0.112660 + 0.993634i \(0.464063\pi\)
\(654\) 0.708154 + 4.92532i 0.0276910 + 0.192595i
\(655\) 11.9426 + 26.1507i 0.466637 + 1.02179i
\(656\) 2.19894 + 4.81500i 0.0858541 + 0.187994i
\(657\) −2.04669 14.2350i −0.0798489 0.555361i
\(658\) 27.6735 + 17.7847i 1.07882 + 0.693318i
\(659\) −8.86774 + 2.60380i −0.345438 + 0.101430i −0.449849 0.893104i \(-0.648522\pi\)
0.104411 + 0.994534i \(0.466704\pi\)
\(660\) 1.07839 7.50037i 0.0419763 0.291951i
\(661\) 21.2094 24.4770i 0.824952 0.952045i −0.174516 0.984654i \(-0.555836\pi\)
0.999468 + 0.0326090i \(0.0103816\pi\)
\(662\) 14.6532 9.41704i 0.569513 0.366004i
\(663\) −2.72792 3.14818i −0.105943 0.122265i
\(664\) −2.53403 0.744058i −0.0983394 0.0288750i
\(665\) 11.4194 25.0050i 0.442825 0.969651i
\(666\) −0.602123 −0.0233318
\(667\) −12.1273 + 8.71240i −0.469570 + 0.337345i
\(668\) −12.0503 −0.466238
\(669\) −7.19895 + 15.7635i −0.278328 + 0.609452i
\(670\) 23.4316 + 6.88015i 0.905243 + 0.265803i
\(671\) −23.8129 27.4816i −0.919287 1.06091i
\(672\) −2.18251 + 1.40261i −0.0841920 + 0.0541069i
\(673\) −25.3577 + 29.2644i −0.977468 + 1.12806i 0.0142851 + 0.999898i \(0.495453\pi\)
−0.991753 + 0.128161i \(0.959093\pi\)
\(674\) 2.55426 17.7653i 0.0983866 0.684294i
\(675\) 2.60004 0.763442i 0.100076 0.0293849i
\(676\) 8.63285 + 5.54800i 0.332033 + 0.213385i
\(677\) −4.16456 28.9652i −0.160057 1.11322i −0.898522 0.438929i \(-0.855358\pi\)
0.738465 0.674292i \(-0.235551\pi\)
\(678\) −5.65122 12.3744i −0.217034 0.475238i
\(679\) −16.1140 35.2848i −0.618400 1.35411i
\(680\) 0.186014 + 1.29376i 0.00713331 + 0.0496132i
\(681\) 10.0282 + 6.44475i 0.384283 + 0.246964i
\(682\) −5.64161 + 1.65653i −0.216028 + 0.0634317i
\(683\) 4.68194 32.5636i 0.179150 1.24601i −0.679587 0.733595i \(-0.737841\pi\)
0.858736 0.512418i \(-0.171250\pi\)
\(684\) 4.58506 5.29144i 0.175314 0.202323i
\(685\) −3.34423 + 2.14921i −0.127776 + 0.0821170i
\(686\) −12.3502 14.2529i −0.471532 0.544176i
\(687\) −16.2154 4.76127i −0.618656 0.181654i
\(688\) 0.606195 1.32738i 0.0231110 0.0506060i
\(689\) −20.4151 −0.777754
\(690\) −2.66924 + 6.74904i −0.101616 + 0.256931i
\(691\) −12.3215 −0.468730 −0.234365 0.972149i \(-0.575301\pi\)
−0.234365 + 0.972149i \(0.575301\pi\)
\(692\) 6.43950 14.1005i 0.244793 0.536022i
\(693\) −12.4641 3.65979i −0.473471 0.139024i
\(694\) 3.15982 + 3.64663i 0.119945 + 0.138424i
\(695\) −23.4592 + 15.0763i −0.889858 + 0.571877i
\(696\) −2.03899 + 2.35312i −0.0772877 + 0.0891947i
\(697\) 0.650640 4.52530i 0.0246447 0.171408i
\(698\) −9.93639 + 2.91759i −0.376098 + 0.110432i
\(699\) 23.9693 + 15.4042i 0.906603 + 0.582639i
\(700\) −1.00050 6.95864i −0.0378154 0.263012i
\(701\) −11.3429 24.8375i −0.428415 0.938098i −0.993581 0.113121i \(-0.963915\pi\)
0.565166 0.824977i \(-0.308812\pi\)
\(702\) −2.00357 4.38721i −0.0756199 0.165585i
\(703\) −0.599972 4.17290i −0.0226284 0.157384i
\(704\) −4.21228 2.70707i −0.158756 0.102026i
\(705\) 18.4113 5.40606i 0.693411 0.203604i
\(706\) 4.18001 29.0726i 0.157317 1.09416i
\(707\) −0.900919 + 1.03972i −0.0338825 + 0.0391025i
\(708\) 3.34938 2.15252i 0.125878 0.0808966i
\(709\) −7.28814 8.41096i −0.273712 0.315880i 0.602206 0.798341i \(-0.294289\pi\)
−0.875918 + 0.482461i \(0.839743\pi\)
\(710\) −8.54469 2.50895i −0.320677 0.0941592i
\(711\) 4.29547 9.40577i 0.161093 0.352744i
\(712\) −5.23754 −0.196285
\(713\) 5.62410 0.291468i 0.210624 0.0109156i
\(714\) 2.24072 0.0838570
\(715\) 15.1820 33.2440i 0.567776 1.24326i
\(716\) −6.92297 2.03277i −0.258724 0.0759681i
\(717\) 14.4720 + 16.7016i 0.540467 + 0.623732i
\(718\) −8.41063 + 5.40518i −0.313882 + 0.201720i
\(719\) −16.8352 + 19.4289i −0.627848 + 0.724575i −0.977177 0.212425i \(-0.931864\pi\)
0.349330 + 0.937000i \(0.386409\pi\)
\(720\) −0.215370 + 1.49793i −0.00802638 + 0.0558247i
\(721\) 2.28991 0.672380i 0.0852809 0.0250407i
\(722\) 25.2562 + 16.2312i 0.939940 + 0.604063i
\(723\) 0.227440 + 1.58188i 0.00845858 + 0.0588307i
\(724\) 1.38773 + 3.03870i 0.0515745 + 0.112933i
\(725\) −3.50499 7.67486i −0.130172 0.285037i
\(726\) −2.00258 13.9282i −0.0743227 0.516926i
\(727\) 0.0404181 + 0.0259751i 0.00149903 + 0.000963365i 0.541390 0.840772i \(-0.317898\pi\)
−0.539891 + 0.841735i \(0.681535\pi\)
\(728\) −12.0059 + 3.52524i −0.444967 + 0.130654i
\(729\) −0.142315 + 0.989821i −0.00527092 + 0.0366601i
\(730\) −14.2523 + 16.4481i −0.527502 + 0.608770i
\(731\) −1.06027 + 0.681395i −0.0392155 + 0.0252023i
\(732\) 4.75579 + 5.48847i 0.175779 + 0.202860i
\(733\) −29.3610 8.62117i −1.08447 0.318430i −0.309806 0.950800i \(-0.600264\pi\)
−0.774667 + 0.632370i \(0.782082\pi\)
\(734\) 6.93948 15.1953i 0.256141 0.560870i
\(735\) −0.407605 −0.0150348
\(736\) 3.32398 + 3.45705i 0.122523 + 0.127428i
\(737\) 80.8007 2.97633
\(738\) 2.19894 4.81500i 0.0809441 0.177243i
\(739\) 11.5414 + 3.38886i 0.424557 + 0.124661i 0.487030 0.873385i \(-0.338080\pi\)
−0.0624723 + 0.998047i \(0.519899\pi\)
\(740\) 0.596719 + 0.688650i 0.0219358 + 0.0253153i
\(741\) 28.4083 18.2569i 1.04361 0.670685i
\(742\) 7.19129 8.29919i 0.264001 0.304673i
\(743\) 1.44897 10.0778i 0.0531576 0.369719i −0.945827 0.324670i \(-0.894747\pi\)
0.998985 0.0450487i \(-0.0143443\pi\)
\(744\) 1.12671 0.330833i 0.0413073 0.0121289i
\(745\) −5.03641 3.23670i −0.184520 0.118584i
\(746\) −4.72820 32.8854i −0.173112 1.20402i
\(747\) 1.09711 + 2.40235i 0.0401413 + 0.0878972i
\(748\) 1.79652 + 3.93383i 0.0656872 + 0.143835i
\(749\) 4.96821 + 34.5547i 0.181534 + 1.26260i
\(750\) −9.81536 6.30795i −0.358406 0.230334i
\(751\) 8.70241 2.55526i 0.317555 0.0932427i −0.119071 0.992886i \(-0.537992\pi\)
0.436626 + 0.899643i \(0.356173\pi\)
\(752\) 1.80450 12.5506i 0.0658035 0.457673i
\(753\) 11.5181 13.2927i 0.419745 0.484411i
\(754\) −12.6333 + 8.11890i −0.460076 + 0.295673i
\(755\) 16.1013 + 18.5819i 0.585985 + 0.676263i
\(756\) 2.48926 + 0.730913i 0.0905336 + 0.0265831i
\(757\) 7.27301 15.9257i 0.264342 0.578829i −0.730192 0.683242i \(-0.760569\pi\)
0.994534 + 0.104414i \(0.0332966\pi\)
\(758\) 8.45299 0.307026
\(759\) −2.18271 + 23.9140i −0.0792274 + 0.868023i
\(760\) −10.5958 −0.384348
\(761\) −10.3746 + 22.7172i −0.376080 + 0.823499i 0.623066 + 0.782169i \(0.285887\pi\)
−0.999146 + 0.0413301i \(0.986840\pi\)
\(762\) −6.45752 1.89610i −0.233931 0.0686884i
\(763\) −8.45386 9.75628i −0.306050 0.353201i
\(764\) −14.3117 + 9.19757i −0.517779 + 0.332756i
\(765\) 0.855942 0.987809i 0.0309466 0.0357143i
\(766\) 0.626651 4.35846i 0.0226418 0.157477i
\(767\) 18.4248 5.41000i 0.665280 0.195344i
\(768\) 0.841254 + 0.540641i 0.0303561 + 0.0195087i
\(769\) 1.21150 + 8.42615i 0.0436877 + 0.303855i 0.999936 + 0.0112988i \(0.00359661\pi\)
−0.956248 + 0.292556i \(0.905494\pi\)