Properties

Label 1352.1.p.a.699.1
Level $1352$
Weight $1$
Character 1352.699
Analytic conductor $0.675$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -104
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1352.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.674735897080\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Projective image \(D_{3}\)
Projective field Galois closure of 3.1.104.1
Artin image $C_3\times S_3$
Artin field Galois closure of 6.0.190102016.3

Embedding invariants

Embedding label 699.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1352.699
Dual form 1352.1.p.a.147.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} -1.00000 q^{5} +(0.500000 - 0.866025i) q^{6} +(0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} -1.00000 q^{5} +(0.500000 - 0.866025i) q^{6} +(0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{10} -1.00000 q^{12} -1.00000 q^{14} +(-0.500000 - 0.866025i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.500000 - 0.866025i) q^{17} +(0.500000 - 0.866025i) q^{20} +1.00000 q^{21} +(0.500000 + 0.866025i) q^{24} +1.00000 q^{27} +(0.500000 + 0.866025i) q^{28} +(-0.500000 + 0.866025i) q^{30} +2.00000 q^{31} +(-0.500000 + 0.866025i) q^{32} -1.00000 q^{34} +(-0.500000 + 0.866025i) q^{35} +(0.500000 + 0.866025i) q^{37} -1.00000 q^{40} +(-0.500000 - 0.866025i) q^{42} +(0.500000 - 0.866025i) q^{43} -1.00000 q^{47} +(0.500000 - 0.866025i) q^{48} +1.00000 q^{51} +(-0.500000 - 0.866025i) q^{54} +(0.500000 - 0.866025i) q^{56} +1.00000 q^{60} +(-1.00000 - 1.73205i) q^{62} +1.00000 q^{64} +(0.500000 + 0.866025i) q^{68} +1.00000 q^{70} +(0.500000 - 0.866025i) q^{71} +(0.500000 - 0.866025i) q^{74} +(0.500000 + 0.866025i) q^{80} +(0.500000 + 0.866025i) q^{81} +(-0.500000 + 0.866025i) q^{84} +(-0.500000 + 0.866025i) q^{85} -1.00000 q^{86} +(1.00000 + 1.73205i) q^{93} +(0.500000 + 0.866025i) q^{94} -1.00000 q^{96} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} + q^{3} - q^{4} - 2q^{5} + q^{6} + q^{7} + 2q^{8} + O(q^{10}) \) \( 2q - q^{2} + q^{3} - q^{4} - 2q^{5} + q^{6} + q^{7} + 2q^{8} + q^{10} - 2q^{12} - 2q^{14} - q^{15} - q^{16} + q^{17} + q^{20} + 2q^{21} + q^{24} + 2q^{27} + q^{28} - q^{30} + 4q^{31} - q^{32} - 2q^{34} - q^{35} + q^{37} - 2q^{40} - q^{42} + q^{43} - 2q^{47} + q^{48} + 2q^{51} - q^{54} + q^{56} + 2q^{60} - 2q^{62} + 2q^{64} + q^{68} + 2q^{70} + q^{71} + q^{74} + q^{80} + q^{81} - q^{84} - q^{85} - 2q^{86} + 2q^{93} + q^{94} - 2q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1185\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.500000 0.866025i
\(3\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(5\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) 0.500000 0.866025i 0.500000 0.866025i
\(7\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(8\) 1.00000 1.00000
\(9\) 0 0
\(10\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) −1.00000 −1.00000
\(13\) 0 0
\(14\) −1.00000 −1.00000
\(15\) −0.500000 0.866025i −0.500000 0.866025i
\(16\) −0.500000 0.866025i −0.500000 0.866025i
\(17\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(18\) 0 0
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0.500000 0.866025i 0.500000 0.866025i
\(21\) 1.00000 1.00000
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 1.00000
\(28\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(31\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(32\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(33\) 0 0
\(34\) −1.00000 −1.00000
\(35\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −1.00000 −1.00000
\(41\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(42\) −0.500000 0.866025i −0.500000 0.866025i
\(43\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 0.500000 0.866025i 0.500000 0.866025i
\(49\) 0 0
\(50\) 0 0
\(51\) 1.00000 1.00000
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −0.500000 0.866025i −0.500000 0.866025i
\(55\) 0 0
\(56\) 0.500000 0.866025i 0.500000 0.866025i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 1.00000 1.00000
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) −1.00000 1.73205i −1.00000 1.73205i
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(69\) 0 0
\(70\) 1.00000 1.00000
\(71\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0.500000 0.866025i 0.500000 0.866025i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(81\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(85\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(86\) −1.00000 −1.00000
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(94\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(95\) 0 0
\(96\) −1.00000 −1.00000
\(97\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(102\) −0.500000 0.866025i −0.500000 0.866025i
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) −1.00000 −1.00000
\(106\) 0 0
\(107\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(108\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(109\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(112\) −1.00000 −1.00000
\(113\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.500000 0.866025i −0.500000 0.866025i
\(120\) −0.500000 0.866025i −0.500000 0.866025i
\(121\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(125\) 1.00000 1.00000
\(126\) 0 0
\(127\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(128\) −0.500000 0.866025i −0.500000 0.866025i
\(129\) 1.00000 1.00000
\(130\) 0 0
\(131\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 −1.00000
\(136\) 0.500000 0.866025i 0.500000 0.866025i
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(140\) −0.500000 0.866025i −0.500000 0.866025i
\(141\) −0.500000 0.866025i −0.500000 0.866025i
\(142\) −1.00000 −1.00000
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −1.00000 −1.00000
\(149\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) 0 0
\(151\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.00000 −2.00000
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.500000 0.866025i 0.500000 0.866025i
\(161\) 0 0
\(162\) 0.500000 0.866025i 0.500000 0.866025i
\(163\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(1.33333\pi\)
\(168\) 1.00000 1.00000
\(169\) 0 0
\(170\) 1.00000 1.00000
\(171\) 0 0
\(172\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.500000 0.866025i −0.500000 0.866025i
\(186\) 1.00000 1.73205i 1.00000 1.73205i
\(187\) 0 0
\(188\) 0.500000 0.866025i 0.500000 0.866025i
\(189\) 0.500000 0.866025i 0.500000 0.866025i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(211\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 1.00000 1.00000
\(214\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(215\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(216\) 1.00000 1.00000
\(217\) 1.00000 1.73205i 1.00000 1.73205i
\(218\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 1.00000 1.00000
\(223\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(225\) 0 0
\(226\) 2.00000 2.00000
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) 0 0
\(235\) 1.00000 1.00000
\(236\) 0 0
\(237\) 0 0
\(238\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(239\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 1.00000 1.00000
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 2.00000 2.00000
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.500000 0.866025i
\(251\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −1.00000 −1.00000
\(256\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(257\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) −0.500000 0.866025i −0.500000 0.866025i
\(259\) 1.00000 1.00000
\(260\) 0 0
\(261\) 0 0
\(262\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(271\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) −1.00000 −1.00000
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) −1.00000 −1.00000
\(279\) 0 0
\(280\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(283\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(284\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(297\) 0 0
\(298\) 2.00000 2.00000
\(299\) 0 0
\(300\) 0 0
\(301\) −0.500000 0.866025i −0.500000 0.866025i
\(302\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.00000 −1.00000
\(321\) 1.00000 1.73205i 1.00000 1.73205i
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) −0.500000 0.866025i −0.500000 0.866025i
\(328\) 0 0
\(329\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(330\) 0 0
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(335\) 0 0
\(336\) −0.500000 0.866025i −0.500000 0.866025i
\(337\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) 0 0
\(339\) −2.00000 −2.00000
\(340\) −0.500000 0.866025i −0.500000 0.866025i
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 1.00000
\(344\) 0.500000 0.866025i 0.500000 0.866025i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(348\) 0 0
\(349\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(356\) 0 0
\(357\) 0.500000 0.866025i 0.500000 0.866025i
\(358\) 0.500000 0.866025i 0.500000 0.866025i
\(359\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0 0
\(363\) −1.00000 −1.00000
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(371\) 0 0
\(372\) −2.00000 −2.00000
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(376\) −1.00000 −1.00000
\(377\) 0 0
\(378\) −1.00000 −1.00000
\(379\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(384\) 0.500000 0.866025i 0.500000 0.866025i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −0.500000 0.866025i −0.500000 0.866025i
\(394\) 0.500000 0.866025i 0.500000 0.866025i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.500000 0.866025i −0.500000 0.866025i
\(406\) 0 0
\(407\) 0 0
\(408\) 1.00000 1.00000
\(409\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.00000 1.00000
\(418\) 0 0
\(419\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0.500000 0.866025i 0.500000 0.866025i
\(421\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0.500000 0.866025i 0.500000 0.866025i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −0.500000 0.866025i −0.500000 0.866025i
\(427\) 0 0
\(428\) 2.00000 2.00000
\(429\) 0 0
\(430\) 1.00000 1.00000
\(431\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) −0.500000 0.866025i −0.500000 0.866025i
\(433\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(434\) −2.00000 −2.00000
\(435\) 0 0
\(436\) 0.500000 0.866025i 0.500000 0.866025i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) −0.500000 0.866025i −0.500000 0.866025i
\(445\) 0 0
\(446\) 0.500000 0.866025i 0.500000 0.866025i
\(447\) −2.00000 −2.00000
\(448\) 0.500000 0.866025i 0.500000 0.866025i
\(449\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.00000 1.73205i −1.00000 1.73205i
\(453\) −0.500000 0.866025i −0.500000 0.866025i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(458\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(459\) 0.500000 0.866025i 0.500000 0.866025i
\(460\) 0 0
\(461\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(462\) 0 0
\(463\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(464\) 0 0
\(465\) −1.00000 1.73205i −1.00000 1.73205i
\(466\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(467\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.500000 0.866025i −0.500000 0.866025i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 1.00000 1.00000
\(477\) 0 0
\(478\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(479\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 1.00000 1.00000
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.500000 0.866025i −0.500000 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.00000 1.73205i −1.00000 1.73205i
\(497\) −0.500000 0.866025i −0.500000 0.866025i
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(501\) 1.00000 1.73205i 1.00000 1.73205i
\(502\) 2.00000 2.00000
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(1.33333\pi\)
\(510\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 0.500000 0.866025i 0.500000 0.866025i
\(515\) 0 0
\(516\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(517\) 0 0
\(518\) −0.500000 0.866025i −0.500000 0.866025i
\(519\) 0 0
\(520\) 0 0
\(521\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(524\) 0.500000 0.866025i 0.500000 0.866025i
\(525\) 0 0
\(526\) 0 0
\(527\) 1.00000 1.73205i 1.00000 1.73205i
\(528\) 0 0
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(536\) 0 0
\(537\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(538\) 0 0
\(539\) 0 0
\(540\) 0.500000 0.866025i 0.500000 0.866025i
\(541\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0.500000 0.866025i 0.500000 0.866025i
\(543\) 0 0
\(544\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(545\) 1.00000 1.00000
\(546\) 0 0
\(547\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.500000 0.866025i 0.500000 0.866025i
\(556\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(557\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.00000 1.00000
\(561\) 0 0
\(562\) 0 0
\(563\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(564\) 1.00000 1.00000
\(565\) 1.00000 1.73205i 1.00000 1.73205i
\(566\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(567\) 1.00000 1.00000
\(568\) 0.500000 0.866025i 0.500000 0.866025i
\(569\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −1.00000 −1.00000
\(587\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(592\) 0.500000 0.866025i 0.500000 0.866025i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(596\) −1.00000 1.73205i −1.00000 1.73205i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(603\) 0 0
\(604\) 0.500000 0.866025i 0.500000 0.866025i
\(605\) 0.500000 0.866025i 0.500000 0.866025i
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(1.33333\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 1.00000 1.73205i 1.00000 1.73205i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.00000 −1.00000
\(626\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(627\) 0 0
\(628\) 0 0
\(629\) 1.00000 1.00000
\(630\) 0 0
\(631\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(632\) 0 0
\(633\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(634\) −1.00000 1.73205i −1.00000 1.73205i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(641\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) −2.00000 −2.00000
\(643\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) −1.00000 −1.00000
\(646\) 0 0
\(647\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(649\) 0 0
\(650\) 0 0
\(651\) 2.00000 2.00000
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(655\) 1.00000 1.00000
\(656\) 0 0
\(657\) 0 0
\(658\) 1.00000 1.00000
\(659\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(1.33333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 2.00000 2.00000
\(669\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(670\) 0 0
\(671\) 0 0
\(672\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(673\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(679\) 0 0
\(680\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.500000 0.866025i −0.500000 0.866025i
\(687\) −0.500000 0.866025i −0.500000 0.866025i
\(688\) −1.00000 −1.00000
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.00000 −1.00000
\(695\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.500000 0.866025i 0.500000 0.866025i
\(699\) −0.500000 0.866025i −0.500000 0.866025i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 1.00000 1.00000
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) −1.00000 −1.00000
\(715\) 0 0
\(716\) −1.00000 −1.00000
\(717\) −0.500000 0.866025i −0.500000 0.866025i
\(718\) −1.00000 1.73205i −1.00000 1.73205i
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) −0.500000 0.866025i −0.500000 0.866025i
\(732\) 0 0
\(733\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 1.00000 1.00000
\(741\) 0 0
\(742\) 0 0
\(743\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(745\) 1.00000 1.73205i 1.00000 1.73205i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.00000 −2.00000
\(750\) 0.500000 0.866025i 0.500000 0.866025i
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(753\) −2.00000 −2.00000
\(754\) 0 0
\(755\) 1.00000 1.00000
\(756\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(757\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(764\) 0 0
\(765\) 0 0
\(766\) −1.00000 −1.00000
\(767\) 0 0
\(768\) −1.00000 −1.00000
\(769\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) 0 0
\(771\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(772\) 0 0
\(773\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(787\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) −1.00000 −1.00000
\(789\) 0 0
\(790\) 0 0
\(791\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(792\) 0 0
\(793\) 0 0
\(794\) 2.00000 2.00000
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(798\) 0 0
\(799\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0