# Properties

 Label 1350.2.j.b Level $1350$ Weight $2$ Character orbit 1350.j Analytic conductor $10.780$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1350 = 2 \cdot 3^{3} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1350.j (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$10.7798042729$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 450) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{12} q^{2} + \zeta_{12}^{2} q^{4} + 2 \zeta_{12} q^{7} -\zeta_{12}^{3} q^{8} +O(q^{10})$$ $$q -\zeta_{12} q^{2} + \zeta_{12}^{2} q^{4} + 2 \zeta_{12} q^{7} -\zeta_{12}^{3} q^{8} + ( -4 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{13} -2 \zeta_{12}^{2} q^{14} + ( -1 + \zeta_{12}^{2} ) q^{16} -6 \zeta_{12}^{3} q^{17} + 7 q^{19} + 4 q^{26} + 2 \zeta_{12}^{3} q^{28} + ( 6 - 6 \zeta_{12}^{2} ) q^{29} + 10 \zeta_{12}^{2} q^{31} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{32} + ( -6 + 6 \zeta_{12}^{2} ) q^{34} -2 \zeta_{12}^{3} q^{37} -7 \zeta_{12} q^{38} + 9 \zeta_{12}^{2} q^{41} + \zeta_{12} q^{43} -6 \zeta_{12} q^{47} -3 \zeta_{12}^{2} q^{49} -4 \zeta_{12} q^{52} + 12 \zeta_{12}^{3} q^{53} + ( 2 - 2 \zeta_{12}^{2} ) q^{56} + ( -6 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{58} + 9 \zeta_{12}^{2} q^{59} + ( 4 - 4 \zeta_{12}^{2} ) q^{61} -10 \zeta_{12}^{3} q^{62} - q^{64} + ( 13 \zeta_{12} - 13 \zeta_{12}^{3} ) q^{67} + ( 6 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{68} -6 q^{71} -\zeta_{12}^{3} q^{73} + ( -2 + 2 \zeta_{12}^{2} ) q^{74} + 7 \zeta_{12}^{2} q^{76} + ( 2 - 2 \zeta_{12}^{2} ) q^{79} -9 \zeta_{12}^{3} q^{82} + 9 \zeta_{12} q^{83} -\zeta_{12}^{2} q^{86} + 15 q^{89} -8 q^{91} + 6 \zeta_{12}^{2} q^{94} + 17 \zeta_{12} q^{97} + 3 \zeta_{12}^{3} q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 2q^{4} + O(q^{10})$$ $$4q + 2q^{4} - 4q^{14} - 2q^{16} + 28q^{19} + 16q^{26} + 12q^{29} + 20q^{31} - 12q^{34} + 18q^{41} - 6q^{49} + 4q^{56} + 18q^{59} + 8q^{61} - 4q^{64} - 24q^{71} - 4q^{74} + 14q^{76} + 4q^{79} - 2q^{86} + 60q^{89} - 32q^{91} + 12q^{94} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times$$.

 $$n$$ $$1001$$ $$1027$$ $$\chi(n)$$ $$-\zeta_{12}^{2}$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
199.1
 0.866025 − 0.500000i −0.866025 + 0.500000i 0.866025 + 0.500000i −0.866025 − 0.500000i
−0.866025 + 0.500000i 0 0.500000 0.866025i 0 0 1.73205 1.00000i 1.00000i 0 0
199.2 0.866025 0.500000i 0 0.500000 0.866025i 0 0 −1.73205 + 1.00000i 1.00000i 0 0
1099.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 0 0 1.73205 + 1.00000i 1.00000i 0 0
1099.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 0 −1.73205 1.00000i 1.00000i 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
9.c even 3 1 inner
45.j even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1350.2.j.b 4
3.b odd 2 1 450.2.j.b 4
5.b even 2 1 inner 1350.2.j.b 4
5.c odd 4 1 1350.2.e.d 2
5.c odd 4 1 1350.2.e.h 2
9.c even 3 1 inner 1350.2.j.b 4
9.c even 3 1 4050.2.c.m 2
9.d odd 6 1 450.2.j.b 4
9.d odd 6 1 4050.2.c.h 2
15.d odd 2 1 450.2.j.b 4
15.e even 4 1 450.2.e.c 2
15.e even 4 1 450.2.e.f yes 2
45.h odd 6 1 450.2.j.b 4
45.h odd 6 1 4050.2.c.h 2
45.j even 6 1 inner 1350.2.j.b 4
45.j even 6 1 4050.2.c.m 2
45.k odd 12 1 1350.2.e.d 2
45.k odd 12 1 1350.2.e.h 2
45.k odd 12 1 4050.2.a.o 1
45.k odd 12 1 4050.2.a.u 1
45.l even 12 1 450.2.e.c 2
45.l even 12 1 450.2.e.f yes 2
45.l even 12 1 4050.2.a.d 1
45.l even 12 1 4050.2.a.bg 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
450.2.e.c 2 15.e even 4 1
450.2.e.c 2 45.l even 12 1
450.2.e.f yes 2 15.e even 4 1
450.2.e.f yes 2 45.l even 12 1
450.2.j.b 4 3.b odd 2 1
450.2.j.b 4 9.d odd 6 1
450.2.j.b 4 15.d odd 2 1
450.2.j.b 4 45.h odd 6 1
1350.2.e.d 2 5.c odd 4 1
1350.2.e.d 2 45.k odd 12 1
1350.2.e.h 2 5.c odd 4 1
1350.2.e.h 2 45.k odd 12 1
1350.2.j.b 4 1.a even 1 1 trivial
1350.2.j.b 4 5.b even 2 1 inner
1350.2.j.b 4 9.c even 3 1 inner
1350.2.j.b 4 45.j even 6 1 inner
4050.2.a.d 1 45.l even 12 1
4050.2.a.o 1 45.k odd 12 1
4050.2.a.u 1 45.k odd 12 1
4050.2.a.bg 1 45.l even 12 1
4050.2.c.h 2 9.d odd 6 1
4050.2.c.h 2 45.h odd 6 1
4050.2.c.m 2 9.c even 3 1
4050.2.c.m 2 45.j even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1350, [\chi])$$:

 $$T_{7}^{4} - 4 T_{7}^{2} + 16$$ $$T_{11}$$ $$T_{19} - 7$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 - T^{2} + T^{4}$$
$3$ $$T^{4}$$
$5$ $$T^{4}$$
$7$ $$16 - 4 T^{2} + T^{4}$$
$11$ $$T^{4}$$
$13$ $$256 - 16 T^{2} + T^{4}$$
$17$ $$( 36 + T^{2} )^{2}$$
$19$ $$( -7 + T )^{4}$$
$23$ $$T^{4}$$
$29$ $$( 36 - 6 T + T^{2} )^{2}$$
$31$ $$( 100 - 10 T + T^{2} )^{2}$$
$37$ $$( 4 + T^{2} )^{2}$$
$41$ $$( 81 - 9 T + T^{2} )^{2}$$
$43$ $$1 - T^{2} + T^{4}$$
$47$ $$1296 - 36 T^{2} + T^{4}$$
$53$ $$( 144 + T^{2} )^{2}$$
$59$ $$( 81 - 9 T + T^{2} )^{2}$$
$61$ $$( 16 - 4 T + T^{2} )^{2}$$
$67$ $$28561 - 169 T^{2} + T^{4}$$
$71$ $$( 6 + T )^{4}$$
$73$ $$( 1 + T^{2} )^{2}$$
$79$ $$( 4 - 2 T + T^{2} )^{2}$$
$83$ $$6561 - 81 T^{2} + T^{4}$$
$89$ $$( -15 + T )^{4}$$
$97$ $$83521 - 289 T^{2} + T^{4}$$