Properties

Label 1360.2.o.b
Level $1360$
Weight $2$
Character orbit 1360.o
Analytic conductor $10.860$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.o (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + ( -2 - i ) q^{5} + 2 q^{7} -2 q^{9} +O(q^{10})\) \( q + q^{3} + ( -2 - i ) q^{5} + 2 q^{7} -2 q^{9} -i q^{13} + ( -2 - i ) q^{15} + ( -1 - 4 i ) q^{17} + 5 q^{19} + 2 q^{21} -4 q^{23} + ( 3 + 4 i ) q^{25} -5 q^{27} -9 i q^{29} -5 i q^{31} + ( -4 - 2 i ) q^{35} -2 q^{37} -i q^{39} -10 i q^{41} + 6 i q^{43} + ( 4 + 2 i ) q^{45} -7 i q^{47} -3 q^{49} + ( -1 - 4 i ) q^{51} -i q^{53} + 5 q^{57} + 5 q^{59} + 5 i q^{61} -4 q^{63} + ( -1 + 2 i ) q^{65} -2 i q^{67} -4 q^{69} -5 i q^{71} -11 q^{73} + ( 3 + 4 i ) q^{75} -16 i q^{79} + q^{81} + 6 i q^{83} + ( -2 + 9 i ) q^{85} -9 i q^{87} + 5 q^{89} -2 i q^{91} -5 i q^{93} + ( -10 - 5 i ) q^{95} -7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{3} - 4q^{5} + 4q^{7} - 4q^{9} + O(q^{10}) \) \( 2q + 2q^{3} - 4q^{5} + 4q^{7} - 4q^{9} - 4q^{15} - 2q^{17} + 10q^{19} + 4q^{21} - 8q^{23} + 6q^{25} - 10q^{27} - 8q^{35} - 4q^{37} + 8q^{45} - 6q^{49} - 2q^{51} + 10q^{57} + 10q^{59} - 8q^{63} - 2q^{65} - 8q^{69} - 22q^{73} + 6q^{75} + 2q^{81} - 4q^{85} + 10q^{89} - 20q^{95} - 14q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
849.1
1.00000i
1.00000i
0 1.00000 0 −2.00000 1.00000i 0 2.00000 0 −2.00000 0
849.2 0 1.00000 0 −2.00000 + 1.00000i 0 2.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
85.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1360.2.o.b 2
4.b odd 2 1 170.2.d.a 2
5.b even 2 1 1360.2.o.a 2
12.b even 2 1 1530.2.f.e 2
17.b even 2 1 1360.2.o.a 2
20.d odd 2 1 170.2.d.b yes 2
20.e even 4 1 850.2.b.c 2
20.e even 4 1 850.2.b.i 2
60.h even 2 1 1530.2.f.b 2
68.d odd 2 1 170.2.d.b yes 2
85.c even 2 1 inner 1360.2.o.b 2
204.h even 2 1 1530.2.f.b 2
340.d odd 2 1 170.2.d.a 2
340.r even 4 1 850.2.b.c 2
340.r even 4 1 850.2.b.i 2
1020.b even 2 1 1530.2.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.d.a 2 4.b odd 2 1
170.2.d.a 2 340.d odd 2 1
170.2.d.b yes 2 20.d odd 2 1
170.2.d.b yes 2 68.d odd 2 1
850.2.b.c 2 20.e even 4 1
850.2.b.c 2 340.r even 4 1
850.2.b.i 2 20.e even 4 1
850.2.b.i 2 340.r even 4 1
1360.2.o.a 2 5.b even 2 1
1360.2.o.a 2 17.b even 2 1
1360.2.o.b 2 1.a even 1 1 trivial
1360.2.o.b 2 85.c even 2 1 inner
1530.2.f.b 2 60.h even 2 1
1530.2.f.b 2 204.h even 2 1
1530.2.f.e 2 12.b even 2 1
1530.2.f.e 2 1020.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1360, [\chi])\):

\( T_{3} - 1 \)
\( T_{7} - 2 \)
\( T_{11} \)