Properties

Label 1368.4.a.a.1.2
Level $1368$
Weight $4$
Character 1368.1
Self dual yes
Analytic conductor $80.715$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,4,Mod(1,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.7146128879\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.27492\) of defining polynomial
Character \(\chi\) \(=\) 1368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.27492 q^{5} -18.0997 q^{7} +O(q^{10})\) \(q+6.27492 q^{5} -18.0997 q^{7} +33.9244 q^{11} -3.07558 q^{13} +14.2508 q^{17} -19.0000 q^{19} -114.072 q^{23} -85.6254 q^{25} +34.5257 q^{29} +107.698 q^{31} -113.574 q^{35} -181.698 q^{37} +444.743 q^{41} +120.323 q^{43} -306.371 q^{47} -15.4020 q^{49} -115.825 q^{53} +212.873 q^{55} -161.680 q^{59} +274.571 q^{61} -19.2990 q^{65} +81.6254 q^{67} -773.492 q^{71} +148.794 q^{73} -614.021 q^{77} -557.341 q^{79} -768.337 q^{83} +89.4228 q^{85} -457.884 q^{89} +55.6670 q^{91} -119.223 q^{95} -1500.82 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{5} - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 5 q^{5} - 6 q^{7} + 15 q^{11} - 59 q^{13} + 104 q^{17} - 38 q^{19} + 21 q^{23} - 209 q^{25} + 137 q^{29} + 4 q^{31} - 129 q^{35} - 152 q^{37} + 210 q^{41} + 67 q^{43} - 273 q^{47} - 212 q^{49} - 209 q^{53} + 237 q^{55} - 799 q^{59} + 149 q^{61} + 52 q^{65} + 201 q^{67} - 792 q^{71} - 246 q^{73} - 843 q^{77} - 254 q^{79} - 374 q^{83} - 25 q^{85} + 564 q^{89} - 621 q^{91} - 95 q^{95} - 178 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.27492 0.561246 0.280623 0.959818i \(-0.409459\pi\)
0.280623 + 0.959818i \(0.409459\pi\)
\(6\) 0 0
\(7\) −18.0997 −0.977290 −0.488645 0.872483i \(-0.662509\pi\)
−0.488645 + 0.872483i \(0.662509\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 33.9244 0.929873 0.464936 0.885344i \(-0.346077\pi\)
0.464936 + 0.885344i \(0.346077\pi\)
\(12\) 0 0
\(13\) −3.07558 −0.0656163 −0.0328082 0.999462i \(-0.510445\pi\)
−0.0328082 + 0.999462i \(0.510445\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.2508 0.203314 0.101657 0.994820i \(-0.467586\pi\)
0.101657 + 0.994820i \(0.467586\pi\)
\(18\) 0 0
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −114.072 −1.03416 −0.517081 0.855937i \(-0.672981\pi\)
−0.517081 + 0.855937i \(0.672981\pi\)
\(24\) 0 0
\(25\) −85.6254 −0.685003
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 34.5257 0.221078 0.110539 0.993872i \(-0.464742\pi\)
0.110539 + 0.993872i \(0.464742\pi\)
\(30\) 0 0
\(31\) 107.698 0.623970 0.311985 0.950087i \(-0.399006\pi\)
0.311985 + 0.950087i \(0.399006\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −113.574 −0.548500
\(36\) 0 0
\(37\) −181.698 −0.807322 −0.403661 0.914909i \(-0.632262\pi\)
−0.403661 + 0.914909i \(0.632262\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 444.743 1.69408 0.847038 0.531532i \(-0.178384\pi\)
0.847038 + 0.531532i \(0.178384\pi\)
\(42\) 0 0
\(43\) 120.323 0.426723 0.213362 0.976973i \(-0.431559\pi\)
0.213362 + 0.976973i \(0.431559\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −306.371 −0.950826 −0.475413 0.879763i \(-0.657701\pi\)
−0.475413 + 0.879763i \(0.657701\pi\)
\(48\) 0 0
\(49\) −15.4020 −0.0449038
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −115.825 −0.300184 −0.150092 0.988672i \(-0.547957\pi\)
−0.150092 + 0.988672i \(0.547957\pi\)
\(54\) 0 0
\(55\) 212.873 0.521887
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −161.680 −0.356762 −0.178381 0.983961i \(-0.557086\pi\)
−0.178381 + 0.983961i \(0.557086\pi\)
\(60\) 0 0
\(61\) 274.571 0.576314 0.288157 0.957583i \(-0.406957\pi\)
0.288157 + 0.957583i \(0.406957\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −19.2990 −0.0368269
\(66\) 0 0
\(67\) 81.6254 0.148838 0.0744189 0.997227i \(-0.476290\pi\)
0.0744189 + 0.997227i \(0.476290\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −773.492 −1.29291 −0.646455 0.762952i \(-0.723749\pi\)
−0.646455 + 0.762952i \(0.723749\pi\)
\(72\) 0 0
\(73\) 148.794 0.238562 0.119281 0.992861i \(-0.461941\pi\)
0.119281 + 0.992861i \(0.461941\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −614.021 −0.908755
\(78\) 0 0
\(79\) −557.341 −0.793743 −0.396872 0.917874i \(-0.629904\pi\)
−0.396872 + 0.917874i \(0.629904\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −768.337 −1.01610 −0.508048 0.861329i \(-0.669633\pi\)
−0.508048 + 0.861329i \(0.669633\pi\)
\(84\) 0 0
\(85\) 89.4228 0.114109
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −457.884 −0.545344 −0.272672 0.962107i \(-0.587907\pi\)
−0.272672 + 0.962107i \(0.587907\pi\)
\(90\) 0 0
\(91\) 55.6670 0.0641262
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −119.223 −0.128759
\(96\) 0 0
\(97\) −1500.82 −1.57098 −0.785490 0.618874i \(-0.787589\pi\)
−0.785490 + 0.618874i \(0.787589\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1731.06 1.70541 0.852707 0.522389i \(-0.174959\pi\)
0.852707 + 0.522389i \(0.174959\pi\)
\(102\) 0 0
\(103\) −1887.77 −1.80590 −0.902951 0.429743i \(-0.858604\pi\)
−0.902951 + 0.429743i \(0.858604\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 411.468 0.371758 0.185879 0.982573i \(-0.440487\pi\)
0.185879 + 0.982573i \(0.440487\pi\)
\(108\) 0 0
\(109\) 1186.86 1.04294 0.521469 0.853270i \(-0.325384\pi\)
0.521469 + 0.853270i \(0.325384\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −509.478 −0.424139 −0.212069 0.977255i \(-0.568020\pi\)
−0.212069 + 0.977255i \(0.568020\pi\)
\(114\) 0 0
\(115\) −715.794 −0.580419
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −257.935 −0.198697
\(120\) 0 0
\(121\) −180.134 −0.135337
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1321.66 −0.945701
\(126\) 0 0
\(127\) −1169.71 −0.817284 −0.408642 0.912695i \(-0.633998\pi\)
−0.408642 + 0.912695i \(0.633998\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1052.31 0.701838 0.350919 0.936406i \(-0.385869\pi\)
0.350919 + 0.936406i \(0.385869\pi\)
\(132\) 0 0
\(133\) 343.894 0.224206
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2116.92 1.32015 0.660075 0.751200i \(-0.270524\pi\)
0.660075 + 0.751200i \(0.270524\pi\)
\(138\) 0 0
\(139\) −1115.90 −0.680929 −0.340464 0.940257i \(-0.610584\pi\)
−0.340464 + 0.940257i \(0.610584\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −104.337 −0.0610148
\(144\) 0 0
\(145\) 216.646 0.124079
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −472.693 −0.259896 −0.129948 0.991521i \(-0.541481\pi\)
−0.129948 + 0.991521i \(0.541481\pi\)
\(150\) 0 0
\(151\) −1635.40 −0.881372 −0.440686 0.897661i \(-0.645265\pi\)
−0.440686 + 0.897661i \(0.645265\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 675.794 0.350201
\(156\) 0 0
\(157\) −785.904 −0.399503 −0.199751 0.979847i \(-0.564013\pi\)
−0.199751 + 0.979847i \(0.564013\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2064.67 1.01068
\(162\) 0 0
\(163\) 1224.95 0.588623 0.294311 0.955710i \(-0.404910\pi\)
0.294311 + 0.955710i \(0.404910\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1071.26 −0.496386 −0.248193 0.968711i \(-0.579837\pi\)
−0.248193 + 0.968711i \(0.579837\pi\)
\(168\) 0 0
\(169\) −2187.54 −0.995694
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −825.821 −0.362925 −0.181462 0.983398i \(-0.558083\pi\)
−0.181462 + 0.983398i \(0.558083\pi\)
\(174\) 0 0
\(175\) 1549.79 0.669447
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 465.802 0.194501 0.0972506 0.995260i \(-0.468995\pi\)
0.0972506 + 0.995260i \(0.468995\pi\)
\(180\) 0 0
\(181\) −1214.74 −0.498847 −0.249423 0.968395i \(-0.580241\pi\)
−0.249423 + 0.968395i \(0.580241\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1140.14 −0.453106
\(186\) 0 0
\(187\) 483.451 0.189056
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −154.943 −0.0586980 −0.0293490 0.999569i \(-0.509343\pi\)
−0.0293490 + 0.999569i \(0.509343\pi\)
\(192\) 0 0
\(193\) −2776.64 −1.03558 −0.517790 0.855508i \(-0.673245\pi\)
−0.517790 + 0.855508i \(0.673245\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4865.09 −1.75951 −0.879754 0.475429i \(-0.842293\pi\)
−0.879754 + 0.475429i \(0.842293\pi\)
\(198\) 0 0
\(199\) −3014.43 −1.07381 −0.536903 0.843644i \(-0.680406\pi\)
−0.536903 + 0.843644i \(0.680406\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −624.905 −0.216058
\(204\) 0 0
\(205\) 2790.72 0.950793
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −644.564 −0.213327
\(210\) 0 0
\(211\) 3434.46 1.12056 0.560280 0.828303i \(-0.310693\pi\)
0.560280 + 0.828303i \(0.310693\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 755.017 0.239497
\(216\) 0 0
\(217\) −1949.29 −0.609800
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −43.8296 −0.0133407
\(222\) 0 0
\(223\) −2247.73 −0.674975 −0.337488 0.941330i \(-0.609577\pi\)
−0.337488 + 0.941330i \(0.609577\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1883.81 −0.550806 −0.275403 0.961329i \(-0.588811\pi\)
−0.275403 + 0.961329i \(0.588811\pi\)
\(228\) 0 0
\(229\) 3594.49 1.03725 0.518626 0.855001i \(-0.326444\pi\)
0.518626 + 0.855001i \(0.326444\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5530.01 1.55486 0.777431 0.628968i \(-0.216522\pi\)
0.777431 + 0.628968i \(0.216522\pi\)
\(234\) 0 0
\(235\) −1922.45 −0.533647
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2587.82 −0.700387 −0.350193 0.936677i \(-0.613884\pi\)
−0.350193 + 0.936677i \(0.613884\pi\)
\(240\) 0 0
\(241\) −3576.45 −0.955932 −0.477966 0.878378i \(-0.658626\pi\)
−0.477966 + 0.878378i \(0.658626\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −96.6462 −0.0252020
\(246\) 0 0
\(247\) 58.4360 0.0150534
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5966.87 −1.50050 −0.750251 0.661154i \(-0.770067\pi\)
−0.750251 + 0.661154i \(0.770067\pi\)
\(252\) 0 0
\(253\) −3869.84 −0.961638
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3841.01 −0.932278 −0.466139 0.884712i \(-0.654355\pi\)
−0.466139 + 0.884712i \(0.654355\pi\)
\(258\) 0 0
\(259\) 3288.67 0.788988
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3956.41 −0.927614 −0.463807 0.885936i \(-0.653517\pi\)
−0.463807 + 0.885936i \(0.653517\pi\)
\(264\) 0 0
\(265\) −726.791 −0.168477
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2158.66 −0.489279 −0.244639 0.969614i \(-0.578670\pi\)
−0.244639 + 0.969614i \(0.578670\pi\)
\(270\) 0 0
\(271\) −2321.77 −0.520435 −0.260217 0.965550i \(-0.583794\pi\)
−0.260217 + 0.965550i \(0.583794\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2904.79 −0.636966
\(276\) 0 0
\(277\) −6184.24 −1.34143 −0.670713 0.741717i \(-0.734012\pi\)
−0.670713 + 0.741717i \(0.734012\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7981.21 1.69437 0.847187 0.531294i \(-0.178294\pi\)
0.847187 + 0.531294i \(0.178294\pi\)
\(282\) 0 0
\(283\) −4851.71 −1.01910 −0.509548 0.860442i \(-0.670187\pi\)
−0.509548 + 0.860442i \(0.670187\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8049.69 −1.65560
\(288\) 0 0
\(289\) −4709.91 −0.958664
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1269.75 0.253172 0.126586 0.991956i \(-0.459598\pi\)
0.126586 + 0.991956i \(0.459598\pi\)
\(294\) 0 0
\(295\) −1014.53 −0.200231
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 350.838 0.0678579
\(300\) 0 0
\(301\) −2177.81 −0.417032
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1722.91 0.323454
\(306\) 0 0
\(307\) −9699.35 −1.80316 −0.901581 0.432610i \(-0.857593\pi\)
−0.901581 + 0.432610i \(0.857593\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 323.284 0.0589446 0.0294723 0.999566i \(-0.490617\pi\)
0.0294723 + 0.999566i \(0.490617\pi\)
\(312\) 0 0
\(313\) −3251.29 −0.587137 −0.293569 0.955938i \(-0.594843\pi\)
−0.293569 + 0.955938i \(0.594843\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7512.25 1.33101 0.665505 0.746393i \(-0.268216\pi\)
0.665505 + 0.746393i \(0.268216\pi\)
\(318\) 0 0
\(319\) 1171.27 0.205575
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −270.766 −0.0466434
\(324\) 0 0
\(325\) 263.348 0.0449474
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5545.22 0.929233
\(330\) 0 0
\(331\) 2857.14 0.474449 0.237225 0.971455i \(-0.423762\pi\)
0.237225 + 0.971455i \(0.423762\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 512.193 0.0835346
\(336\) 0 0
\(337\) 10635.9 1.71921 0.859606 0.510958i \(-0.170709\pi\)
0.859606 + 0.510958i \(0.170709\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3653.58 0.580213
\(342\) 0 0
\(343\) 6486.96 1.02117
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8357.08 1.29289 0.646443 0.762962i \(-0.276256\pi\)
0.646443 + 0.762962i \(0.276256\pi\)
\(348\) 0 0
\(349\) 7741.28 1.18734 0.593669 0.804709i \(-0.297679\pi\)
0.593669 + 0.804709i \(0.297679\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2480.46 −0.373999 −0.186999 0.982360i \(-0.559876\pi\)
−0.186999 + 0.982360i \(0.559876\pi\)
\(354\) 0 0
\(355\) −4853.60 −0.725640
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4310.17 −0.633655 −0.316827 0.948483i \(-0.602618\pi\)
−0.316827 + 0.948483i \(0.602618\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 933.670 0.133892
\(366\) 0 0
\(367\) −8484.71 −1.20681 −0.603404 0.797436i \(-0.706189\pi\)
−0.603404 + 0.797436i \(0.706189\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2096.39 0.293367
\(372\) 0 0
\(373\) 8039.16 1.11596 0.557978 0.829855i \(-0.311577\pi\)
0.557978 + 0.829855i \(0.311577\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −106.187 −0.0145063
\(378\) 0 0
\(379\) −2976.22 −0.403372 −0.201686 0.979450i \(-0.564642\pi\)
−0.201686 + 0.979450i \(0.564642\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5118.15 0.682834 0.341417 0.939912i \(-0.389093\pi\)
0.341417 + 0.939912i \(0.389093\pi\)
\(384\) 0 0
\(385\) −3852.93 −0.510035
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6758.74 0.880929 0.440465 0.897770i \(-0.354814\pi\)
0.440465 + 0.897770i \(0.354814\pi\)
\(390\) 0 0
\(391\) −1625.62 −0.210259
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3497.27 −0.445485
\(396\) 0 0
\(397\) 14529.0 1.83675 0.918373 0.395716i \(-0.129504\pi\)
0.918373 + 0.395716i \(0.129504\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12416.4 −1.54625 −0.773124 0.634255i \(-0.781307\pi\)
−0.773124 + 0.634255i \(0.781307\pi\)
\(402\) 0 0
\(403\) −331.233 −0.0409426
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6163.99 −0.750707
\(408\) 0 0
\(409\) 11615.8 1.40432 0.702159 0.712020i \(-0.252220\pi\)
0.702159 + 0.712020i \(0.252220\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2926.36 0.348660
\(414\) 0 0
\(415\) −4821.25 −0.570279
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16739.9 −1.95179 −0.975893 0.218248i \(-0.929966\pi\)
−0.975893 + 0.218248i \(0.929966\pi\)
\(420\) 0 0
\(421\) 6261.41 0.724852 0.362426 0.932013i \(-0.381949\pi\)
0.362426 + 0.932013i \(0.381949\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1220.23 −0.139271
\(426\) 0 0
\(427\) −4969.64 −0.563226
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8893.01 0.993878 0.496939 0.867786i \(-0.334457\pi\)
0.496939 + 0.867786i \(0.334457\pi\)
\(432\) 0 0
\(433\) 6326.61 0.702166 0.351083 0.936344i \(-0.385814\pi\)
0.351083 + 0.936344i \(0.385814\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2167.37 0.237253
\(438\) 0 0
\(439\) 15823.4 1.72030 0.860149 0.510043i \(-0.170370\pi\)
0.860149 + 0.510043i \(0.170370\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14056.3 1.50753 0.753763 0.657147i \(-0.228237\pi\)
0.753763 + 0.657147i \(0.228237\pi\)
\(444\) 0 0
\(445\) −2873.18 −0.306072
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −15412.9 −1.62000 −0.809999 0.586431i \(-0.800532\pi\)
−0.809999 + 0.586431i \(0.800532\pi\)
\(450\) 0 0
\(451\) 15087.6 1.57527
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 349.306 0.0359906
\(456\) 0 0
\(457\) 13336.9 1.36515 0.682573 0.730817i \(-0.260861\pi\)
0.682573 + 0.730817i \(0.260861\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10226.9 1.03322 0.516612 0.856220i \(-0.327193\pi\)
0.516612 + 0.856220i \(0.327193\pi\)
\(462\) 0 0
\(463\) −17797.4 −1.78642 −0.893212 0.449636i \(-0.851554\pi\)
−0.893212 + 0.449636i \(0.851554\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3100.03 0.307179 0.153589 0.988135i \(-0.450917\pi\)
0.153589 + 0.988135i \(0.450917\pi\)
\(468\) 0 0
\(469\) −1477.39 −0.145458
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4081.89 0.396798
\(474\) 0 0
\(475\) 1626.88 0.157151
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6280.67 −0.599105 −0.299552 0.954080i \(-0.596837\pi\)
−0.299552 + 0.954080i \(0.596837\pi\)
\(480\) 0 0
\(481\) 558.826 0.0529735
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9417.52 −0.881706
\(486\) 0 0
\(487\) 7940.07 0.738807 0.369403 0.929269i \(-0.379562\pi\)
0.369403 + 0.929269i \(0.379562\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −17276.3 −1.58792 −0.793959 0.607971i \(-0.791984\pi\)
−0.793959 + 0.607971i \(0.791984\pi\)
\(492\) 0 0
\(493\) 492.020 0.0449482
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13999.9 1.26355
\(498\) 0 0
\(499\) 14939.6 1.34026 0.670128 0.742246i \(-0.266239\pi\)
0.670128 + 0.742246i \(0.266239\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5559.39 0.492805 0.246402 0.969168i \(-0.420752\pi\)
0.246402 + 0.969168i \(0.420752\pi\)
\(504\) 0 0
\(505\) 10862.3 0.957157
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11029.4 −0.960452 −0.480226 0.877145i \(-0.659445\pi\)
−0.480226 + 0.877145i \(0.659445\pi\)
\(510\) 0 0
\(511\) −2693.12 −0.233144
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −11845.6 −1.01355
\(516\) 0 0
\(517\) −10393.5 −0.884147
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7802.02 0.656070 0.328035 0.944665i \(-0.393614\pi\)
0.328035 + 0.944665i \(0.393614\pi\)
\(522\) 0 0
\(523\) −23625.2 −1.97525 −0.987627 0.156820i \(-0.949876\pi\)
−0.987627 + 0.156820i \(0.949876\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1534.78 0.126862
\(528\) 0 0
\(529\) 845.482 0.0694898
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1367.84 −0.111159
\(534\) 0 0
\(535\) 2581.93 0.208647
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −522.503 −0.0417548
\(540\) 0 0
\(541\) −24753.3 −1.96715 −0.983573 0.180509i \(-0.942226\pi\)
−0.983573 + 0.180509i \(0.942226\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7447.43 0.585344
\(546\) 0 0
\(547\) 5655.38 0.442060 0.221030 0.975267i \(-0.429058\pi\)
0.221030 + 0.975267i \(0.429058\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −655.989 −0.0507188
\(552\) 0 0
\(553\) 10087.7 0.775717
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14716.3 1.11948 0.559741 0.828668i \(-0.310901\pi\)
0.559741 + 0.828668i \(0.310901\pi\)
\(558\) 0 0
\(559\) −370.063 −0.0280000
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4400.91 0.329443 0.164721 0.986340i \(-0.447328\pi\)
0.164721 + 0.986340i \(0.447328\pi\)
\(564\) 0 0
\(565\) −3196.94 −0.238046
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10176.3 −0.749758 −0.374879 0.927074i \(-0.622316\pi\)
−0.374879 + 0.927074i \(0.622316\pi\)
\(570\) 0 0
\(571\) 6775.74 0.496595 0.248298 0.968684i \(-0.420129\pi\)
0.248298 + 0.968684i \(0.420129\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9767.49 0.708404
\(576\) 0 0
\(577\) −3714.70 −0.268016 −0.134008 0.990980i \(-0.542785\pi\)
−0.134008 + 0.990980i \(0.542785\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13906.6 0.993021
\(582\) 0 0
\(583\) −3929.29 −0.279133
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9362.24 0.658298 0.329149 0.944278i \(-0.393238\pi\)
0.329149 + 0.944278i \(0.393238\pi\)
\(588\) 0 0
\(589\) −2046.26 −0.143149
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14437.5 0.999793 0.499897 0.866085i \(-0.333371\pi\)
0.499897 + 0.866085i \(0.333371\pi\)
\(594\) 0 0
\(595\) −1618.52 −0.111518
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 19992.7 1.36374 0.681871 0.731473i \(-0.261167\pi\)
0.681871 + 0.731473i \(0.261167\pi\)
\(600\) 0 0
\(601\) 17371.4 1.17902 0.589511 0.807760i \(-0.299320\pi\)
0.589511 + 0.807760i \(0.299320\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1130.32 −0.0759574
\(606\) 0 0
\(607\) −14626.3 −0.978025 −0.489013 0.872277i \(-0.662643\pi\)
−0.489013 + 0.872277i \(0.662643\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 942.269 0.0623897
\(612\) 0 0
\(613\) −21052.2 −1.38710 −0.693549 0.720409i \(-0.743954\pi\)
−0.693549 + 0.720409i \(0.743954\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1605.72 −0.104771 −0.0523855 0.998627i \(-0.516682\pi\)
−0.0523855 + 0.998627i \(0.516682\pi\)
\(618\) 0 0
\(619\) 21457.6 1.39330 0.696652 0.717410i \(-0.254672\pi\)
0.696652 + 0.717410i \(0.254672\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8287.54 0.532959
\(624\) 0 0
\(625\) 2409.89 0.154233
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2589.34 −0.164140
\(630\) 0 0
\(631\) 9732.44 0.614013 0.307007 0.951707i \(-0.400673\pi\)
0.307007 + 0.951707i \(0.400673\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7339.84 −0.458697
\(636\) 0 0
\(637\) 47.3700 0.00294642
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 25594.0 1.57707 0.788536 0.614989i \(-0.210839\pi\)
0.788536 + 0.614989i \(0.210839\pi\)
\(642\) 0 0
\(643\) −11938.5 −0.732207 −0.366104 0.930574i \(-0.619308\pi\)
−0.366104 + 0.930574i \(0.619308\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −15685.4 −0.953105 −0.476552 0.879146i \(-0.658114\pi\)
−0.476552 + 0.879146i \(0.658114\pi\)
\(648\) 0 0
\(649\) −5484.91 −0.331743
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11414.3 −0.684037 −0.342019 0.939693i \(-0.611111\pi\)
−0.342019 + 0.939693i \(0.611111\pi\)
\(654\) 0 0
\(655\) 6603.16 0.393903
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24500.2 −1.44824 −0.724122 0.689672i \(-0.757755\pi\)
−0.724122 + 0.689672i \(0.757755\pi\)
\(660\) 0 0
\(661\) 24821.0 1.46055 0.730276 0.683152i \(-0.239391\pi\)
0.730276 + 0.683152i \(0.239391\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2157.90 0.125835
\(666\) 0 0
\(667\) −3938.43 −0.228631
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9314.65 0.535899
\(672\) 0 0
\(673\) −14862.9 −0.851297 −0.425649 0.904888i \(-0.639954\pi\)
−0.425649 + 0.904888i \(0.639954\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1218.79 0.0691902 0.0345951 0.999401i \(-0.488986\pi\)
0.0345951 + 0.999401i \(0.488986\pi\)
\(678\) 0 0
\(679\) 27164.3 1.53530
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10180.0 0.570319 0.285159 0.958480i \(-0.407953\pi\)
0.285159 + 0.958480i \(0.407953\pi\)
\(684\) 0 0
\(685\) 13283.5 0.740929
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 356.228 0.0196970
\(690\) 0 0
\(691\) 13712.9 0.754941 0.377470 0.926022i \(-0.376794\pi\)
0.377470 + 0.926022i \(0.376794\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7002.16 −0.382168
\(696\) 0 0
\(697\) 6337.95 0.344429
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 29853.2 1.60848 0.804238 0.594307i \(-0.202574\pi\)
0.804238 + 0.594307i \(0.202574\pi\)
\(702\) 0 0
\(703\) 3452.26 0.185212
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −31331.6 −1.66669
\(708\) 0 0
\(709\) −11488.4 −0.608541 −0.304271 0.952586i \(-0.598413\pi\)
−0.304271 + 0.952586i \(0.598413\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12285.3 −0.645286
\(714\) 0 0
\(715\) −654.708 −0.0342443
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17536.5 0.909596 0.454798 0.890595i \(-0.349711\pi\)
0.454798 + 0.890595i \(0.349711\pi\)
\(720\) 0 0
\(721\) 34168.1 1.76489
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2956.28 −0.151439
\(726\) 0 0
\(727\) 27607.0 1.40837 0.704185 0.710016i \(-0.251312\pi\)
0.704185 + 0.710016i \(0.251312\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1714.70 0.0867587
\(732\) 0 0
\(733\) −3519.63 −0.177354 −0.0886770 0.996060i \(-0.528264\pi\)
−0.0886770 + 0.996060i \(0.528264\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2769.09 0.138400
\(738\) 0 0
\(739\) 4557.41 0.226857 0.113428 0.993546i \(-0.463817\pi\)
0.113428 + 0.993546i \(0.463817\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5330.53 −0.263201 −0.131600 0.991303i \(-0.542012\pi\)
−0.131600 + 0.991303i \(0.542012\pi\)
\(744\) 0 0
\(745\) −2966.11 −0.145866
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7447.43 −0.363315
\(750\) 0 0
\(751\) 22386.8 1.08776 0.543879 0.839163i \(-0.316955\pi\)
0.543879 + 0.839163i \(0.316955\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10262.0 −0.494666
\(756\) 0 0
\(757\) 25315.6 1.21547 0.607736 0.794139i \(-0.292078\pi\)
0.607736 + 0.794139i \(0.292078\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18715.0 0.891485 0.445742 0.895161i \(-0.352940\pi\)
0.445742 + 0.895161i \(0.352940\pi\)
\(762\) 0 0
\(763\) −21481.7 −1.01925
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 497.260 0.0234094
\(768\) 0 0
\(769\) 20985.3 0.984070 0.492035 0.870575i \(-0.336253\pi\)
0.492035 + 0.870575i \(0.336253\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6302.27 −0.293243 −0.146622 0.989193i \(-0.546840\pi\)
−0.146622 + 0.989193i \(0.546840\pi\)
\(774\) 0 0
\(775\) −9221.66 −0.427422
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8450.11 −0.388648
\(780\) 0 0
\(781\) −26240.3 −1.20224
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4931.48 −0.224219
\(786\) 0 0
\(787\) 4124.73 0.186825 0.0934123 0.995628i \(-0.470223\pi\)
0.0934123 + 0.995628i \(0.470223\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9221.39 0.414507
\(792\) 0 0
\(793\) −844.464 −0.0378156
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8090.48 −0.359573 −0.179786 0.983706i \(-0.557541\pi\)
−0.179786 + 0.983706i \(0.557541\pi\)
\(798\) 0 0
\(799\) −4366.04 −0.193316
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5047.75 0.221832
\(804\) 0 0
\(805\) 12955.6 0.567237
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 16735.9 0.727323 0.363662 0.931531i \(-0.381526\pi\)
0.363662 + 0.931531i \(0.381526\pi\)
\(810\) 0 0
\(811\) 8476.59 0.367020 0.183510 0.983018i \(-0.441254\pi\)
0.183510 + 0.983018i \(0.441254\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7686.46 0.330362
\(816\) 0 0
\(817\) −2286.14 −0.0978970
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −902.399 −0.0383605 −0.0191802 0.999816i \(-0.506106\pi\)
−0.0191802 + 0.999816i \(0.506106\pi\)
\(822\) 0 0
\(823\) −23266.2 −0.985431 −0.492716 0.870190i \(-0.663996\pi\)
−0.492716 + 0.870190i \(0.663996\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 17103.5 0.719160 0.359580 0.933114i \(-0.382920\pi\)
0.359580 + 0.933114i \(0.382920\pi\)
\(828\) 0 0
\(829\) −6125.30 −0.256623 −0.128312 0.991734i \(-0.540956\pi\)
−0.128312 + 0.991734i \(0.540956\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −219.491 −0.00912955
\(834\) 0 0
\(835\) −6722.05 −0.278594
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19918.5 −0.819620 −0.409810 0.912171i \(-0.634405\pi\)
−0.409810 + 0.912171i \(0.634405\pi\)
\(840\) 0 0
\(841\) −23197.0 −0.951124
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −13726.6 −0.558829
\(846\) 0 0
\(847\) 3260.36 0.132264
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 20726.7 0.834901
\(852\) 0 0
\(853\) 18785.3 0.754042 0.377021 0.926205i \(-0.376948\pi\)
0.377021 + 0.926205i \(0.376948\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 33483.4 1.33462 0.667311 0.744779i \(-0.267445\pi\)
0.667311 + 0.744779i \(0.267445\pi\)
\(858\) 0 0
\(859\) 7322.74 0.290860 0.145430 0.989369i \(-0.453543\pi\)
0.145430 + 0.989369i \(0.453543\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −905.563 −0.0357193 −0.0178596 0.999841i \(-0.505685\pi\)
−0.0178596 + 0.999841i \(0.505685\pi\)
\(864\) 0 0
\(865\) −5181.96 −0.203690
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −18907.5 −0.738080
\(870\) 0 0
\(871\) −251.045 −0.00976619
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 23921.6 0.924224
\(876\) 0 0
\(877\) −27155.7 −1.04559 −0.522795 0.852459i \(-0.675111\pi\)
−0.522795 + 0.852459i \(0.675111\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −26094.1 −0.997881 −0.498941 0.866636i \(-0.666277\pi\)
−0.498941 + 0.866636i \(0.666277\pi\)
\(882\) 0 0
\(883\) 29674.6 1.13095 0.565476 0.824765i \(-0.308693\pi\)
0.565476 + 0.824765i \(0.308693\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1734.72 0.0656665 0.0328333 0.999461i \(-0.489547\pi\)
0.0328333 + 0.999461i \(0.489547\pi\)
\(888\) 0 0
\(889\) 21171.4 0.798724
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5821.05 0.218135
\(894\) 0 0
\(895\) 2922.87 0.109163
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3718.34 0.137946
\(900\) 0 0
\(901\) −1650.60 −0.0610315
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7622.42 −0.279975
\(906\) 0 0
\(907\) 6755.01 0.247295 0.123647 0.992326i \(-0.460541\pi\)
0.123647 + 0.992326i \(0.460541\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 35150.7 1.27837 0.639184 0.769054i \(-0.279272\pi\)
0.639184 + 0.769054i \(0.279272\pi\)
\(912\) 0 0
\(913\) −26065.4 −0.944840
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19046.5 −0.685899
\(918\) 0 0
\(919\) −28684.2 −1.02960 −0.514802 0.857309i \(-0.672134\pi\)
−0.514802 + 0.857309i \(0.672134\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2378.94 0.0848360
\(924\) 0 0
\(925\) 15557.9 0.553018
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3762.58 0.132881 0.0664405 0.997790i \(-0.478836\pi\)
0.0664405 + 0.997790i \(0.478836\pi\)
\(930\) 0 0
\(931\) 292.638 0.0103016
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3033.62 0.106107
\(936\) 0 0
\(937\) 25465.7 0.887863 0.443932 0.896061i \(-0.353583\pi\)
0.443932 + 0.896061i \(0.353583\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −40865.6 −1.41571 −0.707854 0.706359i \(-0.750337\pi\)
−0.707854 + 0.706359i \(0.750337\pi\)
\(942\) 0 0
\(943\) −50732.8 −1.75195
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8047.62 0.276148 0.138074 0.990422i \(-0.455909\pi\)
0.138074 + 0.990422i \(0.455909\pi\)
\(948\) 0 0
\(949\) −457.628 −0.0156536
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21562.2 0.732915 0.366458 0.930435i \(-0.380570\pi\)
0.366458 + 0.930435i \(0.380570\pi\)
\(954\) 0 0
\(955\) −972.257 −0.0329440
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −38315.5 −1.29017
\(960\) 0 0
\(961\) −18192.2 −0.610661
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −17423.2 −0.581215
\(966\) 0 0
\(967\) −14667.4 −0.487767 −0.243883 0.969805i \(-0.578421\pi\)
−0.243883 + 0.969805i \(0.578421\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 60154.7 1.98811 0.994056 0.108867i \(-0.0347221\pi\)
0.994056 + 0.108867i \(0.0347221\pi\)
\(972\) 0 0
\(973\) 20197.4 0.665465
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 29474.6 0.965176 0.482588 0.875848i \(-0.339697\pi\)
0.482588 + 0.875848i \(0.339697\pi\)
\(978\) 0 0
\(979\) −15533.4 −0.507100
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −6813.42 −0.221073 −0.110536 0.993872i \(-0.535257\pi\)
−0.110536 + 0.993872i \(0.535257\pi\)
\(984\) 0 0
\(985\) −30528.0 −0.987517
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −13725.5 −0.441301
\(990\) 0 0
\(991\) −11660.9 −0.373786 −0.186893 0.982380i \(-0.559842\pi\)
−0.186893 + 0.982380i \(0.559842\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −18915.3 −0.602669
\(996\) 0 0
\(997\) −37537.3 −1.19240 −0.596198 0.802838i \(-0.703323\pi\)
−0.596198 + 0.802838i \(0.703323\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1368.4.a.a.1.2 2
3.2 odd 2 152.4.a.a.1.2 2
12.11 even 2 304.4.a.e.1.1 2
24.5 odd 2 1216.4.a.m.1.1 2
24.11 even 2 1216.4.a.k.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.a.a.1.2 2 3.2 odd 2
304.4.a.e.1.1 2 12.11 even 2
1216.4.a.k.1.2 2 24.11 even 2
1216.4.a.m.1.1 2 24.5 odd 2
1368.4.a.a.1.2 2 1.1 even 1 trivial