Properties

Label 138.2.a
Level $138$
Weight $2$
Character orbit 138.a
Rep. character $\chi_{138}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $4$
Sturm bound $48$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 138.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(138))\).

Total New Old
Modular forms 28 5 23
Cusp forms 21 5 16
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(1\)
Minus space\(-\)\(4\)

Trace form

\( 5 q + q^{2} + q^{3} + 5 q^{4} - 2 q^{5} + q^{6} + q^{8} + 5 q^{9} + O(q^{10}) \) \( 5 q + q^{2} + q^{3} + 5 q^{4} - 2 q^{5} + q^{6} + q^{8} + 5 q^{9} + 2 q^{10} - 12 q^{11} + q^{12} - 2 q^{13} - 2 q^{15} + 5 q^{16} - 6 q^{17} + q^{18} - 8 q^{19} - 2 q^{20} + 4 q^{21} - q^{23} + q^{24} - 5 q^{25} - 2 q^{26} + q^{27} - 2 q^{29} - 6 q^{30} + q^{32} - 6 q^{34} - 16 q^{35} + 5 q^{36} + 10 q^{37} - 12 q^{38} + 6 q^{39} + 2 q^{40} + 10 q^{41} - 4 q^{42} - 16 q^{43} - 12 q^{44} - 2 q^{45} + 3 q^{46} + 8 q^{47} + q^{48} + 13 q^{49} + 7 q^{50} - 10 q^{51} - 2 q^{52} + 22 q^{53} + q^{54} + 8 q^{55} + 8 q^{57} - 2 q^{58} - 4 q^{59} - 2 q^{60} + 2 q^{61} - 8 q^{62} + 5 q^{64} + 20 q^{65} - 12 q^{66} + 16 q^{67} - 6 q^{68} + 3 q^{69} - 24 q^{70} + q^{72} - 14 q^{73} + 30 q^{74} - q^{75} - 8 q^{76} + 32 q^{77} - 2 q^{78} - 8 q^{79} - 2 q^{80} + 5 q^{81} + 2 q^{82} + 20 q^{83} + 4 q^{84} + 12 q^{85} + 4 q^{86} - 10 q^{87} + 18 q^{89} + 2 q^{90} - 32 q^{91} - q^{92} + 24 q^{94} + 16 q^{95} + q^{96} - 14 q^{97} + 25 q^{98} - 12 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(138))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 23
138.2.a.a 138.a 1.a $1$ $1.102$ \(\Q\) None 138.2.a.a \(-1\) \(-1\) \(-2\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-2q^{5}+q^{6}-2q^{7}+\cdots\)
138.2.a.b 138.a 1.a $1$ $1.102$ \(\Q\) None 138.2.a.b \(-1\) \(1\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}+2q^{7}-q^{8}+\cdots\)
138.2.a.c 138.a 1.a $1$ $1.102$ \(\Q\) None 138.2.a.c \(1\) \(-1\) \(2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+2q^{5}-q^{6}+q^{8}+\cdots\)
138.2.a.d 138.a 1.a $2$ $1.102$ \(\Q(\sqrt{5}) \) None 138.2.a.d \(2\) \(2\) \(-2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+(-1+\beta )q^{5}+q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(138))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(138)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 2}\)