Defining parameters
Level: | \( N \) | \(=\) | \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1368.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(29\) | ||
Distinguishing \(T_p\): | \(5\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1368, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 256 | 20 | 236 |
Cusp forms | 224 | 20 | 204 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1368, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1368.2.f.a | $2$ | $10.924$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+\beta q^{5}+2q^{7}-3\beta q^{11}-2\beta q^{13}+\cdots\) |
1368.2.f.b | $2$ | $10.924$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+\beta q^{5}+2q^{7}-3\beta q^{11}+2\beta q^{13}+\cdots\) |
1368.2.f.c | $8$ | $10.924$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{7}q^{5}+\beta _{4}q^{7}+(\beta _{3}+\beta _{5})q^{11}+(\beta _{2}+\cdots)q^{13}+\cdots\) |
1368.2.f.d | $8$ | $10.924$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{7}q^{5}+\beta _{4}q^{7}+(\beta _{3}+\beta _{5})q^{11}+(-\beta _{2}+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1368, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1368, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(684, [\chi])\)\(^{\oplus 2}\)