Properties

Label 1376.1.be.a
Level $1376$
Weight $1$
Character orbit 1376.be
Analytic conductor $0.687$
Analytic rank $0$
Dimension $6$
Projective image $D_{7}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1376,1,Mod(47,1376)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1376.47"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1376, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 7, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1376 = 2^{5} \cdot 43 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1376.be (of order \(14\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.686713457383\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 344)
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.3236537881088.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{14}^{4} + \zeta_{14}) q^{3} + ( - \zeta_{14}^{5} + \zeta_{14}^{2} - \zeta_{14}) q^{9} + ( - \zeta_{14}^{6} - \zeta_{14}^{4}) q^{11} + (\zeta_{14}^{6} + \zeta_{14}^{2}) q^{17} + ( - \zeta_{14}^{4} - 1) q^{19}+ \cdots + ( - \zeta_{14}^{6} + \zeta_{14}^{5} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 3 q^{9} + 2 q^{11} - 2 q^{17} - 5 q^{19} - q^{25} + 4 q^{27} + 3 q^{33} - 2 q^{41} + q^{43} + 6 q^{49} - 3 q^{51} - 4 q^{57} + 2 q^{59} + 2 q^{67} - 2 q^{73} - 5 q^{75} + 2 q^{81} - 5 q^{83}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1376\mathbb{Z}\right)^\times\).

\(n\) \(517\) \(1119\) \(1121\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{14}^{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
47.1
−0.623490 + 0.781831i
0.222521 0.974928i
−0.623490 0.781831i
0.900969 + 0.433884i
0.900969 0.433884i
0.222521 + 0.974928i
0 0.277479 + 0.347948i 0 0 0 0 0 0.178448 0.781831i 0
207.1 0 −0.400969 1.75676i 0 0 0 0 0 −2.02446 + 0.974928i 0
527.1 0 0.277479 0.347948i 0 0 0 0 0 0.178448 + 0.781831i 0
623.1 0 1.12349 0.541044i 0 0 0 0 0 0.346011 0.433884i 0
815.1 0 1.12349 + 0.541044i 0 0 0 0 0 0.346011 + 0.433884i 0
1263.1 0 −0.400969 + 1.75676i 0 0 0 0 0 −2.02446 0.974928i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 47.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
43.e even 7 1 inner
344.s odd 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1376.1.be.a 6
4.b odd 2 1 344.1.s.a 6
8.b even 2 1 344.1.s.a 6
8.d odd 2 1 CM 1376.1.be.a 6
12.b even 2 1 3096.1.dm.a 6
24.h odd 2 1 3096.1.dm.a 6
43.e even 7 1 inner 1376.1.be.a 6
172.k odd 14 1 344.1.s.a 6
344.s odd 14 1 inner 1376.1.be.a 6
344.x even 14 1 344.1.s.a 6
516.v even 14 1 3096.1.dm.a 6
1032.bn odd 14 1 3096.1.dm.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
344.1.s.a 6 4.b odd 2 1
344.1.s.a 6 8.b even 2 1
344.1.s.a 6 172.k odd 14 1
344.1.s.a 6 344.x even 14 1
1376.1.be.a 6 1.a even 1 1 trivial
1376.1.be.a 6 8.d odd 2 1 CM
1376.1.be.a 6 43.e even 7 1 inner
1376.1.be.a 6 344.s odd 14 1 inner
3096.1.dm.a 6 12.b even 2 1
3096.1.dm.a 6 24.h odd 2 1
3096.1.dm.a 6 516.v even 14 1
3096.1.dm.a 6 1032.bn odd 14 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1376, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{6} + 5 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} \) Copy content Toggle raw display
$37$ \( T^{6} \) Copy content Toggle raw display
$41$ \( T^{6} + 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{6} - T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{6} \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( T^{6} - 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{6} \) Copy content Toggle raw display
$67$ \( T^{6} - 2 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$71$ \( T^{6} \) Copy content Toggle raw display
$73$ \( T^{6} + 2 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$79$ \( T^{6} \) Copy content Toggle raw display
$83$ \( T^{6} + 5 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{6} + 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{6} + 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
show more
show less