Properties

Label 1368.4.a.a
Level $1368$
Weight $4$
Character orbit 1368.a
Self dual yes
Analytic conductor $80.715$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,4,Mod(1,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.7146128879\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{57})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 3) q^{5} + (4 \beta - 5) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta + 3) q^{5} + (4 \beta - 5) q^{7} + ( - 7 \beta + 11) q^{11} + ( - 7 \beta - 26) q^{13} + (10 \beta + 47) q^{17} - 19 q^{19} + (33 \beta - 6) q^{23} + ( - 5 \beta - 102) q^{25} + (9 \beta + 64) q^{29} + ( - 28 \beta + 16) q^{31} + (13 \beta - 71) q^{35} + (28 \beta - 90) q^{37} + ( - 90 \beta + 150) q^{41} + ( - 23 \beta + 45) q^{43} + (45 \beta - 159) q^{47} + ( - 24 \beta - 94) q^{49} + (3 \beta - 106) q^{53} + ( - 25 \beta + 131) q^{55} + ( - 63 \beta - 368) q^{59} + ( - 53 \beta + 101) q^{61} + (12 \beta + 20) q^{65} + (5 \beta + 98) q^{67} + (100 \beta - 446) q^{71} + ( - 72 \beta - 87) q^{73} + (51 \beta - 447) q^{77} + (114 \beta - 184) q^{79} + (154 \beta - 264) q^{83} + ( - 27 \beta + 1) q^{85} + (196 \beta + 184) q^{89} + ( - 97 \beta - 262) q^{91} + (19 \beta - 57) q^{95} + (374 \beta - 276) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{5} - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 5 q^{5} - 6 q^{7} + 15 q^{11} - 59 q^{13} + 104 q^{17} - 38 q^{19} + 21 q^{23} - 209 q^{25} + 137 q^{29} + 4 q^{31} - 129 q^{35} - 152 q^{37} + 210 q^{41} + 67 q^{43} - 273 q^{47} - 212 q^{49} - 209 q^{53} + 237 q^{55} - 799 q^{59} + 149 q^{61} + 52 q^{65} + 201 q^{67} - 792 q^{71} - 246 q^{73} - 843 q^{77} - 254 q^{79} - 374 q^{83} - 25 q^{85} + 564 q^{89} - 621 q^{91} - 95 q^{95} - 178 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.27492
−3.27492
0 0 0 −1.27492 0 12.0997 0 0 0
1.2 0 0 0 6.27492 0 −18.0997 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1368.4.a.a 2
3.b odd 2 1 152.4.a.a 2
12.b even 2 1 304.4.a.e 2
24.f even 2 1 1216.4.a.k 2
24.h odd 2 1 1216.4.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.4.a.a 2 3.b odd 2 1
304.4.a.e 2 12.b even 2 1
1216.4.a.k 2 24.f even 2 1
1216.4.a.m 2 24.h odd 2 1
1368.4.a.a 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 5T_{5} - 8 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1368))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 5T - 8 \) Copy content Toggle raw display
$7$ \( T^{2} + 6T - 219 \) Copy content Toggle raw display
$11$ \( T^{2} - 15T - 642 \) Copy content Toggle raw display
$13$ \( T^{2} + 59T + 172 \) Copy content Toggle raw display
$17$ \( T^{2} - 104T + 1279 \) Copy content Toggle raw display
$19$ \( (T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 21T - 15408 \) Copy content Toggle raw display
$29$ \( T^{2} - 137T + 3538 \) Copy content Toggle raw display
$31$ \( T^{2} - 4T - 11168 \) Copy content Toggle raw display
$37$ \( T^{2} + 152T - 5396 \) Copy content Toggle raw display
$41$ \( T^{2} - 210T - 104400 \) Copy content Toggle raw display
$43$ \( T^{2} - 67T - 6416 \) Copy content Toggle raw display
$47$ \( T^{2} + 273T - 10224 \) Copy content Toggle raw display
$53$ \( T^{2} + 209T + 10792 \) Copy content Toggle raw display
$59$ \( T^{2} + 799T + 103042 \) Copy content Toggle raw display
$61$ \( T^{2} - 149T - 34478 \) Copy content Toggle raw display
$67$ \( T^{2} - 201T + 9744 \) Copy content Toggle raw display
$71$ \( T^{2} + 792T + 14316 \) Copy content Toggle raw display
$73$ \( T^{2} + 246T - 58743 \) Copy content Toggle raw display
$79$ \( T^{2} + 254T - 169064 \) Copy content Toggle raw display
$83$ \( T^{2} + 374T - 302984 \) Copy content Toggle raw display
$89$ \( T^{2} - 564T - 467904 \) Copy content Toggle raw display
$97$ \( T^{2} + 178 T - 1985312 \) Copy content Toggle raw display
show more
show less