Properties

Label 1368.1.i.a.37.1
Level $1368$
Weight $1$
Character 1368.37
Self dual yes
Analytic conductor $0.683$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -152
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,1,Mod(37,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.37");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1368.i (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.682720937282\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.152.1
Artin image: $D_6$
Artin field: Galois closure of 6.0.623808.1

Embedding invariants

Embedding label 37.1
Character \(\chi\) \(=\) 1368.37

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{7} -1.00000 q^{8} -1.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} +1.00000 q^{17} +1.00000 q^{19} +1.00000 q^{23} +1.00000 q^{25} +1.00000 q^{26} -1.00000 q^{28} +1.00000 q^{29} -1.00000 q^{32} -1.00000 q^{34} +2.00000 q^{37} -1.00000 q^{38} -1.00000 q^{46} -2.00000 q^{47} -1.00000 q^{50} -1.00000 q^{52} +1.00000 q^{53} +1.00000 q^{56} -1.00000 q^{58} +1.00000 q^{59} +1.00000 q^{64} -1.00000 q^{67} +1.00000 q^{68} -1.00000 q^{73} -2.00000 q^{74} +1.00000 q^{76} +1.00000 q^{91} +1.00000 q^{92} +2.00000 q^{94} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(685\) \(1009\) \(1217\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −1.00000
\(3\) 0 0
\(4\) 1.00000 1.00000
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) −1.00000 −1.00000
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 1.00000 1.00000
\(15\) 0 0
\(16\) 1.00000 1.00000
\(17\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0 0
\(19\) 1.00000 1.00000
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 1.00000 1.00000
\(27\) 0 0
\(28\) −1.00000 −1.00000
\(29\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −1.00000 −1.00000
\(33\) 0 0
\(34\) −1.00000 −1.00000
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(38\) −1.00000 −1.00000
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −1.00000 −1.00000
\(47\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.00000 −1.00000
\(51\) 0 0
\(52\) −1.00000 −1.00000
\(53\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000 1.00000
\(57\) 0 0
\(58\) −1.00000 −1.00000
\(59\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 1.00000 1.00000
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) −2.00000 −2.00000
\(75\) 0 0
\(76\) 1.00000 1.00000
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 1.00000 1.00000
\(92\) 1.00000 1.00000
\(93\) 0 0
\(94\) 2.00000 2.00000
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 1.00000 1.00000
\(105\) 0 0
\(106\) −1.00000 −1.00000
\(107\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) 0 0
\(109\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.00000 −1.00000
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.00000 1.00000
\(117\) 0 0
\(118\) −1.00000 −1.00000
\(119\) −1.00000 −1.00000
\(120\) 0 0
\(121\) 1.00000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −1.00000 −1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −1.00000 −1.00000
\(134\) 1.00000 1.00000
\(135\) 0 0
\(136\) −1.00000 −1.00000
\(137\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 1.00000 1.00000
\(147\) 0 0
\(148\) 2.00000 2.00000
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −1.00000 −1.00000
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.00000 −1.00000
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −1.00000 −1.00000
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(182\) −1.00000 −1.00000
\(183\) 0 0
\(184\) −1.00000 −1.00000
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −2.00000 −2.00000
\(189\) 0 0
\(190\) 0 0
\(191\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) −1.00000 −1.00000
\(201\) 0 0
\(202\) 0 0
\(203\) −1.00000 −1.00000
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −1.00000 −1.00000
\(209\) 0 0
\(210\) 0 0
\(211\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 1.00000 1.00000
\(213\) 0 0
\(214\) −1.00000 −1.00000
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 1.00000 1.00000
\(219\) 0 0
\(220\) 0 0
\(221\) −1.00000 −1.00000
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 1.00000 1.00000
\(225\) 0 0
\(226\) 0 0
\(227\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.00000 −1.00000
\(233\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.00000 1.00000
\(237\) 0 0
\(238\) 1.00000 1.00000
\(239\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −1.00000 −1.00000
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.00000 −1.00000
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) −2.00000 −2.00000
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.00000 1.00000
\(267\) 0 0
\(268\) −1.00000 −1.00000
\(269\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) 1.00000 1.00000
\(273\) 0 0
\(274\) −1.00000 −1.00000
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 0 0
\(292\) −1.00000 −1.00000
\(293\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.00000 −2.00000
\(297\) 0 0
\(298\) 0 0
\(299\) −1.00000 −1.00000
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1.00000 1.00000
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 1.00000 1.00000
\(323\) 1.00000 1.00000
\(324\) 0 0
\(325\) −1.00000 −1.00000
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.00000 2.00000
\(330\) 0 0
\(331\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 2.00000 2.00000
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 1.00000 1.00000
\(351\) 0 0
\(352\) 0 0
\(353\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 2.00000 2.00000
\(359\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) −2.00000 −2.00000
\(363\) 0 0
\(364\) 1.00000 1.00000
\(365\) 0 0
\(366\) 0 0
\(367\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(368\) 1.00000 1.00000
\(369\) 0 0
\(370\) 0 0
\(371\) −1.00000 −1.00000
\(372\) 0 0
\(373\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 2.00000 2.00000
\(377\) −1.00000 −1.00000
\(378\) 0 0
\(379\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.00000 −1.00000
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 1.00000 1.00000
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 1.00000 1.00000
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 1.00000 1.00000
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.00000 −1.00000
\(414\) 0 0
\(415\) 0 0
\(416\) 1.00000 1.00000
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 1.00000 1.00000
\(423\) 0 0
\(424\) −1.00000 −1.00000
\(425\) 1.00000 1.00000
\(426\) 0 0
\(427\) 0 0
\(428\) 1.00000 1.00000
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.00000 −1.00000
\(437\) 1.00000 1.00000
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.00000 1.00000
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −1.00000 −1.00000
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −1.00000 −1.00000
\(455\) 0 0
\(456\) 0 0
\(457\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(464\) 1.00000 1.00000
\(465\) 0 0
\(466\) 2.00000 2.00000
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 1.00000 1.00000
\(470\) 0 0
\(471\) 0 0
\(472\) −1.00000 −1.00000
\(473\) 0 0
\(474\) 0 0
\(475\) 1.00000 1.00000
\(476\) −1.00000 −1.00000
\(477\) 0 0
\(478\) −1.00000 −1.00000
\(479\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) −2.00000 −2.00000
\(482\) 0 0
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 1.00000 1.00000
\(494\) 1.00000 1.00000
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 1.00000 1.00000
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 2.00000 2.00000
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 2.00000 2.00000
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 0 0
\(532\) −1.00000 −1.00000
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 1.00000 1.00000
\(537\) 0 0
\(538\) 2.00000 2.00000
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 1.00000 1.00000
\(543\) 0 0
\(544\) −1.00000 −1.00000
\(545\) 0 0
\(546\) 0 0
\(547\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(548\) 1.00000 1.00000
\(549\) 0 0
\(550\) 0 0
\(551\) 1.00000 1.00000
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.00000 1.00000
\(576\) 0 0
\(577\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 1.00000 1.00000
\(585\) 0 0
\(586\) −1.00000 −1.00000
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 2.00000 2.00000
\(593\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 1.00000 1.00000
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) −1.00000 −1.00000
\(609\) 0 0
\(610\) 0 0
\(611\) 2.00000 2.00000
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −2.00000 −2.00000
\(615\) 0 0
\(616\) 0 0
\(617\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1.00000 −1.00000
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 1.00000 1.00000
\(627\) 0 0
\(628\) 0 0
\(629\) 2.00000 2.00000
\(630\) 0 0
\(631\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(632\) 0 0
\(633\) 0 0
\(634\) −1.00000 −1.00000
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) −1.00000 −1.00000
\(645\) 0 0
\(646\) −1.00000 −1.00000
\(647\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 1.00000 1.00000
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −2.00000 −2.00000
\(659\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) 1.00000 1.00000
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.00000 1.00000
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.00000 −1.00000
\(687\) 0 0
\(688\) 0 0
\(689\) −1.00000 −1.00000
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) −2.00000 −2.00000
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.00000 −1.00000
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 2.00000 2.00000
\(704\) 0 0
\(705\) 0 0
\(706\) −1.00000 −1.00000
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −2.00000 −2.00000
\(717\) 0 0
\(718\) −1.00000 −1.00000
\(719\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.00000 −1.00000
\(723\) 0 0
\(724\) 2.00000 2.00000
\(725\) 1.00000 1.00000
\(726\) 0 0
\(727\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(728\) −1.00000 −1.00000
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) −2.00000 −2.00000
\(735\) 0 0
\(736\) −1.00000 −1.00000
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.00000 1.00000
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.00000 1.00000
\(747\) 0 0
\(748\) 0 0
\(749\) −1.00000 −1.00000
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) −2.00000 −2.00000
\(753\) 0 0
\(754\) 1.00000 1.00000
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 1.00000 1.00000
\(759\) 0 0
\(760\) 0 0
\(761\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 0 0
\(763\) 1.00000 1.00000
\(764\) 1.00000 1.00000
\(765\) 0 0
\(766\) 0 0
\(767\) −1.00000 −1.00000
\(768\) 0 0
\(769\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −1.00000 −1.00000
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −1.00000 −1.00000
\(797\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(798\) 0 0
\(799\) −2.00000 −2.00000
\(800\) −1.00000 −1.00000
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 0 0
\(811\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(812\) −1.00000 −1.00000
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 1.00000 1.00000
\(827\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(828\) 0 0
\(829\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.00000 −1.00000
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 1.00000 1.00000
\(843\) 0 0
\(844\) −1.00000 −1.00000
\(845\) 0 0
\(846\) 0 0
\(847\) −1.00000 −1.00000
\(848\) 1.00000 1.00000
\(849\) 0 0
\(850\) −1.00000 −1.00000
\(851\) 2.00000 2.00000
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.00000 −1.00000
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 1.00000 1.00000
\(872\) 1.00000 1.00000
\(873\) 0 0
\(874\) −1.00000 −1.00000
\(875\) 0 0
\(876\) 0 0
\(877\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −1.00000 −1.00000
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.00000 −2.00000
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000 1.00000
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 1.00000 1.00000
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) 1.00000 1.00000
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.00000 1.00000
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 2.00000 2.00000
\(926\) −2.00000 −2.00000
\(927\) 0 0
\(928\) −1.00000 −1.00000
\(929\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −2.00000 −2.00000
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) −1.00000 −1.00000
\(939\) 0 0
\(940\) 0 0
\(941\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.00000 1.00000
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 1.00000 1.00000
\(950\) −1.00000 −1.00000
\(951\) 0 0
\(952\) 1.00000 1.00000
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.00000 1.00000
\(957\) 0 0
\(958\) 2.00000 2.00000
\(959\) −1.00000 −1.00000
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 2.00000 2.00000
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(968\) −1.00000 −1.00000
\(969\) 0 0
\(970\) 0 0
\(971\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1.00000 −1.00000
\(987\) 0 0
\(988\) −1.00000 −1.00000
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1368.1.i.a.37.1 1
3.2 odd 2 152.1.g.b.37.1 yes 1
8.5 even 2 1368.1.i.b.37.1 1
12.11 even 2 608.1.g.b.113.1 1
15.2 even 4 3800.1.b.b.949.2 2
15.8 even 4 3800.1.b.b.949.1 2
15.14 odd 2 3800.1.o.a.1101.1 1
19.18 odd 2 1368.1.i.b.37.1 1
24.5 odd 2 152.1.g.a.37.1 1
24.11 even 2 608.1.g.a.113.1 1
57.2 even 18 2888.1.s.b.2789.1 6
57.5 odd 18 2888.1.s.a.2293.1 6
57.8 even 6 2888.1.l.b.69.1 2
57.11 odd 6 2888.1.l.a.69.1 2
57.14 even 18 2888.1.s.b.2293.1 6
57.17 odd 18 2888.1.s.a.2789.1 6
57.23 odd 18 2888.1.s.a.1029.1 6
57.26 odd 6 2888.1.l.a.293.1 2
57.29 even 18 2888.1.s.b.1021.1 6
57.32 even 18 2888.1.s.b.477.1 6
57.35 odd 18 2888.1.s.a.333.1 6
57.41 even 18 2888.1.s.b.333.1 6
57.44 odd 18 2888.1.s.a.477.1 6
57.47 odd 18 2888.1.s.a.1021.1 6
57.50 even 6 2888.1.l.b.293.1 2
57.53 even 18 2888.1.s.b.1029.1 6
57.56 even 2 152.1.g.a.37.1 1
120.29 odd 2 3800.1.o.b.1101.1 1
120.53 even 4 3800.1.b.a.949.2 2
120.77 even 4 3800.1.b.a.949.1 2
152.37 odd 2 CM 1368.1.i.a.37.1 1
228.227 odd 2 608.1.g.a.113.1 1
285.113 odd 4 3800.1.b.a.949.2 2
285.227 odd 4 3800.1.b.a.949.1 2
285.284 even 2 3800.1.o.b.1101.1 1
456.5 odd 18 2888.1.s.b.2293.1 6
456.29 even 18 2888.1.s.a.1021.1 6
456.53 even 18 2888.1.s.a.1029.1 6
456.101 odd 18 2888.1.s.b.477.1 6
456.125 odd 6 2888.1.l.b.69.1 2
456.149 odd 18 2888.1.s.b.333.1 6
456.173 even 18 2888.1.s.a.2789.1 6
456.197 odd 6 2888.1.l.b.293.1 2
456.221 even 6 2888.1.l.a.293.1 2
456.227 odd 2 608.1.g.b.113.1 1
456.245 odd 18 2888.1.s.b.2789.1 6
456.269 even 18 2888.1.s.a.333.1 6
456.293 even 6 2888.1.l.a.69.1 2
456.317 even 18 2888.1.s.a.477.1 6
456.341 even 2 152.1.g.b.37.1 yes 1
456.365 odd 18 2888.1.s.b.1029.1 6
456.389 odd 18 2888.1.s.b.1021.1 6
456.413 even 18 2888.1.s.a.2293.1 6
2280.797 odd 4 3800.1.b.b.949.2 2
2280.1253 odd 4 3800.1.b.b.949.1 2
2280.1709 even 2 3800.1.o.a.1101.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.1.g.a.37.1 1 24.5 odd 2
152.1.g.a.37.1 1 57.56 even 2
152.1.g.b.37.1 yes 1 3.2 odd 2
152.1.g.b.37.1 yes 1 456.341 even 2
608.1.g.a.113.1 1 24.11 even 2
608.1.g.a.113.1 1 228.227 odd 2
608.1.g.b.113.1 1 12.11 even 2
608.1.g.b.113.1 1 456.227 odd 2
1368.1.i.a.37.1 1 1.1 even 1 trivial
1368.1.i.a.37.1 1 152.37 odd 2 CM
1368.1.i.b.37.1 1 8.5 even 2
1368.1.i.b.37.1 1 19.18 odd 2
2888.1.l.a.69.1 2 57.11 odd 6
2888.1.l.a.69.1 2 456.293 even 6
2888.1.l.a.293.1 2 57.26 odd 6
2888.1.l.a.293.1 2 456.221 even 6
2888.1.l.b.69.1 2 57.8 even 6
2888.1.l.b.69.1 2 456.125 odd 6
2888.1.l.b.293.1 2 57.50 even 6
2888.1.l.b.293.1 2 456.197 odd 6
2888.1.s.a.333.1 6 57.35 odd 18
2888.1.s.a.333.1 6 456.269 even 18
2888.1.s.a.477.1 6 57.44 odd 18
2888.1.s.a.477.1 6 456.317 even 18
2888.1.s.a.1021.1 6 57.47 odd 18
2888.1.s.a.1021.1 6 456.29 even 18
2888.1.s.a.1029.1 6 57.23 odd 18
2888.1.s.a.1029.1 6 456.53 even 18
2888.1.s.a.2293.1 6 57.5 odd 18
2888.1.s.a.2293.1 6 456.413 even 18
2888.1.s.a.2789.1 6 57.17 odd 18
2888.1.s.a.2789.1 6 456.173 even 18
2888.1.s.b.333.1 6 57.41 even 18
2888.1.s.b.333.1 6 456.149 odd 18
2888.1.s.b.477.1 6 57.32 even 18
2888.1.s.b.477.1 6 456.101 odd 18
2888.1.s.b.1021.1 6 57.29 even 18
2888.1.s.b.1021.1 6 456.389 odd 18
2888.1.s.b.1029.1 6 57.53 even 18
2888.1.s.b.1029.1 6 456.365 odd 18
2888.1.s.b.2293.1 6 57.14 even 18
2888.1.s.b.2293.1 6 456.5 odd 18
2888.1.s.b.2789.1 6 57.2 even 18
2888.1.s.b.2789.1 6 456.245 odd 18
3800.1.b.a.949.1 2 120.77 even 4
3800.1.b.a.949.1 2 285.227 odd 4
3800.1.b.a.949.2 2 120.53 even 4
3800.1.b.a.949.2 2 285.113 odd 4
3800.1.b.b.949.1 2 15.8 even 4
3800.1.b.b.949.1 2 2280.1253 odd 4
3800.1.b.b.949.2 2 15.2 even 4
3800.1.b.b.949.2 2 2280.797 odd 4
3800.1.o.a.1101.1 1 15.14 odd 2
3800.1.o.a.1101.1 1 2280.1709 even 2
3800.1.o.b.1101.1 1 120.29 odd 2
3800.1.o.b.1101.1 1 285.284 even 2