Properties

Label 1350.2.m
Level 1350
Weight 2
Character orbit m
Rep. character \(\chi_{1350}(109,\cdot)\)
Character field \(\Q(\zeta_{10})\)
Dimension 160
Sturm bound 540

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1350.m (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(540\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1350, [\chi])\).

Total New Old
Modular forms 1128 160 968
Cusp forms 1032 160 872
Eisenstein series 96 0 96

Trace form

\( 160q + 40q^{4} + O(q^{10}) \) \( 160q + 40q^{4} - 10q^{10} - 40q^{16} + 12q^{19} + 20q^{22} - 26q^{25} + 10q^{28} - 6q^{31} - 24q^{34} + 40q^{37} + 10q^{40} - 12q^{46} - 100q^{49} - 58q^{55} - 40q^{61} + 40q^{64} + 40q^{67} + 98q^{70} + 8q^{76} + 56q^{79} + 144q^{85} - 10q^{88} - 20q^{91} - 16q^{94} + 10q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1350, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1350, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1350, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database