Properties

Label 1368.2.s.j.577.3
Level $1368$
Weight $2$
Character 1368.577
Analytic conductor $10.924$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1368.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.9235349965\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 456)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 577.3
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 1368.577
Dual form 1368.2.s.j.505.3

$q$-expansion

\(f(q)\) \(=\) \(q+(1.53209 + 2.65366i) q^{5} -2.06418 q^{7} +O(q^{10})\) \(q+(1.53209 + 2.65366i) q^{5} -2.06418 q^{7} +6.45336 q^{11} +(-0.500000 + 0.866025i) q^{13} +(0.694593 + 1.20307i) q^{17} +(-3.75877 + 2.20718i) q^{19} +(1.53209 - 2.65366i) q^{23} +(-2.19459 + 3.80115i) q^{25} +(-1.75877 + 3.04628i) q^{29} +9.45336 q^{31} +(-3.16250 - 5.47762i) q^{35} -2.38919 q^{37} +(5.06418 + 8.77141i) q^{41} +(-3.03209 - 5.25173i) q^{43} +(-3.00000 + 5.19615i) q^{47} -2.73917 q^{49} +(-5.29086 + 9.16404i) q^{53} +(9.88713 + 17.1250i) q^{55} +(-5.59627 - 9.69302i) q^{59} +(-2.56418 + 4.44129i) q^{61} -3.06418 q^{65} +(-1.72668 + 2.99070i) q^{67} +(3.36959 + 5.83629i) q^{71} +(4.56418 + 7.90539i) q^{73} -13.3209 q^{77} +(0.790859 + 1.36981i) q^{79} +17.6459 q^{83} +(-2.12836 + 3.68642i) q^{85} +(5.22668 - 9.05288i) q^{89} +(1.03209 - 1.78763i) q^{91} +(-11.6159 - 6.59289i) q^{95} +(-3.36959 - 5.83629i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{7} + 12 q^{11} - 3 q^{13} - 9 q^{25} + 12 q^{29} + 30 q^{31} - 24 q^{35} - 6 q^{37} + 12 q^{41} - 9 q^{43} - 18 q^{47} + 12 q^{49} - 6 q^{59} + 3 q^{61} + 3 q^{67} + 6 q^{71} + 9 q^{73} + 12 q^{77} - 27 q^{79} + 24 q^{83} + 24 q^{85} + 18 q^{89} - 3 q^{91} - 48 q^{95} - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(685\) \(1009\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.53209 + 2.65366i 0.685171 + 1.18675i 0.973383 + 0.229184i \(0.0736059\pi\)
−0.288212 + 0.957567i \(0.593061\pi\)
\(6\) 0 0
\(7\) −2.06418 −0.780186 −0.390093 0.920775i \(-0.627557\pi\)
−0.390093 + 0.920775i \(0.627557\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.45336 1.94576 0.972881 0.231306i \(-0.0742998\pi\)
0.972881 + 0.231306i \(0.0742998\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i −0.926995 0.375073i \(-0.877618\pi\)
0.788320 + 0.615265i \(0.210951\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.694593 + 1.20307i 0.168463 + 0.291787i 0.937880 0.346960i \(-0.112786\pi\)
−0.769416 + 0.638748i \(0.779453\pi\)
\(18\) 0 0
\(19\) −3.75877 + 2.20718i −0.862321 + 0.506362i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.53209 2.65366i 0.319463 0.553325i −0.660913 0.750462i \(-0.729831\pi\)
0.980376 + 0.197137i \(0.0631643\pi\)
\(24\) 0 0
\(25\) −2.19459 + 3.80115i −0.438919 + 0.760229i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.75877 + 3.04628i −0.326595 + 0.565680i −0.981834 0.189742i \(-0.939235\pi\)
0.655238 + 0.755422i \(0.272568\pi\)
\(30\) 0 0
\(31\) 9.45336 1.69787 0.848937 0.528494i \(-0.177243\pi\)
0.848937 + 0.528494i \(0.177243\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.16250 5.47762i −0.534561 0.925886i
\(36\) 0 0
\(37\) −2.38919 −0.392780 −0.196390 0.980526i \(-0.562922\pi\)
−0.196390 + 0.980526i \(0.562922\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.06418 + 8.77141i 0.790892 + 1.36986i 0.925415 + 0.378954i \(0.123716\pi\)
−0.134524 + 0.990910i \(0.542950\pi\)
\(42\) 0 0
\(43\) −3.03209 5.25173i −0.462389 0.800882i 0.536690 0.843779i \(-0.319674\pi\)
−0.999079 + 0.0428977i \(0.986341\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) 0 0
\(49\) −2.73917 −0.391310
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.29086 + 9.16404i −0.726755 + 1.25878i 0.231492 + 0.972837i \(0.425639\pi\)
−0.958247 + 0.285941i \(0.907694\pi\)
\(54\) 0 0
\(55\) 9.88713 + 17.1250i 1.33318 + 2.30914i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.59627 9.69302i −0.728572 1.26192i −0.957487 0.288477i \(-0.906851\pi\)
0.228915 0.973446i \(-0.426482\pi\)
\(60\) 0 0
\(61\) −2.56418 + 4.44129i −0.328309 + 0.568648i −0.982177 0.187961i \(-0.939812\pi\)
0.653867 + 0.756609i \(0.273146\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.06418 −0.380064
\(66\) 0 0
\(67\) −1.72668 + 2.99070i −0.210948 + 0.365372i −0.952011 0.306063i \(-0.900988\pi\)
0.741064 + 0.671435i \(0.234322\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.36959 + 5.83629i 0.399896 + 0.692640i 0.993713 0.111960i \(-0.0357128\pi\)
−0.593817 + 0.804600i \(0.702380\pi\)
\(72\) 0 0
\(73\) 4.56418 + 7.90539i 0.534197 + 0.925256i 0.999202 + 0.0399477i \(0.0127191\pi\)
−0.465005 + 0.885308i \(0.653948\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −13.3209 −1.51806
\(78\) 0 0
\(79\) 0.790859 + 1.36981i 0.0889786 + 0.154116i 0.907080 0.420959i \(-0.138306\pi\)
−0.818101 + 0.575075i \(0.804973\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 17.6459 1.93689 0.968444 0.249230i \(-0.0801774\pi\)
0.968444 + 0.249230i \(0.0801774\pi\)
\(84\) 0 0
\(85\) −2.12836 + 3.68642i −0.230853 + 0.399848i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.22668 9.05288i 0.554027 0.959603i −0.443951 0.896051i \(-0.646424\pi\)
0.997979 0.0635523i \(-0.0202430\pi\)
\(90\) 0 0
\(91\) 1.03209 1.78763i 0.108192 0.187395i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −11.6159 6.59289i −1.19176 0.676416i
\(96\) 0 0
\(97\) −3.36959 5.83629i −0.342130 0.592586i 0.642698 0.766119i \(-0.277815\pi\)
−0.984828 + 0.173534i \(0.944481\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.305407 0.528981i 0.0303892 0.0526356i −0.850431 0.526087i \(-0.823659\pi\)
0.880820 + 0.473451i \(0.156992\pi\)
\(102\) 0 0
\(103\) 0.0641778 0.00632362 0.00316181 0.999995i \(-0.498994\pi\)
0.00316181 + 0.999995i \(0.498994\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.610815 −0.0590497 −0.0295248 0.999564i \(-0.509399\pi\)
−0.0295248 + 0.999564i \(0.509399\pi\)
\(108\) 0 0
\(109\) −2.30541 3.99308i −0.220818 0.382468i 0.734239 0.678891i \(-0.237539\pi\)
−0.955057 + 0.296424i \(0.904206\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −17.4884 −1.64517 −0.822587 0.568639i \(-0.807470\pi\)
−0.822587 + 0.568639i \(0.807470\pi\)
\(114\) 0 0
\(115\) 9.38919 0.875546
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.43376 2.48335i −0.131433 0.227648i
\(120\) 0 0
\(121\) 30.6459 2.78599
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.87164 0.167405
\(126\) 0 0
\(127\) −7.06418 + 12.2355i −0.626844 + 1.08573i 0.361337 + 0.932435i \(0.382321\pi\)
−0.988181 + 0.153291i \(0.951013\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.75877 + 4.77833i 0.241035 + 0.417485i 0.961009 0.276516i \(-0.0891798\pi\)
−0.719974 + 0.694001i \(0.755847\pi\)
\(132\) 0 0
\(133\) 7.75877 4.55601i 0.672771 0.395056i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.88713 15.3930i 0.759278 1.31511i −0.183941 0.982937i \(-0.558885\pi\)
0.943219 0.332171i \(-0.107781\pi\)
\(138\) 0 0
\(139\) 5.48545 9.50108i 0.465270 0.805871i −0.533944 0.845520i \(-0.679291\pi\)
0.999214 + 0.0396488i \(0.0126239\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.22668 + 5.58878i −0.269829 + 0.467357i
\(144\) 0 0
\(145\) −10.7784 −0.895095
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.53209 + 11.3139i 0.535130 + 0.926872i 0.999157 + 0.0410508i \(0.0130706\pi\)
−0.464027 + 0.885821i \(0.653596\pi\)
\(150\) 0 0
\(151\) 4.90673 0.399304 0.199652 0.979867i \(-0.436019\pi\)
0.199652 + 0.979867i \(0.436019\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.4834 + 25.0860i 1.16333 + 2.01495i
\(156\) 0 0
\(157\) −5.86959 10.1664i −0.468444 0.811369i 0.530906 0.847431i \(-0.321852\pi\)
−0.999350 + 0.0360623i \(0.988519\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.16250 + 5.47762i −0.249240 + 0.431697i
\(162\) 0 0
\(163\) −13.4534 −1.05375 −0.526874 0.849943i \(-0.676636\pi\)
−0.526874 + 0.849943i \(0.676636\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.98545 12.0992i 0.540551 0.936261i −0.458322 0.888786i \(-0.651549\pi\)
0.998872 0.0474747i \(-0.0151173\pi\)
\(168\) 0 0
\(169\) 6.00000 + 10.3923i 0.461538 + 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.75877 + 3.04628i 0.133717 + 0.231604i 0.925107 0.379708i \(-0.123975\pi\)
−0.791390 + 0.611312i \(0.790642\pi\)
\(174\) 0 0
\(175\) 4.53003 7.84624i 0.342438 0.593120i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −11.0642 −0.826975 −0.413488 0.910510i \(-0.635690\pi\)
−0.413488 + 0.910510i \(0.635690\pi\)
\(180\) 0 0
\(181\) −10.7588 + 18.6347i −0.799693 + 1.38511i 0.120123 + 0.992759i \(0.461671\pi\)
−0.919816 + 0.392350i \(0.871662\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.66044 6.34008i −0.269121 0.466132i
\(186\) 0 0
\(187\) 4.48246 + 7.76385i 0.327790 + 0.567749i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.2317 1.10213 0.551065 0.834462i \(-0.314222\pi\)
0.551065 + 0.834462i \(0.314222\pi\)
\(192\) 0 0
\(193\) −3.13041 5.42204i −0.225332 0.390287i 0.731087 0.682284i \(-0.239013\pi\)
−0.956419 + 0.291998i \(0.905680\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.71007 0.478073 0.239036 0.971011i \(-0.423168\pi\)
0.239036 + 0.971011i \(0.423168\pi\)
\(198\) 0 0
\(199\) 12.4659 21.5915i 0.883681 1.53058i 0.0364626 0.999335i \(-0.488391\pi\)
0.847218 0.531245i \(-0.178276\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.63041 6.28806i 0.254805 0.441336i
\(204\) 0 0
\(205\) −15.5175 + 26.8772i −1.08379 + 1.87718i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −24.2567 + 14.2437i −1.67787 + 0.985260i
\(210\) 0 0
\(211\) −4.48545 7.76903i −0.308791 0.534842i 0.669307 0.742986i \(-0.266591\pi\)
−0.978098 + 0.208144i \(0.933258\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.29086 16.0922i 0.633631 1.09748i
\(216\) 0 0
\(217\) −19.5134 −1.32466
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.38919 −0.0934467
\(222\) 0 0
\(223\) −12.5692 21.7705i −0.841698 1.45786i −0.888458 0.458957i \(-0.848223\pi\)
0.0467604 0.998906i \(-0.485110\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 22.8384 1.51584 0.757920 0.652348i \(-0.226216\pi\)
0.757920 + 0.652348i \(0.226216\pi\)
\(228\) 0 0
\(229\) −6.03508 −0.398809 −0.199405 0.979917i \(-0.563901\pi\)
−0.199405 + 0.979917i \(0.563901\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.30541 + 3.99308i 0.151032 + 0.261596i 0.931607 0.363467i \(-0.118407\pi\)
−0.780575 + 0.625062i \(0.785074\pi\)
\(234\) 0 0
\(235\) −18.3851 −1.19931
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.36009 −0.605454 −0.302727 0.953077i \(-0.597897\pi\)
−0.302727 + 0.953077i \(0.597897\pi\)
\(240\) 0 0
\(241\) 10.0817 17.4620i 0.649421 1.12483i −0.333841 0.942629i \(-0.608345\pi\)
0.983261 0.182200i \(-0.0583218\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.19665 7.26881i −0.268114 0.464388i
\(246\) 0 0
\(247\) −0.0320889 4.35878i −0.00204177 0.277343i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.06418 10.5035i 0.382768 0.662973i −0.608689 0.793409i \(-0.708304\pi\)
0.991457 + 0.130436i \(0.0416377\pi\)
\(252\) 0 0
\(253\) 9.88713 17.1250i 0.621598 1.07664i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.4192 26.7069i 0.961824 1.66593i 0.243909 0.969798i \(-0.421570\pi\)
0.717916 0.696130i \(-0.245096\pi\)
\(258\) 0 0
\(259\) 4.93170 0.306441
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5.24123 9.07808i −0.323188 0.559778i 0.657956 0.753056i \(-0.271421\pi\)
−0.981144 + 0.193278i \(0.938088\pi\)
\(264\) 0 0
\(265\) −32.4243 −1.99181
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.901674 1.56175i −0.0549760 0.0952213i 0.837228 0.546854i \(-0.184175\pi\)
−0.892204 + 0.451633i \(0.850842\pi\)
\(270\) 0 0
\(271\) −14.1284 24.4710i −0.858236 1.48651i −0.873610 0.486627i \(-0.838227\pi\)
0.0153732 0.999882i \(-0.495106\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −14.1625 + 24.5302i −0.854031 + 1.47923i
\(276\) 0 0
\(277\) 6.48246 0.389493 0.194747 0.980854i \(-0.437612\pi\)
0.194747 + 0.980854i \(0.437612\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.92127 5.05980i 0.174269 0.301842i −0.765639 0.643270i \(-0.777577\pi\)
0.939908 + 0.341428i \(0.110911\pi\)
\(282\) 0 0
\(283\) −8.12836 14.0787i −0.483181 0.836893i 0.516633 0.856207i \(-0.327185\pi\)
−0.999813 + 0.0193137i \(0.993852\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.4534 18.1058i −0.617043 1.06875i
\(288\) 0 0
\(289\) 7.53508 13.0511i 0.443240 0.767714i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −26.2567 −1.53393 −0.766967 0.641687i \(-0.778235\pi\)
−0.766967 + 0.641687i \(0.778235\pi\)
\(294\) 0 0
\(295\) 17.1480 29.7011i 0.998393 1.72927i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.53209 + 2.65366i 0.0886030 + 0.153465i
\(300\) 0 0
\(301\) 6.25877 + 10.8405i 0.360750 + 0.624837i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −15.7142 −0.899792
\(306\) 0 0
\(307\) −7.14796 12.3806i −0.407955 0.706599i 0.586705 0.809801i \(-0.300425\pi\)
−0.994661 + 0.103201i \(0.967091\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −22.2276 −1.26041 −0.630206 0.776428i \(-0.717030\pi\)
−0.630206 + 0.776428i \(0.717030\pi\)
\(312\) 0 0
\(313\) −1.56624 + 2.71280i −0.0885290 + 0.153337i −0.906890 0.421368i \(-0.861550\pi\)
0.818361 + 0.574705i \(0.194883\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.04963 + 5.28211i −0.171284 + 0.296673i −0.938869 0.344274i \(-0.888125\pi\)
0.767585 + 0.640947i \(0.221458\pi\)
\(318\) 0 0
\(319\) −11.3500 + 19.6588i −0.635477 + 1.10068i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.26621 2.98897i −0.293020 0.166311i
\(324\) 0 0
\(325\) −2.19459 3.80115i −0.121734 0.210850i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.19253 10.7258i 0.341405 0.591332i
\(330\) 0 0
\(331\) −1.93582 −0.106402 −0.0532012 0.998584i \(-0.516942\pi\)
−0.0532012 + 0.998584i \(0.516942\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.5817 −0.578141
\(336\) 0 0
\(337\) 3.58378 + 6.20729i 0.195221 + 0.338132i 0.946973 0.321313i \(-0.104124\pi\)
−0.751752 + 0.659446i \(0.770791\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 61.0060 3.30366
\(342\) 0 0
\(343\) 20.1034 1.08548
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.80840 8.32839i −0.258128 0.447092i 0.707612 0.706601i \(-0.249772\pi\)
−0.965741 + 0.259510i \(0.916439\pi\)
\(348\) 0 0
\(349\) 31.5134 1.68687 0.843437 0.537227i \(-0.180528\pi\)
0.843437 + 0.537227i \(0.180528\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.8425 1.37546 0.687730 0.725967i \(-0.258607\pi\)
0.687730 + 0.725967i \(0.258607\pi\)
\(354\) 0 0
\(355\) −10.3250 + 17.8834i −0.547995 + 0.949154i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.1284 + 27.9351i 0.851222 + 1.47436i 0.880106 + 0.474777i \(0.157471\pi\)
−0.0288840 + 0.999583i \(0.509195\pi\)
\(360\) 0 0
\(361\) 9.25671 16.5926i 0.487195 0.873293i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −13.9855 + 24.2235i −0.732032 + 1.26792i
\(366\) 0 0
\(367\) −14.6334 + 25.3458i −0.763858 + 1.32304i 0.176991 + 0.984213i \(0.443364\pi\)
−0.940848 + 0.338828i \(0.889970\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.9213 18.9162i 0.567004 0.982080i
\(372\) 0 0
\(373\) 8.03920 0.416254 0.208127 0.978102i \(-0.433263\pi\)
0.208127 + 0.978102i \(0.433263\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.75877 3.04628i −0.0905813 0.156891i
\(378\) 0 0
\(379\) 8.19253 0.420822 0.210411 0.977613i \(-0.432520\pi\)
0.210411 + 0.977613i \(0.432520\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.74422 4.75313i −0.140223 0.242874i 0.787357 0.616497i \(-0.211449\pi\)
−0.927581 + 0.373623i \(0.878115\pi\)
\(384\) 0 0
\(385\) −20.4088 35.3491i −1.04013 1.80155i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.22668 7.32083i 0.214301 0.371181i −0.738755 0.673974i \(-0.764586\pi\)
0.953056 + 0.302793i \(0.0979192\pi\)
\(390\) 0 0
\(391\) 4.25671 0.215271
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.42333 + 4.19734i −0.121931 + 0.211191i
\(396\) 0 0
\(397\) −12.5351 21.7114i −0.629118 1.08966i −0.987729 0.156177i \(-0.950083\pi\)
0.358611 0.933487i \(-0.383250\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.8726 22.2960i −0.642826 1.11341i −0.984799 0.173697i \(-0.944429\pi\)
0.341973 0.939710i \(-0.388905\pi\)
\(402\) 0 0
\(403\) −4.72668 + 8.18685i −0.235453 + 0.407816i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −15.4183 −0.764256
\(408\) 0 0
\(409\) 3.21213 5.56358i 0.158830 0.275101i −0.775617 0.631204i \(-0.782561\pi\)
0.934447 + 0.356102i \(0.115895\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.5517 + 20.0081i 0.568421 + 0.984535i
\(414\) 0 0
\(415\) 27.0351 + 46.8261i 1.32710 + 2.29860i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16.2668 −0.794686 −0.397343 0.917670i \(-0.630068\pi\)
−0.397343 + 0.917670i \(0.630068\pi\)
\(420\) 0 0
\(421\) 14.7297 + 25.5125i 0.717880 + 1.24341i 0.961838 + 0.273619i \(0.0882209\pi\)
−0.243958 + 0.969786i \(0.578446\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.09739 −0.295767
\(426\) 0 0
\(427\) 5.29292 9.16760i 0.256142 0.443651i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.51754 + 14.7528i −0.410276 + 0.710618i −0.994920 0.100672i \(-0.967901\pi\)
0.584644 + 0.811290i \(0.301234\pi\)
\(432\) 0 0
\(433\) 6.84049 11.8481i 0.328733 0.569382i −0.653528 0.756903i \(-0.726712\pi\)
0.982261 + 0.187520i \(0.0600451\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.0983261 + 13.3561i 0.00470357 + 0.638908i
\(438\) 0 0
\(439\) −0.707081 1.22470i −0.0337471 0.0584518i 0.848659 0.528941i \(-0.177411\pi\)
−0.882406 + 0.470489i \(0.844077\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.369585 0.640140i 0.0175595 0.0304140i −0.857112 0.515130i \(-0.827744\pi\)
0.874672 + 0.484716i \(0.161077\pi\)
\(444\) 0 0
\(445\) 32.0310 1.51841
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −7.51754 −0.354775 −0.177387 0.984141i \(-0.556765\pi\)
−0.177387 + 0.984141i \(0.556765\pi\)
\(450\) 0 0
\(451\) 32.6810 + 56.6051i 1.53889 + 2.66543i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.32501 0.296521
\(456\) 0 0
\(457\) −15.6810 −0.733525 −0.366763 0.930315i \(-0.619534\pi\)
−0.366763 + 0.930315i \(0.619534\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.7442 + 18.6095i 0.500408 + 0.866733i 1.00000 0.000471567i \(0.000150104\pi\)
−0.499592 + 0.866261i \(0.666517\pi\)
\(462\) 0 0
\(463\) −9.62092 −0.447122 −0.223561 0.974690i \(-0.571768\pi\)
−0.223561 + 0.974690i \(0.571768\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.87164 −0.0866094 −0.0433047 0.999062i \(-0.513789\pi\)
−0.0433047 + 0.999062i \(0.513789\pi\)
\(468\) 0 0
\(469\) 3.56418 6.17334i 0.164578 0.285058i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −19.5672 33.8913i −0.899699 1.55833i
\(474\) 0 0
\(475\) −0.140844 19.1315i −0.00646237 0.877813i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.36959 5.83629i 0.153960 0.266667i −0.778720 0.627372i \(-0.784131\pi\)
0.932680 + 0.360705i \(0.117464\pi\)
\(480\) 0 0
\(481\) 1.19459 2.06910i 0.0544687 0.0943426i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.3250 17.8834i 0.468834 0.812045i
\(486\) 0 0
\(487\) −2.38507 −0.108078 −0.0540388 0.998539i \(-0.517209\pi\)
−0.0540388 + 0.998539i \(0.517209\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.36959 9.30039i −0.242326 0.419721i 0.719050 0.694958i \(-0.244577\pi\)
−0.961376 + 0.275237i \(0.911244\pi\)
\(492\) 0 0
\(493\) −4.88652 −0.220078
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.95542 12.0471i −0.311993 0.540388i
\(498\) 0 0
\(499\) −14.2733 24.7221i −0.638961 1.10671i −0.985661 0.168738i \(-0.946031\pi\)
0.346700 0.937976i \(-0.387302\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.75877 3.04628i 0.0784197 0.135827i −0.824149 0.566374i \(-0.808346\pi\)
0.902568 + 0.430547i \(0.141679\pi\)
\(504\) 0 0
\(505\) 1.87164 0.0832871
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.61081 6.25411i 0.160047 0.277209i −0.774839 0.632159i \(-0.782169\pi\)
0.934885 + 0.354950i \(0.115502\pi\)
\(510\) 0 0
\(511\) −9.42127 16.3181i −0.416773 0.721871i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.0983261 + 0.170306i 0.00433276 + 0.00750457i
\(516\) 0 0
\(517\) −19.3601 + 33.5327i −0.851456 + 1.47476i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.8075 −0.736348 −0.368174 0.929757i \(-0.620017\pi\)
−0.368174 + 0.929757i \(0.620017\pi\)
\(522\) 0 0
\(523\) 3.88413 6.72752i 0.169841 0.294174i −0.768523 0.639823i \(-0.779008\pi\)
0.938364 + 0.345649i \(0.112341\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.56624 + 11.3731i 0.286030 + 0.495418i
\(528\) 0 0
\(529\) 6.80541 + 11.7873i 0.295887 + 0.512492i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10.1284 −0.438708
\(534\) 0 0
\(535\) −0.935822 1.62089i −0.0404591 0.0700773i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −17.6769 −0.761396
\(540\) 0 0
\(541\) 18.1655 31.4636i 0.780996 1.35272i −0.150367 0.988630i \(-0.548045\pi\)
0.931362 0.364094i \(-0.118621\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.06418 12.2355i 0.302596 0.524112i
\(546\) 0 0
\(547\) −15.8105 + 27.3845i −0.676006 + 1.17088i 0.300167 + 0.953887i \(0.402958\pi\)
−0.976174 + 0.216991i \(0.930376\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.112874 15.3322i −0.00480859 0.653173i
\(552\) 0 0
\(553\) −1.63247 2.82753i −0.0694199 0.120239i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.01960 3.49805i 0.0855732 0.148217i −0.820062 0.572275i \(-0.806061\pi\)
0.905635 + 0.424057i \(0.139395\pi\)
\(558\) 0 0
\(559\) 6.06418 0.256487
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.61081 0.362903 0.181451 0.983400i \(-0.441921\pi\)
0.181451 + 0.983400i \(0.441921\pi\)
\(564\) 0 0
\(565\) −26.7939 46.4083i −1.12723 1.95241i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 27.6851 1.16062 0.580310 0.814396i \(-0.302931\pi\)
0.580310 + 0.814396i \(0.302931\pi\)
\(570\) 0 0
\(571\) 24.1533 1.01079 0.505393 0.862889i \(-0.331348\pi\)
0.505393 + 0.862889i \(0.331348\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.72462 + 11.6474i 0.280436 + 0.485730i
\(576\) 0 0
\(577\) 28.8675 1.20177 0.600885 0.799335i \(-0.294815\pi\)
0.600885 + 0.799335i \(0.294815\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −36.4243 −1.51113
\(582\) 0 0
\(583\) −34.1438 + 59.1389i −1.41409 + 2.44928i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.14290 + 8.90777i 0.212270 + 0.367663i 0.952425 0.304774i \(-0.0985809\pi\)
−0.740154 + 0.672437i \(0.765248\pi\)
\(588\) 0 0
\(589\) −35.5330 + 20.8653i −1.46411 + 0.859739i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7.96585 + 13.7973i −0.327118 + 0.566586i −0.981939 0.189199i \(-0.939411\pi\)
0.654820 + 0.755784i \(0.272744\pi\)
\(594\) 0 0
\(595\) 4.39330 7.60943i 0.180108 0.311956i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −9.03003 + 15.6405i −0.368957 + 0.639052i −0.989403 0.145197i \(-0.953618\pi\)
0.620446 + 0.784249i \(0.286952\pi\)
\(600\) 0 0
\(601\) −7.86753 −0.320923 −0.160462 0.987042i \(-0.551298\pi\)
−0.160462 + 0.987042i \(0.551298\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 46.9522 + 81.3237i 1.90888 + 3.30628i
\(606\) 0 0
\(607\) −17.2668 −0.700838 −0.350419 0.936593i \(-0.613961\pi\)
−0.350419 + 0.936593i \(0.613961\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.00000 5.19615i −0.121367 0.210214i
\(612\) 0 0
\(613\) 13.7939 + 23.8917i 0.557128 + 0.964975i 0.997735 + 0.0672742i \(0.0214302\pi\)
−0.440606 + 0.897701i \(0.645236\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.24628 14.2830i 0.331983 0.575011i −0.650918 0.759148i \(-0.725616\pi\)
0.982901 + 0.184137i \(0.0589491\pi\)
\(618\) 0 0
\(619\) 24.4884 0.984274 0.492137 0.870518i \(-0.336216\pi\)
0.492137 + 0.870518i \(0.336216\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.7888 + 18.6867i −0.432244 + 0.748669i
\(624\) 0 0
\(625\) 13.8405 + 23.9724i 0.553620 + 0.958897i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.65951 2.87436i −0.0661690 0.114608i
\(630\) 0 0
\(631\) −9.83544 + 17.0355i −0.391543 + 0.678172i −0.992653 0.120994i \(-0.961392\pi\)
0.601111 + 0.799166i \(0.294725\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −43.2918 −1.71798
\(636\) 0 0
\(637\) 1.36959 2.37219i 0.0542649 0.0939896i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.06418 + 7.03936i 0.160525 + 0.278038i 0.935057 0.354497i \(-0.115348\pi\)
−0.774532 + 0.632535i \(0.782014\pi\)
\(642\) 0 0
\(643\) −3.91921 6.78828i −0.154559 0.267704i 0.778340 0.627844i \(-0.216062\pi\)
−0.932898 + 0.360140i \(0.882729\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 39.7743 1.56369 0.781844 0.623475i \(-0.214280\pi\)
0.781844 + 0.623475i \(0.214280\pi\)
\(648\) 0 0
\(649\) −36.1147 62.5526i −1.41763 2.45540i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.94593 −0.350081 −0.175041 0.984561i \(-0.556006\pi\)
−0.175041 + 0.984561i \(0.556006\pi\)
\(654\) 0 0
\(655\) −8.45336 + 14.6417i −0.330300 + 0.572097i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5.93676 + 10.2828i −0.231263 + 0.400560i −0.958180 0.286166i \(-0.907619\pi\)
0.726917 + 0.686725i \(0.240953\pi\)
\(660\) 0 0
\(661\) −21.9067 + 37.9436i −0.852073 + 1.47583i 0.0272613 + 0.999628i \(0.491321\pi\)
−0.879334 + 0.476205i \(0.842012\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 23.9772 + 13.6089i 0.929796 + 0.527730i
\(666\) 0 0
\(667\) 5.38919 + 9.33434i 0.208670 + 0.361427i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −16.5476 + 28.6612i −0.638812 + 1.10645i
\(672\) 0 0
\(673\) −37.6810 −1.45249 −0.726247 0.687433i \(-0.758737\pi\)
−0.726247 + 0.687433i \(0.758737\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.1052 1.34920 0.674602 0.738182i \(-0.264315\pi\)
0.674602 + 0.738182i \(0.264315\pi\)
\(678\) 0 0
\(679\) 6.95542 + 12.0471i 0.266925 + 0.462327i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −37.6168 −1.43937 −0.719683 0.694302i \(-0.755713\pi\)
−0.719683 + 0.694302i \(0.755713\pi\)
\(684\) 0 0
\(685\) 54.4635 2.08094
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.29086 9.16404i −0.201566 0.349122i
\(690\) 0 0
\(691\) −2.69997 −0.102712 −0.0513558 0.998680i \(-0.516354\pi\)
−0.0513558 + 0.998680i \(0.516354\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 33.6168 1.27516
\(696\) 0 0
\(697\) −7.03508 + 12.1851i −0.266473 + 0.461544i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −10.8821 18.8483i −0.411010 0.711891i 0.583990 0.811761i \(-0.301491\pi\)
−0.995000 + 0.0998700i \(0.968157\pi\)
\(702\) 0 0
\(703\) 8.98040 5.27336i 0.338702 0.198889i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.630415 + 1.09191i −0.0237092 + 0.0410655i
\(708\) 0 0
\(709\) 13.3033 23.0421i 0.499618 0.865363i −0.500382 0.865805i \(-0.666807\pi\)
1.00000 0.000441366i \(0.000140491\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.4834 25.0860i 0.542407 0.939477i
\(714\) 0 0
\(715\) −19.7743 −0.739515
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.81790 6.61279i −0.142383 0.246615i 0.786010 0.618214i \(-0.212143\pi\)
−0.928394 + 0.371598i \(0.878810\pi\)
\(720\) 0 0
\(721\) −0.132474 −0.00493360
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7.71957 13.3707i −0.286698 0.496575i
\(726\) 0 0
\(727\) −20.3726 35.2863i −0.755577 1.30870i −0.945087 0.326819i \(-0.894023\pi\)
0.189510 0.981879i \(-0.439310\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.21213 7.29563i 0.155791 0.269839i
\(732\) 0 0
\(733\) 48.4742 1.79044 0.895218 0.445628i \(-0.147020\pi\)
0.895218 + 0.445628i \(0.147020\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.1429 + 19.3001i −0.410454 + 0.710927i
\(738\) 0 0
\(739\) 5.30840 + 9.19442i 0.195273 + 0.338222i 0.946990 0.321263i \(-0.104107\pi\)
−0.751717 + 0.659486i \(0.770774\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23.7793 + 41.1870i 0.872378 + 1.51100i 0.859530 + 0.511086i \(0.170757\pi\)
0.0128483 + 0.999917i \(0.495910\pi\)
\(744\) 0 0
\(745\) −20.0155 + 34.6678i −0.733311 + 1.27013i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.26083 0.0460697
\(750\) 0 0
\(751\) 7.96791 13.8008i 0.290753 0.503599i −0.683235 0.730199i \(-0.739427\pi\)
0.973988 + 0.226599i \(0.0727608\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.51754 + 13.0208i 0.273591 + 0.473874i
\(756\) 0 0
\(757\) 9.17499 + 15.8916i 0.333471 + 0.577588i 0.983190 0.182586i \(-0.0584468\pi\)
−0.649719 + 0.760174i \(0.725113\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36.7802 1.33328 0.666641 0.745379i \(-0.267731\pi\)
0.666641 + 0.745379i \(0.267731\pi\)
\(762\) 0 0
\(763\) 4.75877 + 8.24243i 0.172279 + 0.298396i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.1925 0.404139
\(768\) 0 0
\(769\) −21.0175 + 36.4034i −0.757912 + 1.31274i 0.186002 + 0.982549i \(0.440447\pi\)
−0.943914 + 0.330193i \(0.892886\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.9709 39.7868i 0.826206 1.43103i −0.0747881 0.997199i \(-0.523828\pi\)
0.900994 0.433831i \(-0.142839\pi\)
\(774\) 0 0
\(775\) −20.7463 + 35.9336i −0.745228 + 1.29077i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −38.3952 21.7922i −1.37565 0.780786i
\(780\) 0 0
\(781\) 21.7452 + 37.6637i 0.778103 + 1.34771i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.9855 31.1517i 0.641928 1.11185i
\(786\) 0 0
\(787\) −17.3250 −0.617570 −0.308785 0.951132i \(-0.599922\pi\)
−0.308785 + 0.951132i \(0.599922\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 36.0993 1.28354
\(792\) 0 0
\(793\) −2.56418 4.44129i −0.0910566 0.157715i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.8324 0.773345 0.386672 0.922217i \(-0.373624\pi\)
0.386672 + 0.922217i \(0.373624\pi\)
\(798\) 0 0
\(799\) −8.33511 −0.294875
\(800\) 0 0
\(801\) 0 0
\(802\) 0