Properties

Label 1368.1.dh.b
Level $1368$
Weight $1$
Character orbit 1368.dh
Analytic conductor $0.683$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,1,Mod(43,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 12, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.43");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1368.dh (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.682720937282\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{9} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{18}^{4} q^{2} + \zeta_{18}^{8} q^{3} + \zeta_{18}^{8} q^{4} - \zeta_{18}^{3} q^{6} - \zeta_{18}^{3} q^{8} - \zeta_{18}^{7} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{18}^{4} q^{2} + \zeta_{18}^{8} q^{3} + \zeta_{18}^{8} q^{4} - \zeta_{18}^{3} q^{6} - \zeta_{18}^{3} q^{8} - \zeta_{18}^{7} q^{9} + ( - \zeta_{18}^{7} - \zeta_{18}^{5}) q^{11} - \zeta_{18}^{7} q^{12} - \zeta_{18}^{7} q^{16} + \zeta_{18} q^{17} + \zeta_{18}^{2} q^{18} - \zeta_{18}^{5} q^{19} + (\zeta_{18}^{2} + 1) q^{22} + \zeta_{18}^{2} q^{24} + \zeta_{18}^{8} q^{25} + \zeta_{18}^{6} q^{27} + \zeta_{18}^{2} q^{32} + (\zeta_{18}^{6} + \zeta_{18}^{4}) q^{33} + \zeta_{18}^{5} q^{34} + \zeta_{18}^{6} q^{36} + q^{38} + (\zeta_{18}^{2} + 1) q^{41} - \zeta_{18} q^{43} + (\zeta_{18}^{6} + \zeta_{18}^{4}) q^{44} + \zeta_{18}^{6} q^{48} + q^{49} - \zeta_{18}^{3} q^{50} - q^{51} - \zeta_{18} q^{54} + \zeta_{18}^{4} q^{57} + ( - \zeta_{18}^{5} + 1) q^{59} + \zeta_{18}^{6} q^{64} + (\zeta_{18}^{8} - \zeta_{18}) q^{66} + (\zeta_{18}^{6} + \zeta_{18}^{4}) q^{67} - q^{68} - \zeta_{18} q^{72} + ( - \zeta_{18}^{5} - \zeta_{18}^{3}) q^{73} - \zeta_{18}^{7} q^{75} + \zeta_{18}^{4} q^{76} - \zeta_{18}^{5} q^{81} + (\zeta_{18}^{6} + \zeta_{18}^{4}) q^{82} + ( - \zeta_{18}^{7} + \zeta_{18}^{2}) q^{83} - 2 \zeta_{18}^{5} q^{86} + (\zeta_{18}^{8} - \zeta_{18}) q^{88} + \zeta_{18}^{5} q^{89} - \zeta_{18} q^{96} + (\zeta_{18}^{8} + 1) q^{97} + \zeta_{18}^{4} q^{98} + ( - \zeta_{18}^{5} - \zeta_{18}^{3}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{6} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{6} - 3 q^{8} + 6 q^{22} - 3 q^{27} - 3 q^{33} - 3 q^{36} + 6 q^{38} + 6 q^{41} - 3 q^{44} - 3 q^{48} + 6 q^{49} - 3 q^{50} - 6 q^{51} + 6 q^{59} - 3 q^{64} - 3 q^{67} - 6 q^{68} - 3 q^{73} - 3 q^{82} + 6 q^{97} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(685\) \(1009\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{18}^{2}\) \(\zeta_{18}^{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1
0.939693 0.342020i
−0.766044 + 0.642788i
−0.766044 0.642788i
−0.173648 0.984808i
0.939693 + 0.342020i
−0.173648 + 0.984808i
0.173648 0.984808i −0.939693 0.342020i −0.939693 0.342020i 0 −0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0.766044 + 0.642788i 0
139.1 −0.939693 0.342020i 0.766044 + 0.642788i 0.766044 + 0.642788i 0 −0.500000 0.866025i 0 −0.500000 0.866025i 0.173648 + 0.984808i 0
187.1 −0.939693 + 0.342020i 0.766044 0.642788i 0.766044 0.642788i 0 −0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0.173648 0.984808i 0
427.1 0.766044 0.642788i 0.173648 0.984808i 0.173648 0.984808i 0 −0.500000 0.866025i 0 −0.500000 0.866025i −0.939693 0.342020i 0
859.1 0.173648 + 0.984808i −0.939693 + 0.342020i −0.939693 + 0.342020i 0 −0.500000 0.866025i 0 −0.500000 0.866025i 0.766044 0.642788i 0
1195.1 0.766044 + 0.642788i 0.173648 + 0.984808i 0.173648 + 0.984808i 0 −0.500000 + 0.866025i 0 −0.500000 + 0.866025i −0.939693 + 0.342020i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 43.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
171.w even 9 1 inner
1368.dh odd 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1368.1.dh.b 6
8.d odd 2 1 CM 1368.1.dh.b 6
9.c even 3 1 1368.1.en.b yes 6
19.e even 9 1 1368.1.en.b yes 6
72.p odd 6 1 1368.1.en.b yes 6
152.u odd 18 1 1368.1.en.b yes 6
171.w even 9 1 inner 1368.1.dh.b 6
1368.dh odd 18 1 inner 1368.1.dh.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1368.1.dh.b 6 1.a even 1 1 trivial
1368.1.dh.b 6 8.d odd 2 1 CM
1368.1.dh.b 6 171.w even 9 1 inner
1368.1.dh.b 6 1368.dh odd 18 1 inner
1368.1.en.b yes 6 9.c even 3 1
1368.1.en.b yes 6 19.e even 9 1
1368.1.en.b yes 6 72.p odd 6 1
1368.1.en.b yes 6 152.u odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{17}^{6} - T_{17}^{3} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1368, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$3$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 3 T^{4} + 2 T^{3} + 9 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$19$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} \) Copy content Toggle raw display
$37$ \( T^{6} \) Copy content Toggle raw display
$41$ \( T^{6} - 6 T^{5} + 15 T^{4} - 19 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{6} + 8T^{3} + 64 \) Copy content Toggle raw display
$47$ \( T^{6} \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( T^{6} - 6 T^{5} + 15 T^{4} - 19 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{6} \) Copy content Toggle raw display
$67$ \( T^{6} + 3 T^{5} + 6 T^{4} + 8 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{6} \) Copy content Toggle raw display
$73$ \( T^{6} + 3 T^{5} + 6 T^{4} + 8 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{6} \) Copy content Toggle raw display
$83$ \( (T^{3} - 3 T + 1)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$97$ \( T^{6} - 6 T^{5} + 15 T^{4} - 19 T^{3} + \cdots + 1 \) Copy content Toggle raw display
show more
show less