Properties

Label 1369.2.b.a
Level $1369$
Weight $2$
Character orbit 1369.b
Analytic conductor $10.932$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1369,2,Mod(1368,1369)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1369.1368"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1369, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1369 = 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1369.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.9315200367\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 37)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + 2 q^{4} - q^{7} - 2 q^{9} - 3 q^{11} - 2 q^{12} + 2 \beta q^{13} + 4 q^{16} - 3 \beta q^{17} - \beta q^{19} + q^{21} - 3 \beta q^{23} + 5 q^{25} + 5 q^{27} - 2 q^{28} - 3 \beta q^{29} - 2 \beta q^{31} + \cdots + 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 4 q^{4} - 2 q^{7} - 4 q^{9} - 6 q^{11} - 4 q^{12} + 8 q^{16} + 2 q^{21} + 10 q^{25} + 10 q^{27} - 4 q^{28} + 6 q^{33} - 8 q^{36} + 18 q^{41} - 12 q^{44} + 6 q^{47} - 8 q^{48} - 12 q^{49}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1369\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1368.1
1.00000i
1.00000i
0 −1.00000 2.00000 0 0 −1.00000 0 −2.00000 0
1368.2 0 −1.00000 2.00000 0 0 −1.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1369.2.b.a 2
37.b even 2 1 inner 1369.2.b.a 2
37.d odd 4 1 37.2.a.b 1
37.d odd 4 1 1369.2.a.c 1
111.g even 4 1 333.2.a.b 1
148.g even 4 1 592.2.a.a 1
185.f even 4 1 925.2.b.e 2
185.j odd 4 1 925.2.a.b 1
185.k even 4 1 925.2.b.e 2
259.j even 4 1 1813.2.a.b 1
296.j even 4 1 2368.2.a.m 1
296.m odd 4 1 2368.2.a.d 1
407.f even 4 1 4477.2.a.a 1
444.j odd 4 1 5328.2.a.k 1
481.j odd 4 1 6253.2.a.b 1
555.m even 4 1 8325.2.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
37.2.a.b 1 37.d odd 4 1
333.2.a.b 1 111.g even 4 1
592.2.a.a 1 148.g even 4 1
925.2.a.b 1 185.j odd 4 1
925.2.b.e 2 185.f even 4 1
925.2.b.e 2 185.k even 4 1
1369.2.a.c 1 37.d odd 4 1
1369.2.b.a 2 1.a even 1 1 trivial
1369.2.b.a 2 37.b even 2 1 inner
1813.2.a.b 1 259.j even 4 1
2368.2.a.d 1 296.m odd 4 1
2368.2.a.m 1 296.j even 4 1
4477.2.a.a 1 407.f even 4 1
5328.2.a.k 1 444.j odd 4 1
6253.2.a.b 1 481.j odd 4 1
8325.2.a.p 1 555.m even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1369, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{3} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T + 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{2} + 36 \) Copy content Toggle raw display
$19$ \( T^{2} + 4 \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( T^{2} + 16 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( (T - 9)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 64 \) Copy content Toggle raw display
$47$ \( (T - 3)^{2} \) Copy content Toggle raw display
$53$ \( (T + 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 144 \) Copy content Toggle raw display
$61$ \( T^{2} + 64 \) Copy content Toggle raw display
$67$ \( (T - 4)^{2} \) Copy content Toggle raw display
$71$ \( (T + 15)^{2} \) Copy content Toggle raw display
$73$ \( (T + 11)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 100 \) Copy content Toggle raw display
$83$ \( (T - 9)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 36 \) Copy content Toggle raw display
$97$ \( T^{2} + 64 \) Copy content Toggle raw display
show more
show less