Properties

Label 138.2.e
Level $138$
Weight $2$
Character orbit 138.e
Rep. character $\chi_{138}(13,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $40$
Newform subspaces $4$
Sturm bound $48$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 138.e (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(138, [\chi])\).

Total New Old
Modular forms 280 40 240
Cusp forms 200 40 160
Eisenstein series 80 0 80

Trace form

\( 40 q - 4 q^{4} + 8 q^{5} + 8 q^{7} - 4 q^{9} + 4 q^{10} + 24 q^{11} + 16 q^{13} + 8 q^{14} + 8 q^{15} - 4 q^{16} - 20 q^{17} - 16 q^{19} - 36 q^{20} + 4 q^{21} - 32 q^{22} - 64 q^{23} - 52 q^{25} - 28 q^{26}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(138, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
138.2.e.a 138.e 23.c $10$ $1.102$ \(\Q(\zeta_{22})\) None 138.2.e.a \(-1\) \(-1\) \(8\) \(8\) $\mathrm{SU}(2)[C_{11}]$ \(q-\zeta_{22}q^{2}+\zeta_{22}^{8}q^{3}+\zeta_{22}^{2}q^{4}+(1+\cdots)q^{5}+\cdots\)
138.2.e.b 138.e 23.c $10$ $1.102$ \(\Q(\zeta_{22})\) None 138.2.e.b \(-1\) \(1\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{11}]$ \(q-\zeta_{22}q^{2}-\zeta_{22}^{8}q^{3}+\zeta_{22}^{2}q^{4}+(-1+\cdots)q^{5}+\cdots\)
138.2.e.c 138.e 23.c $10$ $1.102$ \(\Q(\zeta_{22})\) None 138.2.e.c \(1\) \(-1\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{11}]$ \(q+\zeta_{22}q^{2}+\zeta_{22}^{8}q^{3}+\zeta_{22}^{2}q^{4}+(1+\cdots)q^{5}+\cdots\)
138.2.e.d 138.e 23.c $10$ $1.102$ \(\Q(\zeta_{22})\) None 138.2.e.d \(1\) \(1\) \(2\) \(2\) $\mathrm{SU}(2)[C_{11}]$ \(q+\zeta_{22}q^{2}-\zeta_{22}^{8}q^{3}+\zeta_{22}^{2}q^{4}+(-1+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(138, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(138, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 2}\)