Properties

Label 1360.2.fa
Level $1360$
Weight $2$
Character orbit 1360.fa
Rep. character $\chi_{1360}(97,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $416$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.fa (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1360, [\chi])\).

Total New Old
Modular forms 1824 448 1376
Cusp forms 1632 416 1216
Eisenstein series 192 32 160

Trace form

\( 416 q + 8 q^{3} - 8 q^{5} + 8 q^{7} + 16 q^{11} - 16 q^{13} + 8 q^{15} - 8 q^{17} - 32 q^{19} - 16 q^{21} + 8 q^{23} - 8 q^{25} + 8 q^{27} + 16 q^{31} + 16 q^{35} - 8 q^{37} + 48 q^{39} - 16 q^{41} + 8 q^{43}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1360, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1360, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1360, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(680, [\chi])\)\(^{\oplus 2}\)