# Properties

 Label 1368.1.cz.a Level $1368$ Weight $1$ Character orbit 1368.cz Analytic conductor $0.683$ Analytic rank $0$ Dimension $2$ Projective image $D_{6}$ CM discriminant -8 Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1368 = 2^{3} \cdot 3^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 1368.cz (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.682720937282$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$D_{6}$$ Projective field: Galois closure of 6.0.24953372987904.3

## $q$-expansion

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q + \zeta_{6}^{2} q^{2} + \zeta_{6} q^{3} -\zeta_{6} q^{4} - q^{6} + q^{8} + \zeta_{6}^{2} q^{9} +O(q^{10})$$ $$q + \zeta_{6}^{2} q^{2} + \zeta_{6} q^{3} -\zeta_{6} q^{4} - q^{6} + q^{8} + \zeta_{6}^{2} q^{9} + ( 1 - \zeta_{6}^{2} ) q^{11} -\zeta_{6}^{2} q^{12} + \zeta_{6}^{2} q^{16} + ( 1 - \zeta_{6}^{2} ) q^{17} -\zeta_{6} q^{18} + \zeta_{6} q^{19} + ( \zeta_{6} + \zeta_{6}^{2} ) q^{22} + \zeta_{6} q^{24} - q^{25} - q^{27} -\zeta_{6} q^{32} + ( 1 + \zeta_{6} ) q^{33} + ( \zeta_{6} + \zeta_{6}^{2} ) q^{34} + q^{36} - q^{38} -2 q^{41} + \zeta_{6}^{2} q^{43} + ( -1 - \zeta_{6} ) q^{44} - q^{48} + \zeta_{6}^{2} q^{49} -\zeta_{6}^{2} q^{50} + ( 1 + \zeta_{6} ) q^{51} -\zeta_{6}^{2} q^{54} + \zeta_{6}^{2} q^{57} + 2 q^{59} + q^{64} + ( -1 + \zeta_{6}^{2} ) q^{66} + ( -1 - \zeta_{6} ) q^{68} + \zeta_{6}^{2} q^{72} -\zeta_{6} q^{73} -\zeta_{6} q^{75} -\zeta_{6}^{2} q^{76} -\zeta_{6} q^{81} -2 \zeta_{6}^{2} q^{82} + ( 1 - \zeta_{6}^{2} ) q^{83} -\zeta_{6} q^{86} + ( 1 - \zeta_{6}^{2} ) q^{88} + 2 \zeta_{6}^{2} q^{89} -\zeta_{6}^{2} q^{96} + ( -1 - \zeta_{6} ) q^{97} -\zeta_{6} q^{98} + ( \zeta_{6} + \zeta_{6}^{2} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{2} + q^{3} - q^{4} - 2 q^{6} + 2 q^{8} - q^{9} + O(q^{10})$$ $$2 q - q^{2} + q^{3} - q^{4} - 2 q^{6} + 2 q^{8} - q^{9} + 3 q^{11} + q^{12} - q^{16} + 3 q^{17} - q^{18} + q^{19} + q^{24} - 2 q^{25} - 2 q^{27} - q^{32} + 3 q^{33} + 2 q^{36} - 2 q^{38} - 4 q^{41} - q^{43} - 3 q^{44} - 2 q^{48} - q^{49} + q^{50} + 3 q^{51} + q^{54} - q^{57} + 4 q^{59} + 2 q^{64} - 3 q^{66} - 3 q^{68} - q^{72} - q^{73} - q^{75} + q^{76} - q^{81} + 2 q^{82} + 3 q^{83} - q^{86} + 3 q^{88} - 2 q^{89} + q^{96} - 3 q^{97} - q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times$$.

 $$n$$ $$343$$ $$685$$ $$1009$$ $$1217$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$-\zeta_{6}^{2}$$ $$-\zeta_{6}^{2}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
563.1
 0.5 + 0.866025i 0.5 − 0.866025i
−0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i 0 −1.00000 0 1.00000 −0.500000 + 0.866025i 0
1091.1 −0.500000 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i 0 −1.00000 0 1.00000 −0.500000 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by $$\Q(\sqrt{-2})$$
171.k even 6 1 inner
1368.cz odd 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1368.1.cz.a yes 2
8.d odd 2 1 CM 1368.1.cz.a yes 2
9.d odd 6 1 1368.1.bt.a 2
19.d odd 6 1 1368.1.bt.a 2
72.l even 6 1 1368.1.bt.a 2
152.o even 6 1 1368.1.bt.a 2
171.k even 6 1 inner 1368.1.cz.a yes 2
1368.cz odd 6 1 inner 1368.1.cz.a yes 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1368.1.bt.a 2 9.d odd 6 1
1368.1.bt.a 2 19.d odd 6 1
1368.1.bt.a 2 72.l even 6 1
1368.1.bt.a 2 152.o even 6 1
1368.1.cz.a yes 2 1.a even 1 1 trivial
1368.1.cz.a yes 2 8.d odd 2 1 CM
1368.1.cz.a yes 2 171.k even 6 1 inner
1368.1.cz.a yes 2 1368.cz odd 6 1 inner

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{11}^{2} - 3 T_{11} + 3$$ acting on $$S_{1}^{\mathrm{new}}(1368, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T + T^{2}$$
$3$ $$1 - T + T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$3 - 3 T + T^{2}$$
$13$ $$T^{2}$$
$17$ $$3 - 3 T + T^{2}$$
$19$ $$1 - T + T^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$T^{2}$$
$37$ $$T^{2}$$
$41$ $$( 2 + T )^{2}$$
$43$ $$1 + T + T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$( -2 + T )^{2}$$
$61$ $$T^{2}$$
$67$ $$T^{2}$$
$71$ $$T^{2}$$
$73$ $$1 + T + T^{2}$$
$79$ $$T^{2}$$
$83$ $$3 - 3 T + T^{2}$$
$89$ $$4 + 2 T + T^{2}$$
$97$ $$3 + 3 T + T^{2}$$