Properties

Label 1368.2.f
Level $1368$
Weight $2$
Character orbit 1368.f
Rep. character $\chi_{1368}(1025,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $4$
Sturm bound $480$
Trace bound $29$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1368.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(480\)
Trace bound: \(29\)
Distinguishing \(T_p\): \(5\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1368, [\chi])\).

Total New Old
Modular forms 256 20 236
Cusp forms 224 20 204
Eisenstein series 32 0 32

Trace form

\( 20 q + 8 q^{7} + O(q^{10}) \) \( 20 q + 8 q^{7} + 4 q^{19} - 4 q^{25} - 8 q^{43} - 4 q^{49} + 48 q^{55} + 16 q^{61} + 32 q^{73} + 32 q^{85} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1368, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1368.2.f.a 1368.f 57.d $2$ $10.924$ \(\Q(\sqrt{-2}) \) None \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{5}+2q^{7}-3\beta q^{11}-2\beta q^{13}+\cdots\)
1368.2.f.b 1368.f 57.d $2$ $10.924$ \(\Q(\sqrt{-2}) \) None \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{5}+2q^{7}-3\beta q^{11}+2\beta q^{13}+\cdots\)
1368.2.f.c 1368.f 57.d $8$ $10.924$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{7}q^{5}+\beta _{4}q^{7}+(\beta _{3}+\beta _{5})q^{11}+(\beta _{2}+\cdots)q^{13}+\cdots\)
1368.2.f.d 1368.f 57.d $8$ $10.924$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{7}q^{5}+\beta _{4}q^{7}+(\beta _{3}+\beta _{5})q^{11}+(-\beta _{2}+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1368, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1368, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(684, [\chi])\)\(^{\oplus 2}\)