Properties

Label 136.4.a.b
Level $136$
Weight $4$
Character orbit 136.a
Self dual yes
Analytic conductor $8.024$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [136,4,Mod(1,136)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("136.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(136, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 136.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.02425976078\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.8396.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 20x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{3} + ( - 2 \beta_{2} + \beta_1 - 3) q^{5} + ( - \beta_{2} - 3 \beta_1 - 2) q^{7} + ( - 6 \beta_{2} - \beta_1 - 4) q^{9} + (\beta_{2} + 2 \beta_1 - 27) q^{11} + (2 \beta_{2} + 3 \beta_1 - 15) q^{13}+ \cdots + (179 \beta_{2} - 14 \beta_1 - 73) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{3} - 8 q^{5} - 2 q^{7} - 5 q^{9} - 84 q^{11} - 50 q^{13} - 148 q^{15} - 51 q^{17} - 224 q^{19} - 16 q^{21} - 234 q^{23} + 161 q^{25} - 292 q^{27} - 72 q^{29} - 2 q^{31} + 148 q^{33} - 428 q^{35}+ \cdots - 384 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 20x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 14 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{2} + \beta _1 + 29 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.395276
4.81129
−4.20657
0 −8.11952 0 11.0296 0 5.74786 0 38.9265 0
1.2 0 1.16862 0 1.28534 0 −30.0364 0 −25.6343 0
1.3 0 2.95089 0 −20.3149 0 22.2885 0 −18.2922 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 136.4.a.b 3
3.b odd 2 1 1224.4.a.i 3
4.b odd 2 1 272.4.a.j 3
8.b even 2 1 1088.4.a.y 3
8.d odd 2 1 1088.4.a.u 3
12.b even 2 1 2448.4.a.bj 3
17.b even 2 1 2312.4.a.d 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.4.a.b 3 1.a even 1 1 trivial
272.4.a.j 3 4.b odd 2 1
1088.4.a.u 3 8.d odd 2 1
1088.4.a.y 3 8.b even 2 1
1224.4.a.i 3 3.b odd 2 1
2312.4.a.d 3 17.b even 2 1
2448.4.a.bj 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 4T_{3}^{2} - 30T_{3} + 28 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(136))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 4 T^{2} + \cdots + 28 \) Copy content Toggle raw display
$5$ \( T^{3} + 8 T^{2} + \cdots + 288 \) Copy content Toggle raw display
$7$ \( T^{3} + 2 T^{2} + \cdots + 3848 \) Copy content Toggle raw display
$11$ \( T^{3} + 84 T^{2} + \cdots + 10972 \) Copy content Toggle raw display
$13$ \( T^{3} + 50 T^{2} + \cdots - 16048 \) Copy content Toggle raw display
$17$ \( (T + 17)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + 224 T^{2} + \cdots + 322592 \) Copy content Toggle raw display
$23$ \( T^{3} + 234 T^{2} + \cdots + 463504 \) Copy content Toggle raw display
$29$ \( T^{3} + 72 T^{2} + \cdots - 1862624 \) Copy content Toggle raw display
$31$ \( T^{3} + 2 T^{2} + \cdots - 1252344 \) Copy content Toggle raw display
$37$ \( T^{3} - 100 T^{2} + \cdots - 4014352 \) Copy content Toggle raw display
$41$ \( T^{3} - 218 T^{2} + \cdots + 7651496 \) Copy content Toggle raw display
$43$ \( T^{3} - 44 T^{2} + \cdots - 18647936 \) Copy content Toggle raw display
$47$ \( T^{3} + 16 T^{2} + \cdots - 7663872 \) Copy content Toggle raw display
$53$ \( T^{3} - 462 T^{2} + \cdots + 10502936 \) Copy content Toggle raw display
$59$ \( T^{3} + 68 T^{2} + \cdots - 81654208 \) Copy content Toggle raw display
$61$ \( T^{3} - 460 T^{2} + \cdots + 116249648 \) Copy content Toggle raw display
$67$ \( T^{3} + 1008 T^{2} + \cdots - 534256128 \) Copy content Toggle raw display
$71$ \( T^{3} - 518 T^{2} + \cdots + 93696432 \) Copy content Toggle raw display
$73$ \( T^{3} - 838 T^{2} + \cdots + 324704504 \) Copy content Toggle raw display
$79$ \( T^{3} - 1238 T^{2} + \cdots - 7088608 \) Copy content Toggle raw display
$83$ \( T^{3} + 1148 T^{2} + \cdots - 158784832 \) Copy content Toggle raw display
$89$ \( T^{3} + 2506 T^{2} + \cdots + 456757648 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 1961875944 \) Copy content Toggle raw display
show more
show less