Properties

Label 1360.2.c.f.1121.4
Level $1360$
Weight $2$
Character 1360.1121
Analytic conductor $10.860$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1360,2,Mod(1121,1360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1360.1121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1121.4
Root \(-0.854638 - 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 1360.1121
Dual form 1360.2.c.f.1121.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.539189i q^{3} +1.00000i q^{5} +4.87936i q^{7} +2.70928 q^{9} +3.17009i q^{11} +2.63090 q^{13} -0.539189 q^{15} +(-3.24846 + 2.53919i) q^{17} -1.07838 q^{19} -2.63090 q^{21} -5.21953i q^{23} -1.00000 q^{25} +3.07838i q^{27} -2.92162i q^{29} -4.09171i q^{31} -1.70928 q^{33} -4.87936 q^{35} +5.26180i q^{37} +1.41855i q^{39} -5.60197i q^{41} -3.36910 q^{43} +2.70928i q^{45} +6.78765 q^{47} -16.8082 q^{49} +(-1.36910 - 1.75154i) q^{51} +3.75872 q^{53} -3.17009 q^{55} -0.581449i q^{57} +2.34017 q^{59} +12.2557i q^{61} +13.2195i q^{63} +2.63090i q^{65} -10.2062 q^{67} +2.81432 q^{69} -4.06505i q^{71} +11.0784i q^{73} -0.539189i q^{75} -15.4680 q^{77} -6.92881i q^{79} +6.46800 q^{81} -8.23287 q^{83} +(-2.53919 - 3.24846i) q^{85} +1.57531 q^{87} +7.15449 q^{89} +12.8371i q^{91} +2.20620 q^{93} -1.07838i q^{95} -8.18342i q^{97} +8.58864i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{9} + 8 q^{13} - 2 q^{17} - 8 q^{21} - 6 q^{25} + 4 q^{33} - 4 q^{35} - 28 q^{43} + 20 q^{47} - 14 q^{49} - 16 q^{51} - 28 q^{53} - 8 q^{55} - 8 q^{59} - 12 q^{67} - 28 q^{77} - 26 q^{81} - 4 q^{83}+ \cdots - 36 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.539189i 0.311301i 0.987812 + 0.155650i \(0.0497473\pi\)
−0.987812 + 0.155650i \(0.950253\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 4.87936i 1.84423i 0.386921 + 0.922113i \(0.373538\pi\)
−0.386921 + 0.922113i \(0.626462\pi\)
\(8\) 0 0
\(9\) 2.70928 0.903092
\(10\) 0 0
\(11\) 3.17009i 0.955817i 0.878410 + 0.477909i \(0.158605\pi\)
−0.878410 + 0.477909i \(0.841395\pi\)
\(12\) 0 0
\(13\) 2.63090 0.729680 0.364840 0.931070i \(-0.381124\pi\)
0.364840 + 0.931070i \(0.381124\pi\)
\(14\) 0 0
\(15\) −0.539189 −0.139218
\(16\) 0 0
\(17\) −3.24846 + 2.53919i −0.787868 + 0.615844i
\(18\) 0 0
\(19\) −1.07838 −0.247397 −0.123698 0.992320i \(-0.539476\pi\)
−0.123698 + 0.992320i \(0.539476\pi\)
\(20\) 0 0
\(21\) −2.63090 −0.574109
\(22\) 0 0
\(23\) 5.21953i 1.08835i −0.838972 0.544174i \(-0.816843\pi\)
0.838972 0.544174i \(-0.183157\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 3.07838i 0.592434i
\(28\) 0 0
\(29\) 2.92162i 0.542532i −0.962504 0.271266i \(-0.912558\pi\)
0.962504 0.271266i \(-0.0874422\pi\)
\(30\) 0 0
\(31\) 4.09171i 0.734893i −0.930045 0.367446i \(-0.880232\pi\)
0.930045 0.367446i \(-0.119768\pi\)
\(32\) 0 0
\(33\) −1.70928 −0.297547
\(34\) 0 0
\(35\) −4.87936 −0.824763
\(36\) 0 0
\(37\) 5.26180i 0.865034i 0.901626 + 0.432517i \(0.142374\pi\)
−0.901626 + 0.432517i \(0.857626\pi\)
\(38\) 0 0
\(39\) 1.41855i 0.227150i
\(40\) 0 0
\(41\) 5.60197i 0.874880i −0.899247 0.437440i \(-0.855885\pi\)
0.899247 0.437440i \(-0.144115\pi\)
\(42\) 0 0
\(43\) −3.36910 −0.513783 −0.256892 0.966440i \(-0.582698\pi\)
−0.256892 + 0.966440i \(0.582698\pi\)
\(44\) 0 0
\(45\) 2.70928i 0.403875i
\(46\) 0 0
\(47\) 6.78765 0.990081 0.495040 0.868870i \(-0.335153\pi\)
0.495040 + 0.868870i \(0.335153\pi\)
\(48\) 0 0
\(49\) −16.8082 −2.40117
\(50\) 0 0
\(51\) −1.36910 1.75154i −0.191713 0.245264i
\(52\) 0 0
\(53\) 3.75872 0.516300 0.258150 0.966105i \(-0.416887\pi\)
0.258150 + 0.966105i \(0.416887\pi\)
\(54\) 0 0
\(55\) −3.17009 −0.427454
\(56\) 0 0
\(57\) 0.581449i 0.0770148i
\(58\) 0 0
\(59\) 2.34017 0.304665 0.152332 0.988329i \(-0.451322\pi\)
0.152332 + 0.988329i \(0.451322\pi\)
\(60\) 0 0
\(61\) 12.2557i 1.56918i 0.620018 + 0.784588i \(0.287125\pi\)
−0.620018 + 0.784588i \(0.712875\pi\)
\(62\) 0 0
\(63\) 13.2195i 1.66550i
\(64\) 0 0
\(65\) 2.63090i 0.326323i
\(66\) 0 0
\(67\) −10.2062 −1.24689 −0.623443 0.781869i \(-0.714267\pi\)
−0.623443 + 0.781869i \(0.714267\pi\)
\(68\) 0 0
\(69\) 2.81432 0.338804
\(70\) 0 0
\(71\) 4.06505i 0.482432i −0.970471 0.241216i \(-0.922454\pi\)
0.970471 0.241216i \(-0.0775463\pi\)
\(72\) 0 0
\(73\) 11.0784i 1.29663i 0.761374 + 0.648313i \(0.224525\pi\)
−0.761374 + 0.648313i \(0.775475\pi\)
\(74\) 0 0
\(75\) 0.539189i 0.0622602i
\(76\) 0 0
\(77\) −15.4680 −1.76274
\(78\) 0 0
\(79\) 6.92881i 0.779552i −0.920910 0.389776i \(-0.872552\pi\)
0.920910 0.389776i \(-0.127448\pi\)
\(80\) 0 0
\(81\) 6.46800 0.718667
\(82\) 0 0
\(83\) −8.23287 −0.903674 −0.451837 0.892100i \(-0.649231\pi\)
−0.451837 + 0.892100i \(0.649231\pi\)
\(84\) 0 0
\(85\) −2.53919 3.24846i −0.275414 0.352345i
\(86\) 0 0
\(87\) 1.57531 0.168891
\(88\) 0 0
\(89\) 7.15449 0.758374 0.379187 0.925320i \(-0.376204\pi\)
0.379187 + 0.925320i \(0.376204\pi\)
\(90\) 0 0
\(91\) 12.8371i 1.34569i
\(92\) 0 0
\(93\) 2.20620 0.228773
\(94\) 0 0
\(95\) 1.07838i 0.110639i
\(96\) 0 0
\(97\) 8.18342i 0.830900i −0.909616 0.415450i \(-0.863624\pi\)
0.909616 0.415450i \(-0.136376\pi\)
\(98\) 0 0
\(99\) 8.58864i 0.863191i
\(100\) 0 0
\(101\) −2.47414 −0.246186 −0.123093 0.992395i \(-0.539281\pi\)
−0.123093 + 0.992395i \(0.539281\pi\)
\(102\) 0 0
\(103\) 19.6514 1.93631 0.968156 0.250348i \(-0.0805452\pi\)
0.968156 + 0.250348i \(0.0805452\pi\)
\(104\) 0 0
\(105\) 2.63090i 0.256749i
\(106\) 0 0
\(107\) 12.6381i 1.22177i 0.791719 + 0.610885i \(0.209186\pi\)
−0.791719 + 0.610885i \(0.790814\pi\)
\(108\) 0 0
\(109\) 8.15676i 0.781275i −0.920544 0.390638i \(-0.872255\pi\)
0.920544 0.390638i \(-0.127745\pi\)
\(110\) 0 0
\(111\) −2.83710 −0.269286
\(112\) 0 0
\(113\) 17.0205i 1.60116i 0.599229 + 0.800578i \(0.295474\pi\)
−0.599229 + 0.800578i \(0.704526\pi\)
\(114\) 0 0
\(115\) 5.21953 0.486724
\(116\) 0 0
\(117\) 7.12783 0.658968
\(118\) 0 0
\(119\) −12.3896 15.8504i −1.13575 1.45301i
\(120\) 0 0
\(121\) 0.950552 0.0864138
\(122\) 0 0
\(123\) 3.02052 0.272351
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 8.04945 0.714273 0.357137 0.934052i \(-0.383753\pi\)
0.357137 + 0.934052i \(0.383753\pi\)
\(128\) 0 0
\(129\) 1.81658i 0.159941i
\(130\) 0 0
\(131\) 11.6937i 1.02168i −0.859675 0.510841i \(-0.829334\pi\)
0.859675 0.510841i \(-0.170666\pi\)
\(132\) 0 0
\(133\) 5.26180i 0.456256i
\(134\) 0 0
\(135\) −3.07838 −0.264945
\(136\) 0 0
\(137\) 1.95055 0.166647 0.0833234 0.996523i \(-0.473447\pi\)
0.0833234 + 0.996523i \(0.473447\pi\)
\(138\) 0 0
\(139\) 2.00719i 0.170247i 0.996370 + 0.0851237i \(0.0271286\pi\)
−0.996370 + 0.0851237i \(0.972871\pi\)
\(140\) 0 0
\(141\) 3.65983i 0.308213i
\(142\) 0 0
\(143\) 8.34017i 0.697440i
\(144\) 0 0
\(145\) 2.92162 0.242628
\(146\) 0 0
\(147\) 9.06278i 0.747485i
\(148\) 0 0
\(149\) −14.2823 −1.17005 −0.585026 0.811014i \(-0.698916\pi\)
−0.585026 + 0.811014i \(0.698916\pi\)
\(150\) 0 0
\(151\) −12.8638 −1.04684 −0.523419 0.852075i \(-0.675344\pi\)
−0.523419 + 0.852075i \(0.675344\pi\)
\(152\) 0 0
\(153\) −8.80098 + 6.87936i −0.711517 + 0.556163i
\(154\) 0 0
\(155\) 4.09171 0.328654
\(156\) 0 0
\(157\) 3.75872 0.299979 0.149989 0.988688i \(-0.452076\pi\)
0.149989 + 0.988688i \(0.452076\pi\)
\(158\) 0 0
\(159\) 2.02666i 0.160725i
\(160\) 0 0
\(161\) 25.4680 2.00716
\(162\) 0 0
\(163\) 8.69594i 0.681119i 0.940223 + 0.340559i \(0.110616\pi\)
−0.940223 + 0.340559i \(0.889384\pi\)
\(164\) 0 0
\(165\) 1.70928i 0.133067i
\(166\) 0 0
\(167\) 1.37629i 0.106501i −0.998581 0.0532503i \(-0.983042\pi\)
0.998581 0.0532503i \(-0.0169581\pi\)
\(168\) 0 0
\(169\) −6.07838 −0.467568
\(170\) 0 0
\(171\) −2.92162 −0.223422
\(172\) 0 0
\(173\) 17.3607i 1.31991i −0.751306 0.659954i \(-0.770576\pi\)
0.751306 0.659954i \(-0.229424\pi\)
\(174\) 0 0
\(175\) 4.87936i 0.368845i
\(176\) 0 0
\(177\) 1.26180i 0.0948423i
\(178\) 0 0
\(179\) −6.83710 −0.511029 −0.255514 0.966805i \(-0.582245\pi\)
−0.255514 + 0.966805i \(0.582245\pi\)
\(180\) 0 0
\(181\) 15.0205i 1.11647i 0.829684 + 0.558233i \(0.188521\pi\)
−0.829684 + 0.558233i \(0.811479\pi\)
\(182\) 0 0
\(183\) −6.60811 −0.488486
\(184\) 0 0
\(185\) −5.26180 −0.386855
\(186\) 0 0
\(187\) −8.04945 10.2979i −0.588634 0.753058i
\(188\) 0 0
\(189\) −15.0205 −1.09258
\(190\) 0 0
\(191\) 24.2823 1.75701 0.878503 0.477736i \(-0.158543\pi\)
0.878503 + 0.477736i \(0.158543\pi\)
\(192\) 0 0
\(193\) 11.8576i 0.853530i −0.904363 0.426765i \(-0.859653\pi\)
0.904363 0.426765i \(-0.140347\pi\)
\(194\) 0 0
\(195\) −1.41855 −0.101585
\(196\) 0 0
\(197\) 18.2557i 1.30066i −0.759651 0.650331i \(-0.774630\pi\)
0.759651 0.650331i \(-0.225370\pi\)
\(198\) 0 0
\(199\) 3.72487i 0.264049i −0.991246 0.132025i \(-0.957852\pi\)
0.991246 0.132025i \(-0.0421478\pi\)
\(200\) 0 0
\(201\) 5.50307i 0.388157i
\(202\) 0 0
\(203\) 14.2557 1.00055
\(204\) 0 0
\(205\) 5.60197 0.391258
\(206\) 0 0
\(207\) 14.1412i 0.982878i
\(208\) 0 0
\(209\) 3.41855i 0.236466i
\(210\) 0 0
\(211\) 22.2485i 1.53165i 0.643051 + 0.765824i \(0.277668\pi\)
−0.643051 + 0.765824i \(0.722332\pi\)
\(212\) 0 0
\(213\) 2.19183 0.150182
\(214\) 0 0
\(215\) 3.36910i 0.229771i
\(216\) 0 0
\(217\) 19.9649 1.35531
\(218\) 0 0
\(219\) −5.97334 −0.403641
\(220\) 0 0
\(221\) −8.54638 + 6.68035i −0.574892 + 0.449369i
\(222\) 0 0
\(223\) 2.19183 0.146776 0.0733878 0.997303i \(-0.476619\pi\)
0.0733878 + 0.997303i \(0.476619\pi\)
\(224\) 0 0
\(225\) −2.70928 −0.180618
\(226\) 0 0
\(227\) 9.55971i 0.634500i −0.948342 0.317250i \(-0.897241\pi\)
0.948342 0.317250i \(-0.102759\pi\)
\(228\) 0 0
\(229\) 7.36910 0.486964 0.243482 0.969905i \(-0.421710\pi\)
0.243482 + 0.969905i \(0.421710\pi\)
\(230\) 0 0
\(231\) 8.34017i 0.548743i
\(232\) 0 0
\(233\) 9.44521i 0.618776i 0.950936 + 0.309388i \(0.100124\pi\)
−0.950936 + 0.309388i \(0.899876\pi\)
\(234\) 0 0
\(235\) 6.78765i 0.442778i
\(236\) 0 0
\(237\) 3.73594 0.242675
\(238\) 0 0
\(239\) −6.25565 −0.404644 −0.202322 0.979319i \(-0.564849\pi\)
−0.202322 + 0.979319i \(0.564849\pi\)
\(240\) 0 0
\(241\) 2.49693i 0.160841i −0.996761 0.0804207i \(-0.974374\pi\)
0.996761 0.0804207i \(-0.0256264\pi\)
\(242\) 0 0
\(243\) 12.7226i 0.816156i
\(244\) 0 0
\(245\) 16.8082i 1.07383i
\(246\) 0 0
\(247\) −2.83710 −0.180520
\(248\) 0 0
\(249\) 4.43907i 0.281315i
\(250\) 0 0
\(251\) 11.8166 0.745856 0.372928 0.927860i \(-0.378354\pi\)
0.372928 + 0.927860i \(0.378354\pi\)
\(252\) 0 0
\(253\) 16.5464 1.04026
\(254\) 0 0
\(255\) 1.75154 1.36910i 0.109685 0.0857365i
\(256\) 0 0
\(257\) 14.9444 0.932207 0.466103 0.884730i \(-0.345658\pi\)
0.466103 + 0.884730i \(0.345658\pi\)
\(258\) 0 0
\(259\) −25.6742 −1.59532
\(260\) 0 0
\(261\) 7.91548i 0.489956i
\(262\) 0 0
\(263\) 12.9444 0.798186 0.399093 0.916910i \(-0.369325\pi\)
0.399093 + 0.916910i \(0.369325\pi\)
\(264\) 0 0
\(265\) 3.75872i 0.230897i
\(266\) 0 0
\(267\) 3.85762i 0.236083i
\(268\) 0 0
\(269\) 7.47641i 0.455845i −0.973679 0.227922i \(-0.926807\pi\)
0.973679 0.227922i \(-0.0731932\pi\)
\(270\) 0 0
\(271\) 2.15676 0.131014 0.0655068 0.997852i \(-0.479134\pi\)
0.0655068 + 0.997852i \(0.479134\pi\)
\(272\) 0 0
\(273\) −6.92162 −0.418916
\(274\) 0 0
\(275\) 3.17009i 0.191163i
\(276\) 0 0
\(277\) 12.1568i 0.730429i 0.930923 + 0.365214i \(0.119004\pi\)
−0.930923 + 0.365214i \(0.880996\pi\)
\(278\) 0 0
\(279\) 11.0856i 0.663675i
\(280\) 0 0
\(281\) 13.1194 0.782639 0.391319 0.920255i \(-0.372019\pi\)
0.391319 + 0.920255i \(0.372019\pi\)
\(282\) 0 0
\(283\) 13.9577i 0.829701i 0.909889 + 0.414851i \(0.136166\pi\)
−0.909889 + 0.414851i \(0.863834\pi\)
\(284\) 0 0
\(285\) 0.581449 0.0344421
\(286\) 0 0
\(287\) 27.3340 1.61348
\(288\) 0 0
\(289\) 4.10504 16.4969i 0.241473 0.970408i
\(290\) 0 0
\(291\) 4.41241 0.258660
\(292\) 0 0
\(293\) 4.73820 0.276809 0.138404 0.990376i \(-0.455803\pi\)
0.138404 + 0.990376i \(0.455803\pi\)
\(294\) 0 0
\(295\) 2.34017i 0.136250i
\(296\) 0 0
\(297\) −9.75872 −0.566259
\(298\) 0 0
\(299\) 13.7321i 0.794146i
\(300\) 0 0
\(301\) 16.4391i 0.947532i
\(302\) 0 0
\(303\) 1.33403i 0.0766380i
\(304\) 0 0
\(305\) −12.2557 −0.701757
\(306\) 0 0
\(307\) 21.5936 1.23241 0.616205 0.787586i \(-0.288669\pi\)
0.616205 + 0.787586i \(0.288669\pi\)
\(308\) 0 0
\(309\) 10.5958i 0.602775i
\(310\) 0 0
\(311\) 24.2628i 1.37582i −0.725796 0.687910i \(-0.758528\pi\)
0.725796 0.687910i \(-0.241472\pi\)
\(312\) 0 0
\(313\) 4.07223i 0.230176i 0.993355 + 0.115088i \(0.0367151\pi\)
−0.993355 + 0.115088i \(0.963285\pi\)
\(314\) 0 0
\(315\) −13.2195 −0.744836
\(316\) 0 0
\(317\) 8.05786i 0.452574i 0.974061 + 0.226287i \(0.0726588\pi\)
−0.974061 + 0.226287i \(0.927341\pi\)
\(318\) 0 0
\(319\) 9.26180 0.518561
\(320\) 0 0
\(321\) −6.81432 −0.380338
\(322\) 0 0
\(323\) 3.50307 2.73820i 0.194916 0.152358i
\(324\) 0 0
\(325\) −2.63090 −0.145936
\(326\) 0 0
\(327\) 4.39803 0.243212
\(328\) 0 0
\(329\) 33.1194i 1.82593i
\(330\) 0 0
\(331\) 10.0722 0.553620 0.276810 0.960925i \(-0.410723\pi\)
0.276810 + 0.960925i \(0.410723\pi\)
\(332\) 0 0
\(333\) 14.2557i 0.781205i
\(334\) 0 0
\(335\) 10.2062i 0.557624i
\(336\) 0 0
\(337\) 11.2351i 0.612017i −0.952029 0.306008i \(-0.901006\pi\)
0.952029 0.306008i \(-0.0989936\pi\)
\(338\) 0 0
\(339\) −9.17727 −0.498441
\(340\) 0 0
\(341\) 12.9711 0.702423
\(342\) 0 0
\(343\) 47.8576i 2.58407i
\(344\) 0 0
\(345\) 2.81432i 0.151518i
\(346\) 0 0
\(347\) 8.74927i 0.469685i 0.972033 + 0.234843i \(0.0754575\pi\)
−0.972033 + 0.234843i \(0.924543\pi\)
\(348\) 0 0
\(349\) −26.9093 −1.44042 −0.720212 0.693754i \(-0.755955\pi\)
−0.720212 + 0.693754i \(0.755955\pi\)
\(350\) 0 0
\(351\) 8.09890i 0.432287i
\(352\) 0 0
\(353\) 18.3135 0.974730 0.487365 0.873198i \(-0.337958\pi\)
0.487365 + 0.873198i \(0.337958\pi\)
\(354\) 0 0
\(355\) 4.06505 0.215750
\(356\) 0 0
\(357\) 8.54638 6.68035i 0.452322 0.353561i
\(358\) 0 0
\(359\) 9.57531 0.505365 0.252683 0.967549i \(-0.418687\pi\)
0.252683 + 0.967549i \(0.418687\pi\)
\(360\) 0 0
\(361\) −17.8371 −0.938795
\(362\) 0 0
\(363\) 0.512527i 0.0269007i
\(364\) 0 0
\(365\) −11.0784 −0.579869
\(366\) 0 0
\(367\) 12.1145i 0.632371i −0.948697 0.316186i \(-0.897598\pi\)
0.948697 0.316186i \(-0.102402\pi\)
\(368\) 0 0
\(369\) 15.1773i 0.790097i
\(370\) 0 0
\(371\) 18.3402i 0.952174i
\(372\) 0 0
\(373\) 30.4619 1.57726 0.788628 0.614871i \(-0.210792\pi\)
0.788628 + 0.614871i \(0.210792\pi\)
\(374\) 0 0
\(375\) 0.539189 0.0278436
\(376\) 0 0
\(377\) 7.68649i 0.395874i
\(378\) 0 0
\(379\) 0.986669i 0.0506818i 0.999679 + 0.0253409i \(0.00806712\pi\)
−0.999679 + 0.0253409i \(0.991933\pi\)
\(380\) 0 0
\(381\) 4.34017i 0.222354i
\(382\) 0 0
\(383\) 24.9588 1.27533 0.637667 0.770312i \(-0.279900\pi\)
0.637667 + 0.770312i \(0.279900\pi\)
\(384\) 0 0
\(385\) 15.4680i 0.788322i
\(386\) 0 0
\(387\) −9.12783 −0.463993
\(388\) 0 0
\(389\) 33.8082 1.71414 0.857071 0.515198i \(-0.172282\pi\)
0.857071 + 0.515198i \(0.172282\pi\)
\(390\) 0 0
\(391\) 13.2534 + 16.9555i 0.670252 + 0.857475i
\(392\) 0 0
\(393\) 6.30510 0.318050
\(394\) 0 0
\(395\) 6.92881 0.348626
\(396\) 0 0
\(397\) 28.5236i 1.43156i 0.698327 + 0.715779i \(0.253928\pi\)
−0.698327 + 0.715779i \(0.746072\pi\)
\(398\) 0 0
\(399\) 2.83710 0.142033
\(400\) 0 0
\(401\) 33.0928i 1.65257i −0.563250 0.826287i \(-0.690449\pi\)
0.563250 0.826287i \(-0.309551\pi\)
\(402\) 0 0
\(403\) 10.7649i 0.536236i
\(404\) 0 0
\(405\) 6.46800i 0.321397i
\(406\) 0 0
\(407\) −16.6803 −0.826814
\(408\) 0 0
\(409\) −30.1978 −1.49318 −0.746592 0.665282i \(-0.768311\pi\)
−0.746592 + 0.665282i \(0.768311\pi\)
\(410\) 0 0
\(411\) 1.05172i 0.0518773i
\(412\) 0 0
\(413\) 11.4186i 0.561870i
\(414\) 0 0
\(415\) 8.23287i 0.404135i
\(416\) 0 0
\(417\) −1.08225 −0.0529982
\(418\) 0 0
\(419\) 18.1639i 0.887367i −0.896184 0.443683i \(-0.853671\pi\)
0.896184 0.443683i \(-0.146329\pi\)
\(420\) 0 0
\(421\) 0.760991 0.0370884 0.0185442 0.999828i \(-0.494097\pi\)
0.0185442 + 0.999828i \(0.494097\pi\)
\(422\) 0 0
\(423\) 18.3896 0.894134
\(424\) 0 0
\(425\) 3.24846 2.53919i 0.157574 0.123169i
\(426\) 0 0
\(427\) −59.7998 −2.89391
\(428\) 0 0
\(429\) −4.49693 −0.217114
\(430\) 0 0
\(431\) 6.34736i 0.305742i −0.988246 0.152871i \(-0.951148\pi\)
0.988246 0.152871i \(-0.0488518\pi\)
\(432\) 0 0
\(433\) 3.62475 0.174195 0.0870973 0.996200i \(-0.472241\pi\)
0.0870973 + 0.996200i \(0.472241\pi\)
\(434\) 0 0
\(435\) 1.57531i 0.0755302i
\(436\) 0 0
\(437\) 5.62863i 0.269254i
\(438\) 0 0
\(439\) 6.40522i 0.305704i 0.988249 + 0.152852i \(0.0488459\pi\)
−0.988249 + 0.152852i \(0.951154\pi\)
\(440\) 0 0
\(441\) −45.5380 −2.16847
\(442\) 0 0
\(443\) −27.4824 −1.30573 −0.652864 0.757476i \(-0.726432\pi\)
−0.652864 + 0.757476i \(0.726432\pi\)
\(444\) 0 0
\(445\) 7.15449i 0.339155i
\(446\) 0 0
\(447\) 7.70086i 0.364238i
\(448\) 0 0
\(449\) 28.7526i 1.35692i −0.734638 0.678459i \(-0.762648\pi\)
0.734638 0.678459i \(-0.237352\pi\)
\(450\) 0 0
\(451\) 17.7587 0.836226
\(452\) 0 0
\(453\) 6.93600i 0.325882i
\(454\) 0 0
\(455\) −12.8371 −0.601813
\(456\) 0 0
\(457\) −31.4101 −1.46930 −0.734652 0.678444i \(-0.762655\pi\)
−0.734652 + 0.678444i \(0.762655\pi\)
\(458\) 0 0
\(459\) −7.81658 10.0000i −0.364847 0.466760i
\(460\) 0 0
\(461\) −7.75872 −0.361360 −0.180680 0.983542i \(-0.557830\pi\)
−0.180680 + 0.983542i \(0.557830\pi\)
\(462\) 0 0
\(463\) −24.2329 −1.12620 −0.563098 0.826390i \(-0.690391\pi\)
−0.563098 + 0.826390i \(0.690391\pi\)
\(464\) 0 0
\(465\) 2.20620i 0.102310i
\(466\) 0 0
\(467\) 12.3174 0.569981 0.284990 0.958530i \(-0.408010\pi\)
0.284990 + 0.958530i \(0.408010\pi\)
\(468\) 0 0
\(469\) 49.7998i 2.29954i
\(470\) 0 0
\(471\) 2.02666i 0.0933837i
\(472\) 0 0
\(473\) 10.6803i 0.491083i
\(474\) 0 0
\(475\) 1.07838 0.0494794
\(476\) 0 0
\(477\) 10.1834 0.466267
\(478\) 0 0
\(479\) 2.14957i 0.0982162i −0.998793 0.0491081i \(-0.984362\pi\)
0.998793 0.0491081i \(-0.0156379\pi\)
\(480\) 0 0
\(481\) 13.8432i 0.631198i
\(482\) 0 0
\(483\) 13.7321i 0.624830i
\(484\) 0 0
\(485\) 8.18342 0.371590
\(486\) 0 0
\(487\) 40.0833i 1.81635i 0.418593 + 0.908174i \(0.362523\pi\)
−0.418593 + 0.908174i \(0.637477\pi\)
\(488\) 0 0
\(489\) −4.68876 −0.212033
\(490\) 0 0
\(491\) 2.25565 0.101796 0.0508981 0.998704i \(-0.483792\pi\)
0.0508981 + 0.998704i \(0.483792\pi\)
\(492\) 0 0
\(493\) 7.41855 + 9.49079i 0.334115 + 0.427443i
\(494\) 0 0
\(495\) −8.58864 −0.386031
\(496\) 0 0
\(497\) 19.8348 0.889714
\(498\) 0 0
\(499\) 42.5452i 1.90458i 0.305190 + 0.952291i \(0.401280\pi\)
−0.305190 + 0.952291i \(0.598720\pi\)
\(500\) 0 0
\(501\) 0.742080 0.0331537
\(502\) 0 0
\(503\) 9.55971i 0.426246i 0.977025 + 0.213123i \(0.0683636\pi\)
−0.977025 + 0.213123i \(0.931636\pi\)
\(504\) 0 0
\(505\) 2.47414i 0.110098i
\(506\) 0 0
\(507\) 3.27739i 0.145554i
\(508\) 0 0
\(509\) 28.3545 1.25679 0.628397 0.777893i \(-0.283712\pi\)
0.628397 + 0.777893i \(0.283712\pi\)
\(510\) 0 0
\(511\) −54.0554 −2.39127
\(512\) 0 0
\(513\) 3.31965i 0.146566i
\(514\) 0 0
\(515\) 19.6514i 0.865945i
\(516\) 0 0
\(517\) 21.5174i 0.946336i
\(518\) 0 0
\(519\) 9.36069 0.410889
\(520\) 0 0
\(521\) 15.1050i 0.661764i 0.943672 + 0.330882i \(0.107346\pi\)
−0.943672 + 0.330882i \(0.892654\pi\)
\(522\) 0 0
\(523\) 10.8865 0.476036 0.238018 0.971261i \(-0.423502\pi\)
0.238018 + 0.971261i \(0.423502\pi\)
\(524\) 0 0
\(525\) 2.63090 0.114822
\(526\) 0 0
\(527\) 10.3896 + 13.2918i 0.452579 + 0.578999i
\(528\) 0 0
\(529\) −4.24354 −0.184502
\(530\) 0 0
\(531\) 6.34017 0.275140
\(532\) 0 0
\(533\) 14.7382i 0.638383i
\(534\) 0 0
\(535\) −12.6381 −0.546392
\(536\) 0 0
\(537\) 3.68649i 0.159084i
\(538\) 0 0
\(539\) 53.2834i 2.29508i
\(540\) 0 0
\(541\) 6.86830i 0.295291i 0.989040 + 0.147646i \(0.0471695\pi\)
−0.989040 + 0.147646i \(0.952830\pi\)
\(542\) 0 0
\(543\) −8.09890 −0.347557
\(544\) 0 0
\(545\) 8.15676 0.349397
\(546\) 0 0
\(547\) 5.89988i 0.252261i 0.992014 + 0.126130i \(0.0402558\pi\)
−0.992014 + 0.126130i \(0.959744\pi\)
\(548\) 0 0
\(549\) 33.2039i 1.41711i
\(550\) 0 0
\(551\) 3.15061i 0.134221i
\(552\) 0 0
\(553\) 33.8082 1.43767
\(554\) 0 0
\(555\) 2.83710i 0.120428i
\(556\) 0 0
\(557\) −17.7359 −0.751496 −0.375748 0.926722i \(-0.622614\pi\)
−0.375748 + 0.926722i \(0.622614\pi\)
\(558\) 0 0
\(559\) −8.86376 −0.374897
\(560\) 0 0
\(561\) 5.55252 4.34017i 0.234428 0.183242i
\(562\) 0 0
\(563\) 38.8020 1.63531 0.817655 0.575708i \(-0.195274\pi\)
0.817655 + 0.575708i \(0.195274\pi\)
\(564\) 0 0
\(565\) −17.0205 −0.716059
\(566\) 0 0
\(567\) 31.5597i 1.32538i
\(568\) 0 0
\(569\) 12.1568 0.509638 0.254819 0.966989i \(-0.417984\pi\)
0.254819 + 0.966989i \(0.417984\pi\)
\(570\) 0 0
\(571\) 15.4569i 0.646853i 0.946253 + 0.323426i \(0.104835\pi\)
−0.946253 + 0.323426i \(0.895165\pi\)
\(572\) 0 0
\(573\) 13.0928i 0.546958i
\(574\) 0 0
\(575\) 5.21953i 0.217670i
\(576\) 0 0
\(577\) −2.36296 −0.0983713 −0.0491856 0.998790i \(-0.515663\pi\)
−0.0491856 + 0.998790i \(0.515663\pi\)
\(578\) 0 0
\(579\) 6.39350 0.265705
\(580\) 0 0
\(581\) 40.1711i 1.66658i
\(582\) 0 0
\(583\) 11.9155i 0.493489i
\(584\) 0 0
\(585\) 7.12783i 0.294699i
\(586\) 0 0
\(587\) 3.65142 0.150710 0.0753550 0.997157i \(-0.475991\pi\)
0.0753550 + 0.997157i \(0.475991\pi\)
\(588\) 0 0
\(589\) 4.41241i 0.181810i
\(590\) 0 0
\(591\) 9.84324 0.404897
\(592\) 0 0
\(593\) −1.38735 −0.0569718 −0.0284859 0.999594i \(-0.509069\pi\)
−0.0284859 + 0.999594i \(0.509069\pi\)
\(594\) 0 0
\(595\) 15.8504 12.3896i 0.649804 0.507925i
\(596\) 0 0
\(597\) 2.00841 0.0821988
\(598\) 0 0
\(599\) 0.451356 0.0184419 0.00922095 0.999957i \(-0.497065\pi\)
0.00922095 + 0.999957i \(0.497065\pi\)
\(600\) 0 0
\(601\) 22.1301i 0.902705i 0.892346 + 0.451353i \(0.149058\pi\)
−0.892346 + 0.451353i \(0.850942\pi\)
\(602\) 0 0
\(603\) −27.6514 −1.12605
\(604\) 0 0
\(605\) 0.950552i 0.0386454i
\(606\) 0 0
\(607\) 10.2667i 0.416713i −0.978053 0.208357i \(-0.933189\pi\)
0.978053 0.208357i \(-0.0668114\pi\)
\(608\) 0 0
\(609\) 7.68649i 0.311472i
\(610\) 0 0
\(611\) 17.8576 0.722442
\(612\) 0 0
\(613\) −9.05172 −0.365595 −0.182798 0.983151i \(-0.558515\pi\)
−0.182798 + 0.983151i \(0.558515\pi\)
\(614\) 0 0
\(615\) 3.02052i 0.121799i
\(616\) 0 0
\(617\) 17.8166i 0.717269i 0.933478 + 0.358634i \(0.116757\pi\)
−0.933478 + 0.358634i \(0.883243\pi\)
\(618\) 0 0
\(619\) 38.3884i 1.54296i −0.636254 0.771480i \(-0.719517\pi\)
0.636254 0.771480i \(-0.280483\pi\)
\(620\) 0 0
\(621\) 16.0677 0.644775
\(622\) 0 0
\(623\) 34.9093i 1.39861i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 1.84324 0.0736121
\(628\) 0 0
\(629\) −13.3607 17.0928i −0.532726 0.681533i
\(630\) 0 0
\(631\) 27.4863 1.09421 0.547105 0.837064i \(-0.315730\pi\)
0.547105 + 0.837064i \(0.315730\pi\)
\(632\) 0 0
\(633\) −11.9961 −0.476803
\(634\) 0 0
\(635\) 8.04945i 0.319433i
\(636\) 0 0
\(637\) −44.2206 −1.75208
\(638\) 0 0
\(639\) 11.0133i 0.435681i
\(640\) 0 0
\(641\) 9.79976i 0.387067i 0.981094 + 0.193534i \(0.0619949\pi\)
−0.981094 + 0.193534i \(0.938005\pi\)
\(642\) 0 0
\(643\) 16.9372i 0.667939i −0.942584 0.333969i \(-0.891612\pi\)
0.942584 0.333969i \(-0.108388\pi\)
\(644\) 0 0
\(645\) 1.81658 0.0715279
\(646\) 0 0
\(647\) 2.98545 0.117370 0.0586850 0.998277i \(-0.481309\pi\)
0.0586850 + 0.998277i \(0.481309\pi\)
\(648\) 0 0
\(649\) 7.41855i 0.291204i
\(650\) 0 0
\(651\) 10.7649i 0.421908i
\(652\) 0 0
\(653\) 40.1978i 1.57306i 0.617551 + 0.786531i \(0.288125\pi\)
−0.617551 + 0.786531i \(0.711875\pi\)
\(654\) 0 0
\(655\) 11.6937 0.456910
\(656\) 0 0
\(657\) 30.0144i 1.17097i
\(658\) 0 0
\(659\) −43.9832 −1.71334 −0.856671 0.515864i \(-0.827471\pi\)
−0.856671 + 0.515864i \(0.827471\pi\)
\(660\) 0 0
\(661\) 26.1133 1.01569 0.507844 0.861449i \(-0.330443\pi\)
0.507844 + 0.861449i \(0.330443\pi\)
\(662\) 0 0
\(663\) −3.60197 4.60811i −0.139889 0.178964i
\(664\) 0 0
\(665\) 5.26180 0.204044
\(666\) 0 0
\(667\) −15.2495 −0.590463
\(668\) 0 0
\(669\) 1.18181i 0.0456914i
\(670\) 0 0
\(671\) −38.8515 −1.49984
\(672\) 0 0
\(673\) 13.3340i 0.513989i −0.966413 0.256995i \(-0.917268\pi\)
0.966413 0.256995i \(-0.0827322\pi\)
\(674\) 0 0
\(675\) 3.07838i 0.118487i
\(676\) 0 0
\(677\) 26.5113i 1.01891i −0.860497 0.509456i \(-0.829847\pi\)
0.860497 0.509456i \(-0.170153\pi\)
\(678\) 0 0
\(679\) 39.9299 1.53237
\(680\) 0 0
\(681\) 5.15449 0.197520
\(682\) 0 0
\(683\) 5.71646i 0.218734i −0.994001 0.109367i \(-0.965118\pi\)
0.994001 0.109367i \(-0.0348824\pi\)
\(684\) 0 0
\(685\) 1.95055i 0.0745267i
\(686\) 0 0
\(687\) 3.97334i 0.151592i
\(688\) 0 0
\(689\) 9.88882 0.376734
\(690\) 0 0
\(691\) 43.8504i 1.66815i 0.551652 + 0.834075i \(0.313998\pi\)
−0.551652 + 0.834075i \(0.686002\pi\)
\(692\) 0 0
\(693\) −41.9071 −1.59192
\(694\) 0 0
\(695\) −2.00719 −0.0761370
\(696\) 0 0
\(697\) 14.2245 + 18.1978i 0.538790 + 0.689291i
\(698\) 0 0
\(699\) −5.09275 −0.192626
\(700\) 0 0
\(701\) 0.0806452 0.00304593 0.00152296 0.999999i \(-0.499515\pi\)
0.00152296 + 0.999999i \(0.499515\pi\)
\(702\) 0 0
\(703\) 5.67420i 0.214007i
\(704\) 0 0
\(705\) −3.65983 −0.137837
\(706\) 0 0
\(707\) 12.0722i 0.454023i
\(708\) 0 0
\(709\) 10.8227i 0.406456i −0.979131 0.203228i \(-0.934857\pi\)
0.979131 0.203228i \(-0.0651433\pi\)
\(710\) 0 0
\(711\) 18.7721i 0.704007i
\(712\) 0 0
\(713\) −21.3568 −0.799819
\(714\) 0 0
\(715\) −8.34017 −0.311905
\(716\) 0 0
\(717\) 3.37298i 0.125966i
\(718\) 0 0
\(719\) 43.7659i 1.63219i 0.577916 + 0.816097i \(0.303866\pi\)
−0.577916 + 0.816097i \(0.696134\pi\)
\(720\) 0 0
\(721\) 95.8864i 3.57100i
\(722\) 0 0
\(723\) 1.34632 0.0500700
\(724\) 0 0
\(725\) 2.92162i 0.108506i
\(726\) 0 0
\(727\) 3.59809 0.133446 0.0667229 0.997772i \(-0.478746\pi\)
0.0667229 + 0.997772i \(0.478746\pi\)
\(728\) 0 0
\(729\) 12.5441 0.464597
\(730\) 0 0
\(731\) 10.9444 8.55479i 0.404794 0.316410i
\(732\) 0 0
\(733\) −39.8264 −1.47102 −0.735511 0.677513i \(-0.763058\pi\)
−0.735511 + 0.677513i \(0.763058\pi\)
\(734\) 0 0
\(735\) 9.06278 0.334286
\(736\) 0 0
\(737\) 32.3545i 1.19180i
\(738\) 0 0
\(739\) −13.7587 −0.506123 −0.253061 0.967450i \(-0.581437\pi\)
−0.253061 + 0.967450i \(0.581437\pi\)
\(740\) 0 0
\(741\) 1.52973i 0.0561962i
\(742\) 0 0
\(743\) 9.34963i 0.343005i 0.985184 + 0.171502i \(0.0548621\pi\)
−0.985184 + 0.171502i \(0.945138\pi\)
\(744\) 0 0
\(745\) 14.2823i 0.523264i
\(746\) 0 0
\(747\) −22.3051 −0.816101
\(748\) 0 0
\(749\) −61.6658 −2.25322
\(750\) 0 0
\(751\) 53.7392i 1.96097i −0.196586 0.980487i \(-0.562986\pi\)
0.196586 0.980487i \(-0.437014\pi\)
\(752\) 0 0
\(753\) 6.37137i 0.232186i
\(754\) 0 0
\(755\) 12.8638i 0.468160i
\(756\) 0 0
\(757\) −41.5136 −1.50884 −0.754418 0.656394i \(-0.772081\pi\)
−0.754418 + 0.656394i \(0.772081\pi\)
\(758\) 0 0
\(759\) 8.92162i 0.323834i
\(760\) 0 0
\(761\) −18.0372 −0.653847 −0.326923 0.945051i \(-0.606012\pi\)
−0.326923 + 0.945051i \(0.606012\pi\)
\(762\) 0 0
\(763\) 39.7998 1.44085
\(764\) 0 0
\(765\) −6.87936 8.80098i −0.248724 0.318200i
\(766\) 0 0
\(767\) 6.15676 0.222308
\(768\) 0 0
\(769\) −23.0843 −0.832443 −0.416221 0.909263i \(-0.636646\pi\)
−0.416221 + 0.909263i \(0.636646\pi\)
\(770\) 0 0
\(771\) 8.05786i 0.290197i
\(772\) 0 0
\(773\) −27.4101 −0.985874 −0.492937 0.870065i \(-0.664077\pi\)
−0.492937 + 0.870065i \(0.664077\pi\)
\(774\) 0 0
\(775\) 4.09171i 0.146979i
\(776\) 0 0
\(777\) 13.8432i 0.496624i
\(778\) 0 0
\(779\) 6.04104i 0.216443i
\(780\) 0 0
\(781\) 12.8865 0.461117
\(782\) 0 0
\(783\) 8.99386 0.321414
\(784\) 0 0
\(785\) 3.75872i 0.134155i
\(786\) 0 0
\(787\) 30.6069i 1.09102i −0.838105 0.545509i \(-0.816336\pi\)
0.838105 0.545509i \(-0.183664\pi\)
\(788\) 0 0
\(789\) 6.97948i 0.248476i
\(790\) 0 0
\(791\) −83.0493 −2.95289
\(792\) 0 0
\(793\) 32.2434i 1.14500i
\(794\) 0 0
\(795\) −2.02666 −0.0718783
\(796\) 0 0
\(797\) 22.9770 0.813888 0.406944 0.913453i \(-0.366594\pi\)
0.406944 + 0.913453i \(0.366594\pi\)
\(798\) 0 0
\(799\) −22.0494 + 17.2351i −0.780053 + 0.609735i
\(800\) 0 0
\(801\) 19.3835 0.684882
\(802\) 0 0
\(803\) −35.1194 −1.23934
\(804\) 0 0
\(805\) 25.4680i 0.897629i
\(806\) 0 0
\(807\) 4.03120 0.141905
\(808\) 0 0
\(809\) 42.7670i 1.50361i 0.659388 + 0.751803i \(0.270816\pi\)
−0.659388 + 0.751803i \(0.729184\pi\)
\(810\) 0 0
\(811\) 9.41136i 0.330478i −0.986254 0.165239i \(-0.947161\pi\)
0.986254 0.165239i \(-0.0528395\pi\)
\(812\) 0 0
\(813\) 1.16290i 0.0407846i
\(814\) 0 0
\(815\) −8.69594 −0.304606
\(816\) 0 0
\(817\) 3.63317 0.127108
\(818\) 0 0
\(819\) 34.7792i 1.21529i
\(820\) 0 0
\(821\) 32.6681i 1.14012i −0.821602 0.570062i \(-0.806919\pi\)
0.821602 0.570062i \(-0.193081\pi\)
\(822\) 0 0
\(823\) 15.9265i 0.555164i 0.960702 + 0.277582i \(0.0895331\pi\)
−0.960702 + 0.277582i \(0.910467\pi\)
\(824\) 0 0
\(825\) 1.70928 0.0595093
\(826\) 0 0
\(827\) 6.01560i 0.209183i 0.994515 + 0.104591i \(0.0333535\pi\)
−0.994515 + 0.104591i \(0.966647\pi\)
\(828\) 0 0
\(829\) 11.0472 0.383684 0.191842 0.981426i \(-0.438554\pi\)
0.191842 + 0.981426i \(0.438554\pi\)
\(830\) 0 0
\(831\) −6.55479 −0.227383
\(832\) 0 0
\(833\) 54.6007 42.6791i 1.89180 1.47874i
\(834\) 0 0
\(835\) 1.37629 0.0476285
\(836\) 0 0
\(837\) 12.5958 0.435375
\(838\) 0 0
\(839\) 35.9805i 1.24219i 0.783737 + 0.621093i \(0.213311\pi\)
−0.783737 + 0.621093i \(0.786689\pi\)
\(840\) 0 0
\(841\) 20.4641 0.705659
\(842\) 0 0
\(843\) 7.07384i 0.243636i
\(844\) 0 0
\(845\) 6.07838i 0.209103i
\(846\) 0 0
\(847\) 4.63809i 0.159367i
\(848\) 0 0
\(849\) −7.52586 −0.258287
\(850\) 0 0
\(851\) 27.4641 0.941458
\(852\) 0 0
\(853\) 28.7792i 0.985382i −0.870204 0.492691i \(-0.836013\pi\)
0.870204 0.492691i \(-0.163987\pi\)
\(854\) 0 0
\(855\) 2.92162i 0.0999174i
\(856\) 0 0
\(857\) 17.0661i 0.582967i −0.956576 0.291483i \(-0.905851\pi\)
0.956576 0.291483i \(-0.0941488\pi\)
\(858\) 0 0
\(859\) 18.9360 0.646088 0.323044 0.946384i \(-0.395294\pi\)
0.323044 + 0.946384i \(0.395294\pi\)
\(860\) 0 0
\(861\) 14.7382i 0.502277i
\(862\) 0 0
\(863\) −30.8332 −1.04958 −0.524788 0.851233i \(-0.675855\pi\)
−0.524788 + 0.851233i \(0.675855\pi\)
\(864\) 0 0
\(865\) 17.3607 0.590281
\(866\) 0 0
\(867\) 8.89496 + 2.21339i 0.302089 + 0.0751707i
\(868\) 0 0
\(869\) 21.9649 0.745109
\(870\) 0 0
\(871\) −26.8515 −0.909828
\(872\) 0 0
\(873\) 22.1711i 0.750379i
\(874\) 0 0
\(875\) 4.87936 0.164953
\(876\) 0 0
\(877\) 4.30898i 0.145504i 0.997350 + 0.0727519i \(0.0231781\pi\)
−0.997350 + 0.0727519i \(0.976822\pi\)
\(878\) 0 0
\(879\) 2.55479i 0.0861708i
\(880\) 0 0
\(881\) 12.2245i 0.411852i −0.978568 0.205926i \(-0.933979\pi\)
0.978568 0.205926i \(-0.0660207\pi\)
\(882\) 0 0
\(883\) 28.2329 0.950112 0.475056 0.879956i \(-0.342428\pi\)
0.475056 + 0.879956i \(0.342428\pi\)
\(884\) 0 0
\(885\) −1.26180 −0.0424148
\(886\) 0 0
\(887\) 5.17396i 0.173725i −0.996220 0.0868623i \(-0.972316\pi\)
0.996220 0.0868623i \(-0.0276840\pi\)
\(888\) 0 0
\(889\) 39.2762i 1.31728i
\(890\) 0 0
\(891\) 20.5041i 0.686914i
\(892\) 0 0
\(893\) −7.31965 −0.244943
\(894\) 0 0
\(895\) 6.83710i 0.228539i
\(896\) 0 0
\(897\) 7.40417 0.247218
\(898\) 0 0
\(899\) −11.9544 −0.398702
\(900\) 0 0
\(901\) −12.2101 + 9.54411i −0.406777 + 0.317960i
\(902\) 0 0
\(903\) 8.86376 0.294968
\(904\) 0 0
\(905\) −15.0205 −0.499299
\(906\) 0 0
\(907\) 6.32457i 0.210004i 0.994472 + 0.105002i \(0.0334849\pi\)
−0.994472 + 0.105002i \(0.966515\pi\)
\(908\) 0 0
\(909\) −6.70313 −0.222329
\(910\) 0 0
\(911\) 27.6526i 0.916173i −0.888908 0.458086i \(-0.848535\pi\)
0.888908 0.458086i \(-0.151465\pi\)
\(912\) 0 0
\(913\) 26.0989i 0.863747i
\(914\) 0 0
\(915\) 6.60811i 0.218457i
\(916\) 0 0
\(917\) 57.0577 1.88421
\(918\) 0 0
\(919\) 47.5318 1.56793 0.783965 0.620805i \(-0.213194\pi\)
0.783965 + 0.620805i \(0.213194\pi\)
\(920\) 0 0
\(921\) 11.6430i 0.383650i
\(922\) 0 0
\(923\) 10.6947i 0.352021i
\(924\) 0 0
\(925\) 5.26180i 0.173007i
\(926\) 0 0
\(927\) 53.2411 1.74867
\(928\) 0 0
\(929\) 43.7875i 1.43662i −0.695723 0.718310i \(-0.744916\pi\)
0.695723 0.718310i \(-0.255084\pi\)
\(930\) 0 0
\(931\) 18.1256 0.594041
\(932\) 0 0
\(933\) 13.0823 0.428294
\(934\) 0 0
\(935\) 10.2979 8.04945i 0.336778 0.263245i
\(936\) 0 0
\(937\) 14.2367 0.465094 0.232547 0.972585i \(-0.425294\pi\)
0.232547 + 0.972585i \(0.425294\pi\)
\(938\) 0 0
\(939\) −2.19570 −0.0716541
\(940\) 0 0
\(941\) 35.2183i 1.14808i 0.818826 + 0.574042i \(0.194625\pi\)
−0.818826 + 0.574042i \(0.805375\pi\)
\(942\) 0 0
\(943\) −29.2397 −0.952175
\(944\) 0 0
\(945\) 15.0205i 0.488618i
\(946\) 0 0
\(947\) 49.1227i 1.59627i −0.602476 0.798137i \(-0.705819\pi\)
0.602476 0.798137i \(-0.294181\pi\)
\(948\) 0 0
\(949\) 29.1461i 0.946122i
\(950\) 0 0
\(951\) −4.34471 −0.140887
\(952\) 0 0
\(953\) −17.0556 −0.552485 −0.276242 0.961088i \(-0.589089\pi\)
−0.276242 + 0.961088i \(0.589089\pi\)
\(954\) 0 0
\(955\) 24.2823i 0.785757i
\(956\) 0 0
\(957\) 4.99386i 0.161428i
\(958\) 0 0
\(959\) 9.51745i 0.307334i
\(960\) 0 0
\(961\) 14.2579 0.459933
\(962\) 0 0
\(963\) 34.2401i 1.10337i
\(964\) 0 0
\(965\) 11.8576 0.381710
\(966\) 0 0
\(967\) 25.1955 0.810233 0.405117 0.914265i \(-0.367231\pi\)
0.405117 + 0.914265i \(0.367231\pi\)
\(968\) 0 0
\(969\) 1.47641 + 1.88882i 0.0474291 + 0.0606776i
\(970\) 0 0
\(971\) −1.67420 −0.0537277 −0.0268639 0.999639i \(-0.508552\pi\)
−0.0268639 + 0.999639i \(0.508552\pi\)
\(972\) 0 0
\(973\) −9.79380 −0.313975
\(974\) 0 0
\(975\) 1.41855i 0.0454300i
\(976\) 0 0
\(977\) −39.9109 −1.27686 −0.638432 0.769678i \(-0.720417\pi\)
−0.638432 + 0.769678i \(0.720417\pi\)
\(978\) 0 0
\(979\) 22.6803i 0.724867i
\(980\) 0 0
\(981\) 22.0989i 0.705563i
\(982\) 0 0
\(983\) 5.46081i 0.174173i 0.996201 + 0.0870864i \(0.0277556\pi\)
−0.996201 + 0.0870864i \(0.972244\pi\)
\(984\) 0 0
\(985\) 18.2557 0.581673
\(986\) 0 0
\(987\) −17.8576 −0.568414
\(988\) 0 0
\(989\) 17.5851i 0.559175i
\(990\) 0 0
\(991\) 42.0749i 1.33655i 0.743913 + 0.668276i \(0.232968\pi\)
−0.743913 + 0.668276i \(0.767032\pi\)
\(992\) 0 0
\(993\) 5.43084i 0.172342i
\(994\) 0 0
\(995\) 3.72487 0.118086
\(996\) 0 0
\(997\) 54.6681i 1.73135i −0.500602 0.865677i \(-0.666888\pi\)
0.500602 0.865677i \(-0.333112\pi\)
\(998\) 0 0
\(999\) −16.1978 −0.512476
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1360.2.c.f.1121.4 6
4.3 odd 2 85.2.d.a.16.1 6
12.11 even 2 765.2.g.b.271.5 6
17.16 even 2 inner 1360.2.c.f.1121.3 6
20.3 even 4 425.2.c.a.424.6 6
20.7 even 4 425.2.c.b.424.1 6
20.19 odd 2 425.2.d.c.101.6 6
68.47 odd 4 1445.2.a.j.1.3 3
68.55 odd 4 1445.2.a.k.1.3 3
68.67 odd 2 85.2.d.a.16.2 yes 6
204.203 even 2 765.2.g.b.271.6 6
340.67 even 4 425.2.c.a.424.1 6
340.203 even 4 425.2.c.b.424.6 6
340.259 odd 4 7225.2.a.r.1.1 3
340.319 odd 4 7225.2.a.q.1.1 3
340.339 odd 2 425.2.d.c.101.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.1 6 4.3 odd 2
85.2.d.a.16.2 yes 6 68.67 odd 2
425.2.c.a.424.1 6 340.67 even 4
425.2.c.a.424.6 6 20.3 even 4
425.2.c.b.424.1 6 20.7 even 4
425.2.c.b.424.6 6 340.203 even 4
425.2.d.c.101.5 6 340.339 odd 2
425.2.d.c.101.6 6 20.19 odd 2
765.2.g.b.271.5 6 12.11 even 2
765.2.g.b.271.6 6 204.203 even 2
1360.2.c.f.1121.3 6 17.16 even 2 inner
1360.2.c.f.1121.4 6 1.1 even 1 trivial
1445.2.a.j.1.3 3 68.47 odd 4
1445.2.a.k.1.3 3 68.55 odd 4
7225.2.a.q.1.1 3 340.319 odd 4
7225.2.a.r.1.1 3 340.259 odd 4