Newspace parameters
Level: | \( N \) | \(=\) | \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1368.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(80.7146128879\) |
Analytic rank: | \(0\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.7057.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{3} - x^{2} - 22x + 32 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 152) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - x^{2} - 22x + 32 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{2} + 3\nu - 16 ) / 2 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} - \nu - 14 ) / 2 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{2} + \beta _1 + 1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 3\beta_{2} + \beta _1 + 29 ) / 2 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | 0 | 0 | −18.4427 | 0 | 10.3872 | 0 | 0 | 0 | |||||||||||||||||||||||||||
1.2 | 0 | 0 | 0 | −2.38427 | 0 | 5.83529 | 0 | 0 | 0 | ||||||||||||||||||||||||||||
1.3 | 0 | 0 | 0 | 13.8269 | 0 | −9.22252 | 0 | 0 | 0 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(3\) | \(-1\) |
\(19\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1368.4.a.d | 3 | |
3.b | odd | 2 | 1 | 152.4.a.c | ✓ | 3 | |
12.b | even | 2 | 1 | 304.4.a.g | 3 | ||
24.f | even | 2 | 1 | 1216.4.a.w | 3 | ||
24.h | odd | 2 | 1 | 1216.4.a.r | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
152.4.a.c | ✓ | 3 | 3.b | odd | 2 | 1 | |
304.4.a.g | 3 | 12.b | even | 2 | 1 | ||
1216.4.a.r | 3 | 24.h | odd | 2 | 1 | ||
1216.4.a.w | 3 | 24.f | even | 2 | 1 | ||
1368.4.a.d | 3 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{3} + 7T_{5}^{2} - 244T_{5} - 608 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1368))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} \)
$3$
\( T^{3} \)
$5$
\( T^{3} + 7 T^{2} - 244 T - 608 \)
$7$
\( T^{3} - 7 T^{2} - 89 T + 559 \)
$11$
\( T^{3} + 103 T^{2} + 2212 T - 22156 \)
$13$
\( T^{3} - 32 T^{2} - 3677 T + 131420 \)
$17$
\( T^{3} + 11 T^{2} - 3417 T + 32173 \)
$19$
\( (T + 19)^{3} \)
$23$
\( T^{3} + 316 T^{2} + 23147 T - 242336 \)
$29$
\( T^{3} - 138 T^{2} + 419 T + 345766 \)
$31$
\( T^{3} - 420 T^{2} + 55584 T - 2336256 \)
$37$
\( T^{3} - 102 T^{2} + \cdots + 15565400 \)
$41$
\( T^{3} - 370 T^{2} + 36160 T - 707456 \)
$43$
\( T^{3} - 431 T^{2} - 20508 T + 5420480 \)
$47$
\( T^{3} - 199 T^{2} + \cdots + 45306112 \)
$53$
\( T^{3} - 308 T^{2} - 340901 T - 6630640 \)
$59$
\( T^{3} - 188 T^{2} - 2195 T + 1077242 \)
$61$
\( T^{3} + 609 T^{2} + \cdots - 50618548 \)
$67$
\( T^{3} + 246 T^{2} + \cdots - 96246632 \)
$71$
\( T^{3} - 954 T^{2} + \cdots + 237273448 \)
$73$
\( T^{3} + 629 T^{2} + \cdots - 417051529 \)
$79$
\( T^{3} - 452 T^{2} + \cdots + 601611824 \)
$83$
\( T^{3} - 780 T^{2} + \cdots + 1048786960 \)
$89$
\( T^{3} - 1356 T^{2} + \cdots - 71672320 \)
$97$
\( T^{3} + 548 T^{2} + \cdots - 2035482752 \)
show more
show less