Defining parameters
Level: | \( N \) | \(=\) | \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1368.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1368))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 256 | 23 | 233 |
Cusp forms | 225 | 23 | 202 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(3\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(3\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(2\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(5\) |
Plus space | \(+\) | \(10\) | ||
Minus space | \(-\) | \(13\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1368))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1368))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1368)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(228))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(342))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(456))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(684))\)\(^{\oplus 2}\)