Properties

Label 138.2.d.a
Level $138$
Weight $2$
Character orbit 138.d
Analytic conductor $1.102$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [138,2,Mod(137,138)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(138, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("138.137");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 138.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.10193554789\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.34447360000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 63x^{4} + 841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{7} + \beta_1) q^{3} - q^{4} + \beta_{3} q^{5} + (\beta_{4} - 1) q^{6} - \beta_{5} q^{7} - \beta_1 q^{8} + ( - \beta_{7} + \beta_{4} + 2 \beta_1 - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{7} + \beta_1) q^{3} - q^{4} + \beta_{3} q^{5} + (\beta_{4} - 1) q^{6} - \beta_{5} q^{7} - \beta_1 q^{8} + ( - \beta_{7} + \beta_{4} + 2 \beta_1 - 1) q^{9} + \beta_{2} q^{10} + (\beta_{6} - \beta_{3}) q^{11} + ( - \beta_{7} - \beta_1) q^{12} + (\beta_{7} - \beta_{4}) q^{13} - \beta_{6} q^{14} + ( - \beta_{6} + \beta_{5} + \beta_{2}) q^{15} + q^{16} + \beta_{6} q^{17} + ( - \beta_{7} - \beta_{4} - \beta_1 - 2) q^{18} - \beta_{2} q^{19} - \beta_{3} q^{20} + (\beta_{5} + \beta_{3} - \beta_{2}) q^{21} + ( - \beta_{5} - \beta_{2}) q^{22} + ( - \beta_{7} - \beta_{6} + \cdots - 3 \beta_1) q^{23}+ \cdots + ( - \beta_{6} - 2 \beta_{5} + \cdots - 2 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 8 q^{4} - 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{3} - 8 q^{4} - 4 q^{6} + 4 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{18} + 4 q^{24} + 48 q^{25} - 28 q^{27} + 16 q^{31} + 24 q^{39} + 16 q^{46} - 4 q^{48} - 56 q^{49} + 8 q^{52} + 28 q^{54} - 64 q^{55} + 8 q^{58} - 8 q^{64} + 28 q^{69} - 24 q^{70} + 16 q^{72} - 8 q^{73} - 4 q^{75} - 16 q^{78} + 8 q^{81} + 24 q^{85} - 56 q^{87} - 8 q^{93} + 56 q^{94} - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 63x^{4} + 841 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{6} + 92\nu^{2} ) / 319 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 92\nu^{3} + 319\nu ) / 319 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} - 92\nu^{3} + 319\nu ) / 319 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -6\nu^{6} + 29\nu^{4} - 233\nu^{2} + 1073 ) / 319 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -6\nu^{7} - 29\nu^{5} - 233\nu^{3} - 1073\nu ) / 319 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -6\nu^{7} + 29\nu^{5} - 233\nu^{3} + 1073\nu ) / 319 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -6\nu^{6} - 29\nu^{4} - 233\nu^{2} - 1073 ) / 319 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} + \beta_{4} + 12\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{6} + \beta_{5} - 6\beta_{3} + 6\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -11\beta_{7} + 11\beta_{4} - 74 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 11\beta_{6} - 11\beta_{5} - 37\beta_{3} - 37\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -46\beta_{7} - 46\beta_{4} - 233\beta_1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -92\beta_{6} - 92\beta_{5} + 233\beta_{3} - 233\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/138\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
137.1
−1.48020 + 1.48020i
1.48020 1.48020i
−1.81907 + 1.81907i
1.81907 1.81907i
−1.48020 1.48020i
1.48020 + 1.48020i
−1.81907 1.81907i
1.81907 + 1.81907i
1.00000i −1.61803 + 0.618034i −1.00000 −2.96039 0.618034 + 1.61803i 4.79002i 1.00000i 2.23607 2.00000i 2.96039i
137.2 1.00000i −1.61803 + 0.618034i −1.00000 2.96039 0.618034 + 1.61803i 4.79002i 1.00000i 2.23607 2.00000i 2.96039i
137.3 1.00000i 0.618034 1.61803i −1.00000 −3.63814 −1.61803 0.618034i 2.24849i 1.00000i −2.23607 2.00000i 3.63814i
137.4 1.00000i 0.618034 1.61803i −1.00000 3.63814 −1.61803 0.618034i 2.24849i 1.00000i −2.23607 2.00000i 3.63814i
137.5 1.00000i −1.61803 0.618034i −1.00000 −2.96039 0.618034 1.61803i 4.79002i 1.00000i 2.23607 + 2.00000i 2.96039i
137.6 1.00000i −1.61803 0.618034i −1.00000 2.96039 0.618034 1.61803i 4.79002i 1.00000i 2.23607 + 2.00000i 2.96039i
137.7 1.00000i 0.618034 + 1.61803i −1.00000 −3.63814 −1.61803 + 0.618034i 2.24849i 1.00000i −2.23607 + 2.00000i 3.63814i
137.8 1.00000i 0.618034 + 1.61803i −1.00000 3.63814 −1.61803 + 0.618034i 2.24849i 1.00000i −2.23607 + 2.00000i 3.63814i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 137.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
23.b odd 2 1 inner
69.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 138.2.d.a 8
3.b odd 2 1 inner 138.2.d.a 8
4.b odd 2 1 1104.2.m.d 8
12.b even 2 1 1104.2.m.d 8
23.b odd 2 1 inner 138.2.d.a 8
69.c even 2 1 inner 138.2.d.a 8
92.b even 2 1 1104.2.m.d 8
276.h odd 2 1 1104.2.m.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
138.2.d.a 8 1.a even 1 1 trivial
138.2.d.a 8 3.b odd 2 1 inner
138.2.d.a 8 23.b odd 2 1 inner
138.2.d.a 8 69.c even 2 1 inner
1104.2.m.d 8 4.b odd 2 1
1104.2.m.d 8 12.b even 2 1
1104.2.m.d 8 92.b even 2 1
1104.2.m.d 8 276.h odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(138, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{4} + 2 T^{3} + 2 T^{2} + \cdots + 9)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} - 22 T^{2} + 116)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 28 T^{2} + 116)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 38 T^{2} + 116)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T - 4)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} - 28 T^{2} + 116)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 22 T^{2} + 116)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} - 20 T^{6} + \cdots + 279841 \) Copy content Toggle raw display
$29$ \( (T^{4} + 92 T^{2} + 1936)^{2} \) Copy content Toggle raw display
$31$ \( (T - 2)^{8} \) Copy content Toggle raw display
$37$ \( (T^{4} + 38 T^{2} + 116)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 20)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 22 T^{2} + 116)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 108 T^{2} + 1936)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 22 T^{2} + 116)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 192 T^{2} + 4096)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 190 T^{2} + 2900)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 198 T^{2} + 9396)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 60 T^{2} + 400)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 2 T - 44)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + 92 T^{2} + 116)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 62 T^{2} + 116)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 140 T^{2} + 2900)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 248 T^{2} + 1856)^{2} \) Copy content Toggle raw display
show more
show less