Properties

 Label 138.2 Level 138 Weight 2 Dimension 133 Nonzero newspaces 4 Newform subspaces 10 Sturm bound 2112 Trace bound 1

Defining parameters

 Level: $$N$$ = $$138 = 2 \cdot 3 \cdot 23$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$4$$ Newform subspaces: $$10$$ Sturm bound: $$2112$$ Trace bound: $$1$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(138))$$.

Total New Old
Modular forms 616 133 483
Cusp forms 441 133 308
Eisenstein series 175 0 175

Trace form

 $$133 q + q^{2} + q^{3} + q^{4} + 6 q^{5} + q^{6} + 8 q^{7} + q^{8} + q^{9} + O(q^{10})$$ $$133 q + q^{2} + q^{3} + q^{4} + 6 q^{5} + q^{6} + 8 q^{7} + q^{8} + q^{9} + 6 q^{10} + 12 q^{11} + q^{12} + 14 q^{13} + 8 q^{14} - 16 q^{15} + q^{16} - 26 q^{17} - 43 q^{18} - 24 q^{19} - 38 q^{20} - 58 q^{21} - 32 q^{22} - 65 q^{23} + q^{24} - 57 q^{25} - 30 q^{26} - 65 q^{27} - 36 q^{28} - 14 q^{29} - 38 q^{30} - 12 q^{31} + q^{32} - 10 q^{33} + 18 q^{34} + 4 q^{35} + q^{36} - 50 q^{37} + 20 q^{38} - 30 q^{39} + 6 q^{40} - 2 q^{41} + 8 q^{42} - 44 q^{43} + 12 q^{44} + 6 q^{45} + 23 q^{46} - 40 q^{47} + q^{48} - 75 q^{49} + 31 q^{50} - 26 q^{51} + 14 q^{52} + 10 q^{53} + 23 q^{54} - 16 q^{55} + 8 q^{56} + 42 q^{57} + 30 q^{58} + 16 q^{59} + 28 q^{60} + 62 q^{61} + 32 q^{62} + 118 q^{63} + q^{64} + 84 q^{65} + 100 q^{66} + 68 q^{67} + 18 q^{68} + 133 q^{69} + 48 q^{70} + 72 q^{71} + 45 q^{72} + 74 q^{73} + 38 q^{74} + 163 q^{75} + 20 q^{76} + 96 q^{77} + 80 q^{78} + 36 q^{79} + 6 q^{80} + 45 q^{81} + 42 q^{82} + 40 q^{83} + 30 q^{84} + 64 q^{85} + 44 q^{86} - 36 q^{87} + 12 q^{88} + 46 q^{89} + 6 q^{90} + 24 q^{91} + 23 q^{92} + 32 q^{93} + 48 q^{94} - 12 q^{95} + q^{96} - 78 q^{97} - 31 q^{98} - 98 q^{99} + O(q^{100})$$

Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(138))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list available newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
138.2.a $$\chi_{138}(1, \cdot)$$ 138.2.a.a 1 1
138.2.a.b 1
138.2.a.c 1
138.2.a.d 2
138.2.d $$\chi_{138}(137, \cdot)$$ 138.2.d.a 8 1
138.2.e $$\chi_{138}(13, \cdot)$$ 138.2.e.a 10 10
138.2.e.b 10
138.2.e.c 10
138.2.e.d 10
138.2.f $$\chi_{138}(5, \cdot)$$ 138.2.f.a 80 10

Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(138))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(138)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(1))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(2))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(3))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(6))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(23))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(46))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(69))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(138))$$$$^{\oplus 1}$$