Properties

Label 1350.2.c.b
Level $1350$
Weight $2$
Character orbit 1350.c
Analytic conductor $10.780$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,2,Mod(649,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7798042729\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} + i q^{7} - i q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} - q^{4} + i q^{7} - i q^{8} - 3 q^{11} - 4 i q^{13} - q^{14} + q^{16} - 2 q^{19} - 3 i q^{22} - 6 i q^{23} + 4 q^{26} - i q^{28} - 6 q^{29} + 5 q^{31} + i q^{32} - 2 i q^{37} - 2 i q^{38} - 6 q^{41} - 10 i q^{43} + 3 q^{44} + 6 q^{46} - 6 i q^{47} + 6 q^{49} + 4 i q^{52} + 9 i q^{53} + q^{56} - 6 i q^{58} - 12 q^{59} + 8 q^{61} + 5 i q^{62} - q^{64} - 14 i q^{67} - 7 i q^{73} + 2 q^{74} + 2 q^{76} - 3 i q^{77} - 8 q^{79} - 6 i q^{82} - 3 i q^{83} + 10 q^{86} + 3 i q^{88} + 18 q^{89} + 4 q^{91} + 6 i q^{92} + 6 q^{94} + i q^{97} + 6 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} - 6 q^{11} - 2 q^{14} + 2 q^{16} - 4 q^{19} + 8 q^{26} - 12 q^{29} + 10 q^{31} - 12 q^{41} + 6 q^{44} + 12 q^{46} + 12 q^{49} + 2 q^{56} - 24 q^{59} + 16 q^{61} - 2 q^{64} + 4 q^{74} + 4 q^{76} - 16 q^{79} + 20 q^{86} + 36 q^{89} + 8 q^{91} + 12 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 1.00000i 1.00000i 0 0
649.2 1.00000i 0 −1.00000 0 0 1.00000i 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1350.2.c.b 2
3.b odd 2 1 1350.2.c.k 2
5.b even 2 1 inner 1350.2.c.b 2
5.c odd 4 1 54.2.a.a 1
5.c odd 4 1 1350.2.a.r 1
15.d odd 2 1 1350.2.c.k 2
15.e even 4 1 54.2.a.b yes 1
15.e even 4 1 1350.2.a.h 1
20.e even 4 1 432.2.a.g 1
35.f even 4 1 2646.2.a.a 1
40.i odd 4 1 1728.2.a.c 1
40.k even 4 1 1728.2.a.d 1
45.k odd 12 2 162.2.c.c 2
45.l even 12 2 162.2.c.b 2
55.e even 4 1 6534.2.a.bc 1
60.l odd 4 1 432.2.a.b 1
65.h odd 4 1 9126.2.a.u 1
105.k odd 4 1 2646.2.a.bd 1
120.q odd 4 1 1728.2.a.z 1
120.w even 4 1 1728.2.a.y 1
165.l odd 4 1 6534.2.a.b 1
180.v odd 12 2 1296.2.i.o 2
180.x even 12 2 1296.2.i.c 2
195.s even 4 1 9126.2.a.r 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.2.a.a 1 5.c odd 4 1
54.2.a.b yes 1 15.e even 4 1
162.2.c.b 2 45.l even 12 2
162.2.c.c 2 45.k odd 12 2
432.2.a.b 1 60.l odd 4 1
432.2.a.g 1 20.e even 4 1
1296.2.i.c 2 180.x even 12 2
1296.2.i.o 2 180.v odd 12 2
1350.2.a.h 1 15.e even 4 1
1350.2.a.r 1 5.c odd 4 1
1350.2.c.b 2 1.a even 1 1 trivial
1350.2.c.b 2 5.b even 2 1 inner
1350.2.c.k 2 3.b odd 2 1
1350.2.c.k 2 15.d odd 2 1
1728.2.a.c 1 40.i odd 4 1
1728.2.a.d 1 40.k even 4 1
1728.2.a.y 1 120.w even 4 1
1728.2.a.z 1 120.q odd 4 1
2646.2.a.a 1 35.f even 4 1
2646.2.a.bd 1 105.k odd 4 1
6534.2.a.b 1 165.l odd 4 1
6534.2.a.bc 1 55.e even 4 1
9126.2.a.r 1 195.s even 4 1
9126.2.a.u 1 65.h odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1350, [\chi])\):

\( T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11} + 3 \) Copy content Toggle raw display
\( T_{13}^{2} + 16 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{29} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T + 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( (T - 5)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 100 \) Copy content Toggle raw display
$47$ \( T^{2} + 36 \) Copy content Toggle raw display
$53$ \( T^{2} + 81 \) Copy content Toggle raw display
$59$ \( (T + 12)^{2} \) Copy content Toggle raw display
$61$ \( (T - 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 196 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 49 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 9 \) Copy content Toggle raw display
$89$ \( (T - 18)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1 \) Copy content Toggle raw display
show more
show less