Properties

Label 1350.4.c.c
Level $1350$
Weight $4$
Character orbit 1350.c
Analytic conductor $79.653$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(79.6525785077\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 i q^{2} - 4 q^{4} + 34 i q^{7} + 8 i q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - 2 i q^{2} - 4 q^{4} + 34 i q^{7} + 8 i q^{8} - 48 q^{11} - 70 i q^{13} + 68 q^{14} + 16 q^{16} + 27 i q^{17} - 119 q^{19} + 96 i q^{22} - 51 i q^{23} - 140 q^{26} - 136 i q^{28} + 30 q^{29} - 133 q^{31} - 32 i q^{32} + 54 q^{34} - 218 i q^{37} + 238 i q^{38} + 156 q^{41} - 88 i q^{43} + 192 q^{44} - 102 q^{46} + 516 i q^{47} - 813 q^{49} + 280 i q^{52} - 639 i q^{53} - 272 q^{56} - 60 i q^{58} + 654 q^{59} + 461 q^{61} + 266 i q^{62} - 64 q^{64} - 182 i q^{67} - 108 i q^{68} + 900 q^{71} + 704 i q^{73} - 436 q^{74} + 476 q^{76} - 1632 i q^{77} + 1375 q^{79} - 312 i q^{82} + 915 i q^{83} - 176 q^{86} - 384 i q^{88} + 1116 q^{89} + 2380 q^{91} + 204 i q^{92} + 1032 q^{94} + 16 i q^{97} + 1626 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} - 96 q^{11} + 136 q^{14} + 32 q^{16} - 238 q^{19} - 280 q^{26} + 60 q^{29} - 266 q^{31} + 108 q^{34} + 312 q^{41} + 384 q^{44} - 204 q^{46} - 1626 q^{49} - 544 q^{56} + 1308 q^{59} + 922 q^{61} - 128 q^{64} + 1800 q^{71} - 872 q^{74} + 952 q^{76} + 2750 q^{79} - 352 q^{86} + 2232 q^{89} + 4760 q^{91} + 2064 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
1.00000i
1.00000i
2.00000i 0 −4.00000 0 0 34.0000i 8.00000i 0 0
649.2 2.00000i 0 −4.00000 0 0 34.0000i 8.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1350.4.c.c 2
3.b odd 2 1 1350.4.c.r 2
5.b even 2 1 inner 1350.4.c.c 2
5.c odd 4 1 270.4.a.k yes 1
5.c odd 4 1 1350.4.a.n 1
15.d odd 2 1 1350.4.c.r 2
15.e even 4 1 270.4.a.a 1
15.e even 4 1 1350.4.a.bb 1
20.e even 4 1 2160.4.a.t 1
45.k odd 12 2 810.4.e.d 2
45.l even 12 2 810.4.e.x 2
60.l odd 4 1 2160.4.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.4.a.a 1 15.e even 4 1
270.4.a.k yes 1 5.c odd 4 1
810.4.e.d 2 45.k odd 12 2
810.4.e.x 2 45.l even 12 2
1350.4.a.n 1 5.c odd 4 1
1350.4.a.bb 1 15.e even 4 1
1350.4.c.c 2 1.a even 1 1 trivial
1350.4.c.c 2 5.b even 2 1 inner
1350.4.c.r 2 3.b odd 2 1
1350.4.c.r 2 15.d odd 2 1
2160.4.a.j 1 60.l odd 4 1
2160.4.a.t 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1350, [\chi])\):

\( T_{7}^{2} + 1156 \) Copy content Toggle raw display
\( T_{11} + 48 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1156 \) Copy content Toggle raw display
$11$ \( (T + 48)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4900 \) Copy content Toggle raw display
$17$ \( T^{2} + 729 \) Copy content Toggle raw display
$19$ \( (T + 119)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 2601 \) Copy content Toggle raw display
$29$ \( (T - 30)^{2} \) Copy content Toggle raw display
$31$ \( (T + 133)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 47524 \) Copy content Toggle raw display
$41$ \( (T - 156)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 7744 \) Copy content Toggle raw display
$47$ \( T^{2} + 266256 \) Copy content Toggle raw display
$53$ \( T^{2} + 408321 \) Copy content Toggle raw display
$59$ \( (T - 654)^{2} \) Copy content Toggle raw display
$61$ \( (T - 461)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 33124 \) Copy content Toggle raw display
$71$ \( (T - 900)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 495616 \) Copy content Toggle raw display
$79$ \( (T - 1375)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 837225 \) Copy content Toggle raw display
$89$ \( (T - 1116)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 256 \) Copy content Toggle raw display
show more
show less