Properties

Label 1368.4.a.e.1.1
Level $1368$
Weight $4$
Character 1368.1
Self dual yes
Analytic conductor $80.715$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1368,4,Mod(1,1368)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1368.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1368, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1368.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-2,0,-35,0,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.7146128879\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3221.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.44437\) of defining polynomial
Character \(\chi\) \(=\) 1368.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-14.1468 q^{5} -4.06119 q^{7} +5.53059 q^{11} -45.6697 q^{13} +92.8486 q^{17} +19.0000 q^{19} +57.0689 q^{23} +75.1314 q^{25} +290.147 q^{29} +163.494 q^{31} +57.4527 q^{35} -81.3659 q^{37} -73.1997 q^{41} -346.600 q^{43} -503.383 q^{47} -326.507 q^{49} +164.243 q^{53} -78.2401 q^{55} +763.585 q^{59} +545.832 q^{61} +646.079 q^{65} -510.800 q^{67} +294.139 q^{71} -172.903 q^{73} -22.4608 q^{77} -973.626 q^{79} -510.932 q^{83} -1313.51 q^{85} -845.158 q^{89} +185.473 q^{91} -268.789 q^{95} -863.606 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{5} - 35 q^{7} + 28 q^{11} - 109 q^{13} + 123 q^{17} + 57 q^{19} + 193 q^{23} + 187 q^{25} + 297 q^{29} - 140 q^{31} + 246 q^{35} + 38 q^{37} - 736 q^{41} - 514 q^{43} - 134 q^{47} - 42 q^{49}+ \cdots - 2178 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −14.1468 −1.26533 −0.632663 0.774427i \(-0.718038\pi\)
−0.632663 + 0.774427i \(0.718038\pi\)
\(6\) 0 0
\(7\) −4.06119 −0.219283 −0.109642 0.993971i \(-0.534970\pi\)
−0.109642 + 0.993971i \(0.534970\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.53059 0.151594 0.0757971 0.997123i \(-0.475850\pi\)
0.0757971 + 0.997123i \(0.475850\pi\)
\(12\) 0 0
\(13\) −45.6697 −0.974345 −0.487172 0.873306i \(-0.661972\pi\)
−0.487172 + 0.873306i \(0.661972\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 92.8486 1.32465 0.662326 0.749216i \(-0.269569\pi\)
0.662326 + 0.749216i \(0.269569\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 57.0689 0.517378 0.258689 0.965961i \(-0.416710\pi\)
0.258689 + 0.965961i \(0.416710\pi\)
\(24\) 0 0
\(25\) 75.1314 0.601051
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 290.147 1.85790 0.928948 0.370209i \(-0.120714\pi\)
0.928948 + 0.370209i \(0.120714\pi\)
\(30\) 0 0
\(31\) 163.494 0.947240 0.473620 0.880729i \(-0.342947\pi\)
0.473620 + 0.880729i \(0.342947\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 57.4527 0.277465
\(36\) 0 0
\(37\) −81.3659 −0.361526 −0.180763 0.983527i \(-0.557857\pi\)
−0.180763 + 0.983527i \(0.557857\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −73.1997 −0.278826 −0.139413 0.990234i \(-0.544522\pi\)
−0.139413 + 0.990234i \(0.544522\pi\)
\(42\) 0 0
\(43\) −346.600 −1.22921 −0.614605 0.788835i \(-0.710685\pi\)
−0.614605 + 0.788835i \(0.710685\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −503.383 −1.56225 −0.781127 0.624372i \(-0.785355\pi\)
−0.781127 + 0.624372i \(0.785355\pi\)
\(48\) 0 0
\(49\) −326.507 −0.951915
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 164.243 0.425670 0.212835 0.977088i \(-0.431730\pi\)
0.212835 + 0.977088i \(0.431730\pi\)
\(54\) 0 0
\(55\) −78.2401 −0.191816
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 763.585 1.68492 0.842460 0.538759i \(-0.181107\pi\)
0.842460 + 0.538759i \(0.181107\pi\)
\(60\) 0 0
\(61\) 545.832 1.14568 0.572841 0.819666i \(-0.305841\pi\)
0.572841 + 0.819666i \(0.305841\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 646.079 1.23286
\(66\) 0 0
\(67\) −510.800 −0.931406 −0.465703 0.884941i \(-0.654199\pi\)
−0.465703 + 0.884941i \(0.654199\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 294.139 0.491659 0.245830 0.969313i \(-0.420940\pi\)
0.245830 + 0.969313i \(0.420940\pi\)
\(72\) 0 0
\(73\) −172.903 −0.277217 −0.138608 0.990347i \(-0.544263\pi\)
−0.138608 + 0.990347i \(0.544263\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −22.4608 −0.0332421
\(78\) 0 0
\(79\) −973.626 −1.38660 −0.693300 0.720649i \(-0.743844\pi\)
−0.693300 + 0.720649i \(0.743844\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −510.932 −0.675688 −0.337844 0.941202i \(-0.609698\pi\)
−0.337844 + 0.941202i \(0.609698\pi\)
\(84\) 0 0
\(85\) −1313.51 −1.67612
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −845.158 −1.00659 −0.503295 0.864114i \(-0.667879\pi\)
−0.503295 + 0.864114i \(0.667879\pi\)
\(90\) 0 0
\(91\) 185.473 0.213658
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −268.789 −0.290286
\(96\) 0 0
\(97\) −863.606 −0.903979 −0.451989 0.892023i \(-0.649286\pi\)
−0.451989 + 0.892023i \(0.649286\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1016.53 1.00147 0.500735 0.865600i \(-0.333063\pi\)
0.500735 + 0.865600i \(0.333063\pi\)
\(102\) 0 0
\(103\) −185.045 −0.177020 −0.0885100 0.996075i \(-0.528211\pi\)
−0.0885100 + 0.996075i \(0.528211\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 396.796 0.358502 0.179251 0.983803i \(-0.442633\pi\)
0.179251 + 0.983803i \(0.442633\pi\)
\(108\) 0 0
\(109\) 1355.57 1.19119 0.595595 0.803285i \(-0.296916\pi\)
0.595595 + 0.803285i \(0.296916\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1915.38 −1.59455 −0.797275 0.603616i \(-0.793726\pi\)
−0.797275 + 0.603616i \(0.793726\pi\)
\(114\) 0 0
\(115\) −807.341 −0.654652
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −377.075 −0.290474
\(120\) 0 0
\(121\) −1300.41 −0.977019
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 705.481 0.504801
\(126\) 0 0
\(127\) 985.870 0.688833 0.344417 0.938817i \(-0.388077\pi\)
0.344417 + 0.938817i \(0.388077\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2296.18 −1.53144 −0.765718 0.643176i \(-0.777616\pi\)
−0.765718 + 0.643176i \(0.777616\pi\)
\(132\) 0 0
\(133\) −77.1626 −0.0503071
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1344.91 −0.838712 −0.419356 0.907822i \(-0.637744\pi\)
−0.419356 + 0.907822i \(0.637744\pi\)
\(138\) 0 0
\(139\) 402.094 0.245361 0.122681 0.992446i \(-0.460851\pi\)
0.122681 + 0.992446i \(0.460851\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −252.580 −0.147705
\(144\) 0 0
\(145\) −4104.65 −2.35085
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 738.796 0.406205 0.203102 0.979158i \(-0.434898\pi\)
0.203102 + 0.979158i \(0.434898\pi\)
\(150\) 0 0
\(151\) 819.258 0.441525 0.220762 0.975328i \(-0.429145\pi\)
0.220762 + 0.975328i \(0.429145\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2312.92 −1.19857
\(156\) 0 0
\(157\) −1469.33 −0.746913 −0.373456 0.927648i \(-0.621827\pi\)
−0.373456 + 0.927648i \(0.621827\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −231.767 −0.113452
\(162\) 0 0
\(163\) −582.247 −0.279786 −0.139893 0.990167i \(-0.544676\pi\)
−0.139893 + 0.990167i \(0.544676\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2401.31 −1.11269 −0.556345 0.830952i \(-0.687797\pi\)
−0.556345 + 0.830952i \(0.687797\pi\)
\(168\) 0 0
\(169\) −111.282 −0.0506519
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1104.21 −0.485269 −0.242635 0.970118i \(-0.578012\pi\)
−0.242635 + 0.970118i \(0.578012\pi\)
\(174\) 0 0
\(175\) −305.122 −0.131801
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 822.030 0.343248 0.171624 0.985163i \(-0.445099\pi\)
0.171624 + 0.985163i \(0.445099\pi\)
\(180\) 0 0
\(181\) 151.476 0.0622052 0.0311026 0.999516i \(-0.490098\pi\)
0.0311026 + 0.999516i \(0.490098\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1151.07 0.457449
\(186\) 0 0
\(187\) 513.508 0.200810
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −477.884 −0.181039 −0.0905195 0.995895i \(-0.528853\pi\)
−0.0905195 + 0.995895i \(0.528853\pi\)
\(192\) 0 0
\(193\) −2169.48 −0.809134 −0.404567 0.914508i \(-0.632578\pi\)
−0.404567 + 0.914508i \(0.632578\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1444.93 −0.522574 −0.261287 0.965261i \(-0.584147\pi\)
−0.261287 + 0.965261i \(0.584147\pi\)
\(198\) 0 0
\(199\) 1490.17 0.530830 0.265415 0.964134i \(-0.414491\pi\)
0.265415 + 0.964134i \(0.414491\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1178.34 −0.407406
\(204\) 0 0
\(205\) 1035.54 0.352806
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 105.081 0.0347781
\(210\) 0 0
\(211\) −2270.00 −0.740630 −0.370315 0.928906i \(-0.620750\pi\)
−0.370315 + 0.928906i \(0.620750\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4903.28 1.55535
\(216\) 0 0
\(217\) −663.981 −0.207714
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4240.36 −1.29067
\(222\) 0 0
\(223\) 2380.30 0.714783 0.357392 0.933955i \(-0.383666\pi\)
0.357392 + 0.933955i \(0.383666\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1972.94 0.576865 0.288432 0.957500i \(-0.406866\pi\)
0.288432 + 0.957500i \(0.406866\pi\)
\(228\) 0 0
\(229\) 21.4526 0.00619053 0.00309526 0.999995i \(-0.499015\pi\)
0.00309526 + 0.999995i \(0.499015\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1711.23 −0.481143 −0.240571 0.970631i \(-0.577335\pi\)
−0.240571 + 0.970631i \(0.577335\pi\)
\(234\) 0 0
\(235\) 7121.24 1.97676
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2193.99 0.593796 0.296898 0.954909i \(-0.404048\pi\)
0.296898 + 0.954909i \(0.404048\pi\)
\(240\) 0 0
\(241\) 726.890 0.194287 0.0971434 0.995270i \(-0.469029\pi\)
0.0971434 + 0.995270i \(0.469029\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4619.02 1.20448
\(246\) 0 0
\(247\) −867.724 −0.223530
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3168.49 −0.796785 −0.398393 0.917215i \(-0.630432\pi\)
−0.398393 + 0.917215i \(0.630432\pi\)
\(252\) 0 0
\(253\) 315.625 0.0784315
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4341.53 −1.05376 −0.526881 0.849939i \(-0.676639\pi\)
−0.526881 + 0.849939i \(0.676639\pi\)
\(258\) 0 0
\(259\) 330.442 0.0792767
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6418.23 1.50481 0.752405 0.658701i \(-0.228894\pi\)
0.752405 + 0.658701i \(0.228894\pi\)
\(264\) 0 0
\(265\) −2323.51 −0.538612
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6476.36 −1.46792 −0.733961 0.679192i \(-0.762330\pi\)
−0.733961 + 0.679192i \(0.762330\pi\)
\(270\) 0 0
\(271\) −6832.73 −1.53158 −0.765791 0.643090i \(-0.777652\pi\)
−0.765791 + 0.643090i \(0.777652\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 415.521 0.0911158
\(276\) 0 0
\(277\) −3243.37 −0.703521 −0.351761 0.936090i \(-0.614417\pi\)
−0.351761 + 0.936090i \(0.614417\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4524.91 −0.960618 −0.480309 0.877099i \(-0.659476\pi\)
−0.480309 + 0.877099i \(0.659476\pi\)
\(282\) 0 0
\(283\) −363.865 −0.0764293 −0.0382147 0.999270i \(-0.512167\pi\)
−0.0382147 + 0.999270i \(0.512167\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 297.278 0.0611420
\(288\) 0 0
\(289\) 3707.85 0.754703
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4565.73 0.910350 0.455175 0.890402i \(-0.349577\pi\)
0.455175 + 0.890402i \(0.349577\pi\)
\(294\) 0 0
\(295\) −10802.3 −2.13197
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2606.32 −0.504104
\(300\) 0 0
\(301\) 1407.61 0.269546
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7721.77 −1.44966
\(306\) 0 0
\(307\) 8554.23 1.59028 0.795139 0.606427i \(-0.207398\pi\)
0.795139 + 0.606427i \(0.207398\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2620.19 −0.477740 −0.238870 0.971052i \(-0.576777\pi\)
−0.238870 + 0.971052i \(0.576777\pi\)
\(312\) 0 0
\(313\) −5233.04 −0.945013 −0.472507 0.881327i \(-0.656651\pi\)
−0.472507 + 0.881327i \(0.656651\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8199.12 −1.45271 −0.726354 0.687320i \(-0.758787\pi\)
−0.726354 + 0.687320i \(0.758787\pi\)
\(318\) 0 0
\(319\) 1604.69 0.281646
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1764.12 0.303896
\(324\) 0 0
\(325\) −3431.22 −0.585631
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2044.33 0.342576
\(330\) 0 0
\(331\) 4942.10 0.820672 0.410336 0.911934i \(-0.365411\pi\)
0.410336 + 0.911934i \(0.365411\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7226.18 1.17853
\(336\) 0 0
\(337\) −11622.4 −1.87868 −0.939339 0.342991i \(-0.888560\pi\)
−0.939339 + 0.342991i \(0.888560\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 904.221 0.143596
\(342\) 0 0
\(343\) 2718.99 0.428023
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6401.72 0.990382 0.495191 0.868784i \(-0.335098\pi\)
0.495191 + 0.868784i \(0.335098\pi\)
\(348\) 0 0
\(349\) −9713.15 −1.48978 −0.744890 0.667188i \(-0.767498\pi\)
−0.744890 + 0.667188i \(0.767498\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10674.0 1.60941 0.804705 0.593675i \(-0.202323\pi\)
0.804705 + 0.593675i \(0.202323\pi\)
\(354\) 0 0
\(355\) −4161.11 −0.622110
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4991.30 0.733791 0.366895 0.930262i \(-0.380421\pi\)
0.366895 + 0.930262i \(0.380421\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2446.03 0.350770
\(366\) 0 0
\(367\) −7742.21 −1.10120 −0.550599 0.834770i \(-0.685601\pi\)
−0.550599 + 0.834770i \(0.685601\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −667.022 −0.0933425
\(372\) 0 0
\(373\) −1644.48 −0.228279 −0.114139 0.993465i \(-0.536411\pi\)
−0.114139 + 0.993465i \(0.536411\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −13250.9 −1.81023
\(378\) 0 0
\(379\) −1385.48 −0.187776 −0.0938881 0.995583i \(-0.529930\pi\)
−0.0938881 + 0.995583i \(0.529930\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6651.19 0.887363 0.443682 0.896185i \(-0.353672\pi\)
0.443682 + 0.896185i \(0.353672\pi\)
\(384\) 0 0
\(385\) 317.748 0.0420621
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9322.00 −1.21502 −0.607512 0.794311i \(-0.707832\pi\)
−0.607512 + 0.794311i \(0.707832\pi\)
\(390\) 0 0
\(391\) 5298.76 0.685345
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13773.7 1.75450
\(396\) 0 0
\(397\) 11403.0 1.44157 0.720783 0.693160i \(-0.243782\pi\)
0.720783 + 0.693160i \(0.243782\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3794.17 −0.472498 −0.236249 0.971693i \(-0.575918\pi\)
−0.236249 + 0.971693i \(0.575918\pi\)
\(402\) 0 0
\(403\) −7466.73 −0.922939
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −450.002 −0.0548053
\(408\) 0 0
\(409\) 3210.32 0.388118 0.194059 0.980990i \(-0.437835\pi\)
0.194059 + 0.980990i \(0.437835\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3101.06 −0.369475
\(414\) 0 0
\(415\) 7228.05 0.854966
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5646.89 −0.658398 −0.329199 0.944261i \(-0.606779\pi\)
−0.329199 + 0.944261i \(0.606779\pi\)
\(420\) 0 0
\(421\) −1912.56 −0.221407 −0.110704 0.993853i \(-0.535310\pi\)
−0.110704 + 0.993853i \(0.535310\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6975.84 0.796183
\(426\) 0 0
\(427\) −2216.73 −0.251229
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4568.25 0.510545 0.255273 0.966869i \(-0.417835\pi\)
0.255273 + 0.966869i \(0.417835\pi\)
\(432\) 0 0
\(433\) 7432.60 0.824915 0.412458 0.910977i \(-0.364671\pi\)
0.412458 + 0.910977i \(0.364671\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1084.31 0.118695
\(438\) 0 0
\(439\) −5937.86 −0.645555 −0.322777 0.946475i \(-0.604617\pi\)
−0.322777 + 0.946475i \(0.604617\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11714.5 −1.25638 −0.628188 0.778062i \(-0.716203\pi\)
−0.628188 + 0.778062i \(0.716203\pi\)
\(444\) 0 0
\(445\) 11956.3 1.27367
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2007.87 −0.211040 −0.105520 0.994417i \(-0.533651\pi\)
−0.105520 + 0.994417i \(0.533651\pi\)
\(450\) 0 0
\(451\) −404.838 −0.0422684
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2623.85 −0.270347
\(456\) 0 0
\(457\) 1447.39 0.148153 0.0740764 0.997253i \(-0.476399\pi\)
0.0740764 + 0.997253i \(0.476399\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2893.39 0.292318 0.146159 0.989261i \(-0.453309\pi\)
0.146159 + 0.989261i \(0.453309\pi\)
\(462\) 0 0
\(463\) −13259.1 −1.33089 −0.665445 0.746447i \(-0.731758\pi\)
−0.665445 + 0.746447i \(0.731758\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4031.59 −0.399486 −0.199743 0.979848i \(-0.564011\pi\)
−0.199743 + 0.979848i \(0.564011\pi\)
\(468\) 0 0
\(469\) 2074.46 0.204242
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1916.91 −0.186341
\(474\) 0 0
\(475\) 1427.50 0.137891
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8616.81 0.821946 0.410973 0.911647i \(-0.365189\pi\)
0.410973 + 0.911647i \(0.365189\pi\)
\(480\) 0 0
\(481\) 3715.95 0.352251
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12217.2 1.14383
\(486\) 0 0
\(487\) −10149.9 −0.944429 −0.472215 0.881484i \(-0.656545\pi\)
−0.472215 + 0.881484i \(0.656545\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5982.00 0.549825 0.274912 0.961469i \(-0.411351\pi\)
0.274912 + 0.961469i \(0.411351\pi\)
\(492\) 0 0
\(493\) 26939.8 2.46107
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1194.55 −0.107813
\(498\) 0 0
\(499\) 2022.13 0.181409 0.0907044 0.995878i \(-0.471088\pi\)
0.0907044 + 0.995878i \(0.471088\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1621.54 0.143739 0.0718697 0.997414i \(-0.477103\pi\)
0.0718697 + 0.997414i \(0.477103\pi\)
\(504\) 0 0
\(505\) −14380.6 −1.26719
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1108.58 0.0965358 0.0482679 0.998834i \(-0.484630\pi\)
0.0482679 + 0.998834i \(0.484630\pi\)
\(510\) 0 0
\(511\) 702.193 0.0607890
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2617.80 0.223988
\(516\) 0 0
\(517\) −2784.01 −0.236829
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5249.04 −0.441391 −0.220696 0.975343i \(-0.570833\pi\)
−0.220696 + 0.975343i \(0.570833\pi\)
\(522\) 0 0
\(523\) 6191.33 0.517645 0.258822 0.965925i \(-0.416666\pi\)
0.258822 + 0.965925i \(0.416666\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15180.2 1.25476
\(528\) 0 0
\(529\) −8910.14 −0.732320
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3343.01 0.271673
\(534\) 0 0
\(535\) −5613.38 −0.453622
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1805.78 −0.144305
\(540\) 0 0
\(541\) −16975.2 −1.34903 −0.674513 0.738263i \(-0.735646\pi\)
−0.674513 + 0.738263i \(0.735646\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19176.9 −1.50724
\(546\) 0 0
\(547\) 16676.3 1.30352 0.651762 0.758424i \(-0.274030\pi\)
0.651762 + 0.758424i \(0.274030\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5512.80 0.426231
\(552\) 0 0
\(553\) 3954.08 0.304059
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12448.6 0.946973 0.473486 0.880801i \(-0.342995\pi\)
0.473486 + 0.880801i \(0.342995\pi\)
\(558\) 0 0
\(559\) 15829.1 1.19768
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12829.5 −0.960386 −0.480193 0.877163i \(-0.659433\pi\)
−0.480193 + 0.877163i \(0.659433\pi\)
\(564\) 0 0
\(565\) 27096.5 2.01763
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 916.141 0.0674985 0.0337492 0.999430i \(-0.489255\pi\)
0.0337492 + 0.999430i \(0.489255\pi\)
\(570\) 0 0
\(571\) 1247.99 0.0914654 0.0457327 0.998954i \(-0.485438\pi\)
0.0457327 + 0.998954i \(0.485438\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4287.66 0.310970
\(576\) 0 0
\(577\) 12669.4 0.914095 0.457047 0.889442i \(-0.348907\pi\)
0.457047 + 0.889442i \(0.348907\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2074.99 0.148167
\(582\) 0 0
\(583\) 908.362 0.0645292
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20350.0 1.43089 0.715446 0.698668i \(-0.246223\pi\)
0.715446 + 0.698668i \(0.246223\pi\)
\(588\) 0 0
\(589\) 3106.39 0.217312
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2306.21 −0.159705 −0.0798523 0.996807i \(-0.525445\pi\)
−0.0798523 + 0.996807i \(0.525445\pi\)
\(594\) 0 0
\(595\) 5334.40 0.367545
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 21458.5 1.46372 0.731861 0.681454i \(-0.238652\pi\)
0.731861 + 0.681454i \(0.238652\pi\)
\(600\) 0 0
\(601\) 8415.81 0.571195 0.285598 0.958350i \(-0.407808\pi\)
0.285598 + 0.958350i \(0.407808\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 18396.6 1.23625
\(606\) 0 0
\(607\) −3515.81 −0.235095 −0.117547 0.993067i \(-0.537503\pi\)
−0.117547 + 0.993067i \(0.537503\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 22989.3 1.52217
\(612\) 0 0
\(613\) 16618.5 1.09497 0.547484 0.836816i \(-0.315586\pi\)
0.547484 + 0.836816i \(0.315586\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −29469.3 −1.92284 −0.961419 0.275088i \(-0.911293\pi\)
−0.961419 + 0.275088i \(0.911293\pi\)
\(618\) 0 0
\(619\) 29408.3 1.90957 0.954783 0.297304i \(-0.0960876\pi\)
0.954783 + 0.297304i \(0.0960876\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3432.34 0.220729
\(624\) 0 0
\(625\) −19371.7 −1.23979
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7554.70 −0.478896
\(630\) 0 0
\(631\) 1315.79 0.0830124 0.0415062 0.999138i \(-0.486784\pi\)
0.0415062 + 0.999138i \(0.486784\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −13946.9 −0.871599
\(636\) 0 0
\(637\) 14911.5 0.927493
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 28499.5 1.75610 0.878052 0.478565i \(-0.158843\pi\)
0.878052 + 0.478565i \(0.158843\pi\)
\(642\) 0 0
\(643\) 19337.7 1.18601 0.593006 0.805198i \(-0.297941\pi\)
0.593006 + 0.805198i \(0.297941\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23409.8 −1.42246 −0.711232 0.702957i \(-0.751863\pi\)
−0.711232 + 0.702957i \(0.751863\pi\)
\(648\) 0 0
\(649\) 4223.08 0.255424
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11324.7 −0.678665 −0.339332 0.940667i \(-0.610201\pi\)
−0.339332 + 0.940667i \(0.610201\pi\)
\(654\) 0 0
\(655\) 32483.5 1.93777
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6171.58 0.364811 0.182406 0.983223i \(-0.441612\pi\)
0.182406 + 0.983223i \(0.441612\pi\)
\(660\) 0 0
\(661\) −10178.3 −0.598926 −0.299463 0.954108i \(-0.596807\pi\)
−0.299463 + 0.954108i \(0.596807\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1091.60 0.0636549
\(666\) 0 0
\(667\) 16558.4 0.961234
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3018.78 0.173679
\(672\) 0 0
\(673\) −1615.15 −0.0925106 −0.0462553 0.998930i \(-0.514729\pi\)
−0.0462553 + 0.998930i \(0.514729\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −33333.2 −1.89232 −0.946158 0.323706i \(-0.895071\pi\)
−0.946158 + 0.323706i \(0.895071\pi\)
\(678\) 0 0
\(679\) 3507.27 0.198228
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11254.4 −0.630507 −0.315253 0.949008i \(-0.602089\pi\)
−0.315253 + 0.949008i \(0.602089\pi\)
\(684\) 0 0
\(685\) 19026.2 1.06124
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7500.93 −0.414750
\(690\) 0 0
\(691\) −15873.6 −0.873891 −0.436945 0.899488i \(-0.643940\pi\)
−0.436945 + 0.899488i \(0.643940\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5688.34 −0.310462
\(696\) 0 0
\(697\) −6796.49 −0.369348
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 14151.8 0.762494 0.381247 0.924473i \(-0.375495\pi\)
0.381247 + 0.924473i \(0.375495\pi\)
\(702\) 0 0
\(703\) −1545.95 −0.0829398
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4128.32 −0.219606
\(708\) 0 0
\(709\) −26805.8 −1.41991 −0.709953 0.704249i \(-0.751284\pi\)
−0.709953 + 0.704249i \(0.751284\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9330.44 0.490081
\(714\) 0 0
\(715\) 3573.20 0.186895
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 254.907 0.0132217 0.00661087 0.999978i \(-0.497896\pi\)
0.00661087 + 0.999978i \(0.497896\pi\)
\(720\) 0 0
\(721\) 751.504 0.0388176
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 21799.2 1.11669
\(726\) 0 0
\(727\) 10874.1 0.554745 0.277373 0.960762i \(-0.410536\pi\)
0.277373 + 0.960762i \(0.410536\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −32181.3 −1.62828
\(732\) 0 0
\(733\) −14048.2 −0.707888 −0.353944 0.935267i \(-0.615160\pi\)
−0.353944 + 0.935267i \(0.615160\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2825.03 −0.141196
\(738\) 0 0
\(739\) −334.036 −0.0166275 −0.00831374 0.999965i \(-0.502646\pi\)
−0.00831374 + 0.999965i \(0.502646\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10340.4 −0.510571 −0.255286 0.966866i \(-0.582169\pi\)
−0.255286 + 0.966866i \(0.582169\pi\)
\(744\) 0 0
\(745\) −10451.6 −0.513981
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1611.46 −0.0786135
\(750\) 0 0
\(751\) 31144.7 1.51330 0.756648 0.653822i \(-0.226836\pi\)
0.756648 + 0.653822i \(0.226836\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −11589.9 −0.558673
\(756\) 0 0
\(757\) −1688.02 −0.0810465 −0.0405233 0.999179i \(-0.512902\pi\)
−0.0405233 + 0.999179i \(0.512902\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11804.3 −0.562296 −0.281148 0.959664i \(-0.590715\pi\)
−0.281148 + 0.959664i \(0.590715\pi\)
\(762\) 0 0
\(763\) −5505.21 −0.261208
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −34872.7 −1.64169
\(768\) 0 0
\(769\) 20685.2 0.969995 0.484998 0.874516i \(-0.338821\pi\)
0.484998 + 0.874516i \(0.338821\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24226.8 1.12727 0.563634 0.826024i \(-0.309403\pi\)
0.563634 + 0.826024i \(0.309403\pi\)
\(774\) 0 0
\(775\) 12283.6 0.569340
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1390.79 −0.0639671
\(780\) 0 0
\(781\) 1626.76 0.0745327
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20786.3 0.945089
\(786\) 0 0
\(787\) −2974.74 −0.134737 −0.0673685 0.997728i \(-0.521460\pi\)
−0.0673685 + 0.997728i \(0.521460\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7778.73 0.349659
\(792\) 0 0
\(793\) −24928.0 −1.11629
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3979.23 0.176853 0.0884264 0.996083i \(-0.471816\pi\)
0.0884264 + 0.996083i \(0.471816\pi\)
\(798\) 0 0
\(799\) −46738.4 −2.06944
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −956.259 −0.0420245
\(804\) 0 0
\(805\) 3278.76 0.143554
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −27125.7 −1.17885 −0.589425 0.807823i \(-0.700646\pi\)
−0.589425 + 0.807823i \(0.700646\pi\)
\(810\) 0 0
\(811\) 8095.42 0.350516 0.175258 0.984523i \(-0.443924\pi\)
0.175258 + 0.984523i \(0.443924\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8236.91 0.354020
\(816\) 0 0
\(817\) −6585.41 −0.282000
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19575.6 0.832148 0.416074 0.909331i \(-0.363406\pi\)
0.416074 + 0.909331i \(0.363406\pi\)
\(822\) 0 0
\(823\) −857.808 −0.0363321 −0.0181660 0.999835i \(-0.505783\pi\)
−0.0181660 + 0.999835i \(0.505783\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33329.2 1.40142 0.700708 0.713448i \(-0.252867\pi\)
0.700708 + 0.713448i \(0.252867\pi\)
\(828\) 0 0
\(829\) −37545.6 −1.57299 −0.786497 0.617594i \(-0.788107\pi\)
−0.786497 + 0.617594i \(0.788107\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −30315.7 −1.26096
\(834\) 0 0
\(835\) 33970.8 1.40791
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8699.05 0.357955 0.178978 0.983853i \(-0.442721\pi\)
0.178978 + 0.983853i \(0.442721\pi\)
\(840\) 0 0
\(841\) 59796.5 2.45178
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1574.28 0.0640911
\(846\) 0 0
\(847\) 5281.22 0.214244
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4643.46 −0.187046
\(852\) 0 0
\(853\) −39492.9 −1.58524 −0.792621 0.609715i \(-0.791284\pi\)
−0.792621 + 0.609715i \(0.791284\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 49878.9 1.98813 0.994067 0.108774i \(-0.0346925\pi\)
0.994067 + 0.108774i \(0.0346925\pi\)
\(858\) 0 0
\(859\) −21676.4 −0.860988 −0.430494 0.902593i \(-0.641661\pi\)
−0.430494 + 0.902593i \(0.641661\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19826.9 0.782058 0.391029 0.920378i \(-0.372119\pi\)
0.391029 + 0.920378i \(0.372119\pi\)
\(864\) 0 0
\(865\) 15621.0 0.614024
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5384.73 −0.210201
\(870\) 0 0
\(871\) 23328.1 0.907511
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2865.09 −0.110694
\(876\) 0 0
\(877\) −28960.6 −1.11509 −0.557543 0.830148i \(-0.688256\pi\)
−0.557543 + 0.830148i \(0.688256\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9612.36 −0.367592 −0.183796 0.982964i \(-0.558839\pi\)
−0.183796 + 0.982964i \(0.558839\pi\)
\(882\) 0 0
\(883\) −37634.8 −1.43433 −0.717164 0.696905i \(-0.754560\pi\)
−0.717164 + 0.696905i \(0.754560\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11501.8 −0.435390 −0.217695 0.976017i \(-0.569854\pi\)
−0.217695 + 0.976017i \(0.569854\pi\)
\(888\) 0 0
\(889\) −4003.80 −0.151050
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9564.27 −0.358406
\(894\) 0 0
\(895\) −11629.1 −0.434321
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 47437.4 1.75987
\(900\) 0 0
\(901\) 15249.7 0.563865
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2142.90 −0.0787099
\(906\) 0 0
\(907\) −18651.0 −0.682796 −0.341398 0.939919i \(-0.610900\pi\)
−0.341398 + 0.939919i \(0.610900\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −42680.1 −1.55220 −0.776100 0.630610i \(-0.782805\pi\)
−0.776100 + 0.630610i \(0.782805\pi\)
\(912\) 0 0
\(913\) −2825.76 −0.102430
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9325.21 0.335819
\(918\) 0 0
\(919\) −5918.21 −0.212431 −0.106215 0.994343i \(-0.533873\pi\)
−0.106215 + 0.994343i \(0.533873\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −13433.2 −0.479046
\(924\) 0 0
\(925\) −6113.13 −0.217296
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21425.2 0.756661 0.378331 0.925671i \(-0.376498\pi\)
0.378331 + 0.925671i \(0.376498\pi\)
\(930\) 0 0
\(931\) −6203.63 −0.218384
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −7264.48 −0.254090
\(936\) 0 0
\(937\) −26280.8 −0.916283 −0.458142 0.888879i \(-0.651485\pi\)
−0.458142 + 0.888879i \(0.651485\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −17105.3 −0.592581 −0.296290 0.955098i \(-0.595750\pi\)
−0.296290 + 0.955098i \(0.595750\pi\)
\(942\) 0 0
\(943\) −4177.43 −0.144258
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30353.4 −1.04155 −0.520777 0.853692i \(-0.674358\pi\)
−0.520777 + 0.853692i \(0.674358\pi\)
\(948\) 0 0
\(949\) 7896.44 0.270105
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16580.1 0.563569 0.281784 0.959478i \(-0.409074\pi\)
0.281784 + 0.959478i \(0.409074\pi\)
\(954\) 0 0
\(955\) 6760.52 0.229074
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5461.94 0.183916
\(960\) 0 0
\(961\) −3060.60 −0.102736
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 30691.2 1.02382
\(966\) 0 0
\(967\) 1243.10 0.0413396 0.0206698 0.999786i \(-0.493420\pi\)
0.0206698 + 0.999786i \(0.493420\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −19859.0 −0.656341 −0.328170 0.944619i \(-0.606432\pi\)
−0.328170 + 0.944619i \(0.606432\pi\)
\(972\) 0 0
\(973\) −1632.98 −0.0538036
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21378.0 −0.700043 −0.350021 0.936742i \(-0.613826\pi\)
−0.350021 + 0.936742i \(0.613826\pi\)
\(978\) 0 0
\(979\) −4674.23 −0.152593
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 37387.5 1.21310 0.606549 0.795046i \(-0.292553\pi\)
0.606549 + 0.795046i \(0.292553\pi\)
\(984\) 0 0
\(985\) 20441.1 0.661227
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −19780.1 −0.635966
\(990\) 0 0
\(991\) −56543.4 −1.81247 −0.906236 0.422771i \(-0.861057\pi\)
−0.906236 + 0.422771i \(0.861057\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −21081.1 −0.671674
\(996\) 0 0
\(997\) 17828.4 0.566330 0.283165 0.959071i \(-0.408616\pi\)
0.283165 + 0.959071i \(0.408616\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1368.4.a.e.1.1 3
3.2 odd 2 152.4.a.b.1.1 3
12.11 even 2 304.4.a.j.1.3 3
24.5 odd 2 1216.4.a.x.1.3 3
24.11 even 2 1216.4.a.q.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.a.b.1.1 3 3.2 odd 2
304.4.a.j.1.3 3 12.11 even 2
1216.4.a.q.1.1 3 24.11 even 2
1216.4.a.x.1.3 3 24.5 odd 2
1368.4.a.e.1.1 3 1.1 even 1 trivial