Properties

Label 1360.2.a.k
Level $1360$
Weight $2$
Character orbit 1360.a
Self dual yes
Analytic conductor $10.860$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1360,2,Mod(1,1360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1360.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.8596546749\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{3} + q^{5} + ( - \beta + 1) q^{7} + ( - 2 \beta + 1) q^{9} + (\beta - 3) q^{11} - 4 q^{13} + (\beta - 1) q^{15} - q^{17} + ( - 2 \beta - 2) q^{19} + (2 \beta - 4) q^{21} + ( - 3 \beta + 3) q^{23}+ \cdots + (7 \beta - 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} + 2 q^{7} + 2 q^{9} - 6 q^{11} - 8 q^{13} - 2 q^{15} - 2 q^{17} - 4 q^{19} - 8 q^{21} + 6 q^{23} + 2 q^{25} - 8 q^{27} - 10 q^{31} + 12 q^{33} + 2 q^{35} - 8 q^{37} + 8 q^{39} + 8 q^{43}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 −2.73205 0 1.00000 0 2.73205 0 4.46410 0
1.2 0 0.732051 0 1.00000 0 −0.732051 0 −2.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1360.2.a.k 2
4.b odd 2 1 85.2.a.c 2
5.b even 2 1 6800.2.a.bg 2
8.b even 2 1 5440.2.a.bl 2
8.d odd 2 1 5440.2.a.bb 2
12.b even 2 1 765.2.a.g 2
20.d odd 2 1 425.2.a.e 2
20.e even 4 2 425.2.b.d 4
28.d even 2 1 4165.2.a.t 2
60.h even 2 1 3825.2.a.v 2
68.d odd 2 1 1445.2.a.g 2
68.f odd 4 2 1445.2.d.e 4
340.d odd 2 1 7225.2.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.a.c 2 4.b odd 2 1
425.2.a.e 2 20.d odd 2 1
425.2.b.d 4 20.e even 4 2
765.2.a.g 2 12.b even 2 1
1360.2.a.k 2 1.a even 1 1 trivial
1445.2.a.g 2 68.d odd 2 1
1445.2.d.e 4 68.f odd 4 2
3825.2.a.v 2 60.h even 2 1
4165.2.a.t 2 28.d even 2 1
5440.2.a.bb 2 8.d odd 2 1
5440.2.a.bl 2 8.b even 2 1
6800.2.a.bg 2 5.b even 2 1
7225.2.a.l 2 340.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1360))\):

\( T_{3}^{2} + 2T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 2T_{7} - 2 \) Copy content Toggle raw display
\( T_{13} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 2T - 2 \) Copy content Toggle raw display
$11$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$13$ \( (T + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$23$ \( T^{2} - 6T - 18 \) Copy content Toggle raw display
$29$ \( T^{2} - 12 \) Copy content Toggle raw display
$31$ \( T^{2} + 10T + 22 \) Copy content Toggle raw display
$37$ \( T^{2} + 8T + 4 \) Copy content Toggle raw display
$41$ \( T^{2} - 12 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T + 4 \) Copy content Toggle raw display
$47$ \( T^{2} + 12T - 12 \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 12T + 24 \) Copy content Toggle raw display
$61$ \( T^{2} - 4T - 44 \) Copy content Toggle raw display
$67$ \( (T - 10)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 6T - 66 \) Copy content Toggle raw display
$73$ \( T^{2} + 8T - 92 \) Copy content Toggle raw display
$79$ \( T^{2} - 2T - 242 \) Copy content Toggle raw display
$83$ \( T^{2} + 24T + 132 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T - 72 \) Copy content Toggle raw display
$97$ \( T^{2} - 4T - 44 \) Copy content Toggle raw display
show more
show less