Newspace parameters
Level: | \( N \) | \(=\) | \( 136 = 2^{3} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 136.s (of order \(16\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(8.02425976078\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | \(\Q(\zeta_{16})\) |
Defining polynomial: |
\( x^{8} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{16}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{16}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/136\mathbb{Z}\right)^\times\).
\(n\) | \(69\) | \(103\) | \(105\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(\zeta_{16}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 |
|
2.61313 | − | 1.08239i | 6.61374 | + | 1.31555i | 5.65685 | − | 5.65685i | 0 | 18.7065 | − | 3.72095i | 0 | 8.65914 | − | 20.9050i | 17.0661 | + | 7.06900i | 0 | ||||||||||||||||||||||||||||||
11.1 | −2.61313 | − | 1.08239i | −1.54267 | − | 7.75551i | 5.65685 | + | 5.65685i | 0 | −4.36332 | + | 21.9359i | 0 | −8.65914 | − | 20.9050i | −32.8234 | + | 13.5959i | 0 | |||||||||||||||||||||||||||||||
27.1 | −1.08239 | + | 2.61313i | −3.92868 | − | 2.62506i | −5.65685 | − | 5.65685i | 0 | 11.1120 | − | 7.42479i | 0 | 20.9050 | − | 8.65914i | −1.78887 | − | 4.31871i | 0 | |||||||||||||||||||||||||||||||
75.1 | 1.08239 | − | 2.61313i | −5.14239 | + | 7.69613i | −5.65685 | − | 5.65685i | 0 | 14.5449 | + | 21.7679i | 0 | −20.9050 | + | 8.65914i | −22.4538 | − | 54.2082i | 0 | |||||||||||||||||||||||||||||||
91.1 | 2.61313 | + | 1.08239i | 6.61374 | − | 1.31555i | 5.65685 | + | 5.65685i | 0 | 18.7065 | + | 3.72095i | 0 | 8.65914 | + | 20.9050i | 17.0661 | − | 7.06900i | 0 | |||||||||||||||||||||||||||||||
99.1 | −2.61313 | + | 1.08239i | −1.54267 | + | 7.75551i | 5.65685 | − | 5.65685i | 0 | −4.36332 | − | 21.9359i | 0 | −8.65914 | + | 20.9050i | −32.8234 | − | 13.5959i | 0 | |||||||||||||||||||||||||||||||
107.1 | 1.08239 | + | 2.61313i | −5.14239 | − | 7.69613i | −5.65685 | + | 5.65685i | 0 | 14.5449 | − | 21.7679i | 0 | −20.9050 | − | 8.65914i | −22.4538 | + | 54.2082i | 0 | |||||||||||||||||||||||||||||||
131.1 | −1.08239 | − | 2.61313i | −3.92868 | + | 2.62506i | −5.65685 | + | 5.65685i | 0 | 11.1120 | + | 7.42479i | 0 | 20.9050 | + | 8.65914i | −1.78887 | + | 4.31871i | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-2}) \) |
17.e | odd | 16 | 1 | inner |
136.s | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 136.4.s.a | ✓ | 8 |
8.d | odd | 2 | 1 | CM | 136.4.s.a | ✓ | 8 |
17.e | odd | 16 | 1 | inner | 136.4.s.a | ✓ | 8 |
136.s | even | 16 | 1 | inner | 136.4.s.a | ✓ | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
136.4.s.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
136.4.s.a | ✓ | 8 | 8.d | odd | 2 | 1 | CM |
136.4.s.a | ✓ | 8 | 17.e | odd | 16 | 1 | inner |
136.4.s.a | ✓ | 8 | 136.s | even | 16 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{8} + 8T_{3}^{7} + 72T_{3}^{6} - 480T_{3}^{5} - 4174T_{3}^{4} - 36832T_{3}^{3} + 45332T_{3}^{2} + 1253240T_{3} + 5438402 \)
acting on \(S_{4}^{\mathrm{new}}(136, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 4096 \)
$3$
\( T^{8} + 8 T^{7} + 72 T^{6} + \cdots + 5438402 \)
$5$
\( T^{8} \)
$7$
\( T^{8} \)
$11$
\( T^{8} - 6476 T^{6} + \cdots + 221297408642 \)
$13$
\( T^{8} \)
$17$
\( T^{8} + \cdots + 582622237229761 \)
$19$
\( T^{8} + 38160 T^{6} + \cdots + 37949591784976 \)
$23$
\( T^{8} \)
$29$
\( T^{8} \)
$31$
\( T^{8} \)
$37$
\( T^{8} \)
$41$
\( T^{8} - 160 T^{7} + \cdots + 11\!\cdots\!02 \)
$43$
\( (T^{4} - 104 T^{3} + 80322 T^{2} + \cdots + 774053858)^{2} \)
$47$
\( T^{8} \)
$53$
\( T^{8} \)
$59$
\( (T^{4} + 460 T^{3} + 410758 T^{2} + \cdots + 233236802)^{2} \)
$61$
\( T^{8} \)
$67$
\( (T^{4} + 1094692 T^{2} + \cdots + 121606351778)^{2} \)
$71$
\( T^{8} \)
$73$
\( T^{8} + 3312 T^{7} + \cdots + 71\!\cdots\!82 \)
$79$
\( T^{8} \)
$83$
\( (T^{4} + 1736 T^{3} + \cdots + 12454523138)^{2} \)
$89$
\( T^{8} + 11402977910412 T^{4} + \cdots + 31\!\cdots\!44 \)
$97$
\( T^{8} + 3507988 T^{6} + \cdots + 18\!\cdots\!22 \)
show more
show less