Properties

Label 135.4.a.h.1.1
Level $135$
Weight $4$
Character 135.1
Self dual yes
Analytic conductor $7.965$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,4,Mod(1,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 135.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.96525785077\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1772.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.67370\) of defining polynomial
Character \(\chi\) \(=\) 135.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.58488 q^{2} -1.31841 q^{4} +5.00000 q^{5} -22.8935 q^{7} +24.0869 q^{8} -12.9244 q^{10} +11.0828 q^{11} -11.6368 q^{13} +59.1769 q^{14} -51.7145 q^{16} +10.0643 q^{17} +117.865 q^{19} -6.59207 q^{20} -28.6477 q^{22} +172.441 q^{23} +25.0000 q^{25} +30.0798 q^{26} +30.1831 q^{28} +178.321 q^{29} +140.528 q^{31} -59.0200 q^{32} -26.0149 q^{34} -114.468 q^{35} +250.074 q^{37} -304.666 q^{38} +120.435 q^{40} +361.569 q^{41} -360.707 q^{43} -14.6117 q^{44} -445.738 q^{46} -600.121 q^{47} +181.114 q^{49} -64.6219 q^{50} +15.3421 q^{52} +201.312 q^{53} +55.4140 q^{55} -551.435 q^{56} -460.937 q^{58} +415.772 q^{59} -54.6270 q^{61} -363.248 q^{62} +566.275 q^{64} -58.1841 q^{65} -531.079 q^{67} -13.2689 q^{68} +295.885 q^{70} -933.534 q^{71} -560.199 q^{73} -646.409 q^{74} -155.394 q^{76} -253.725 q^{77} +810.781 q^{79} -258.572 q^{80} -934.611 q^{82} +538.210 q^{83} +50.3214 q^{85} +932.384 q^{86} +266.951 q^{88} +686.173 q^{89} +266.408 q^{91} -227.348 q^{92} +1551.24 q^{94} +589.324 q^{95} +714.655 q^{97} -468.156 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 5 q^{2} + 17 q^{4} + 15 q^{5} - 4 q^{7} + 75 q^{8} + 25 q^{10} + 5 q^{11} + 7 q^{13} + 60 q^{14} + 161 q^{16} + 155 q^{17} - 50 q^{19} + 85 q^{20} - 229 q^{22} + 285 q^{23} + 75 q^{25} + 185 q^{26}+ \cdots - 305 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.58488 −0.913892 −0.456946 0.889494i \(-0.651057\pi\)
−0.456946 + 0.889494i \(0.651057\pi\)
\(3\) 0 0
\(4\) −1.31841 −0.164802
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −22.8935 −1.23613 −0.618067 0.786125i \(-0.712084\pi\)
−0.618067 + 0.786125i \(0.712084\pi\)
\(8\) 24.0869 1.06450
\(9\) 0 0
\(10\) −12.9244 −0.408705
\(11\) 11.0828 0.303781 0.151891 0.988397i \(-0.451464\pi\)
0.151891 + 0.988397i \(0.451464\pi\)
\(12\) 0 0
\(13\) −11.6368 −0.248267 −0.124134 0.992266i \(-0.539615\pi\)
−0.124134 + 0.992266i \(0.539615\pi\)
\(14\) 59.1769 1.12969
\(15\) 0 0
\(16\) −51.7145 −0.808039
\(17\) 10.0643 0.143585 0.0717926 0.997420i \(-0.477128\pi\)
0.0717926 + 0.997420i \(0.477128\pi\)
\(18\) 0 0
\(19\) 117.865 1.42316 0.711579 0.702606i \(-0.247980\pi\)
0.711579 + 0.702606i \(0.247980\pi\)
\(20\) −6.59207 −0.0737015
\(21\) 0 0
\(22\) −28.6477 −0.277623
\(23\) 172.441 1.56332 0.781661 0.623704i \(-0.214373\pi\)
0.781661 + 0.623704i \(0.214373\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 30.0798 0.226889
\(27\) 0 0
\(28\) 30.1831 0.203717
\(29\) 178.321 1.14184 0.570919 0.821006i \(-0.306587\pi\)
0.570919 + 0.821006i \(0.306587\pi\)
\(30\) 0 0
\(31\) 140.528 0.814182 0.407091 0.913388i \(-0.366543\pi\)
0.407091 + 0.913388i \(0.366543\pi\)
\(32\) −59.0200 −0.326043
\(33\) 0 0
\(34\) −26.0149 −0.131221
\(35\) −114.468 −0.552816
\(36\) 0 0
\(37\) 250.074 1.11113 0.555566 0.831473i \(-0.312502\pi\)
0.555566 + 0.831473i \(0.312502\pi\)
\(38\) −304.666 −1.30061
\(39\) 0 0
\(40\) 120.435 0.476060
\(41\) 361.569 1.37726 0.688629 0.725114i \(-0.258213\pi\)
0.688629 + 0.725114i \(0.258213\pi\)
\(42\) 0 0
\(43\) −360.707 −1.27924 −0.639620 0.768691i \(-0.720908\pi\)
−0.639620 + 0.768691i \(0.720908\pi\)
\(44\) −14.6117 −0.0500636
\(45\) 0 0
\(46\) −445.738 −1.42871
\(47\) −600.121 −1.86248 −0.931241 0.364405i \(-0.881273\pi\)
−0.931241 + 0.364405i \(0.881273\pi\)
\(48\) 0 0
\(49\) 181.114 0.528028
\(50\) −64.6219 −0.182778
\(51\) 0 0
\(52\) 15.3421 0.0409149
\(53\) 201.312 0.521742 0.260871 0.965374i \(-0.415990\pi\)
0.260871 + 0.965374i \(0.415990\pi\)
\(54\) 0 0
\(55\) 55.4140 0.135855
\(56\) −551.435 −1.31587
\(57\) 0 0
\(58\) −460.937 −1.04352
\(59\) 415.772 0.917438 0.458719 0.888581i \(-0.348308\pi\)
0.458719 + 0.888581i \(0.348308\pi\)
\(60\) 0 0
\(61\) −54.6270 −0.114660 −0.0573301 0.998355i \(-0.518259\pi\)
−0.0573301 + 0.998355i \(0.518259\pi\)
\(62\) −363.248 −0.744074
\(63\) 0 0
\(64\) 566.275 1.10601
\(65\) −58.1841 −0.111029
\(66\) 0 0
\(67\) −531.079 −0.968382 −0.484191 0.874962i \(-0.660886\pi\)
−0.484191 + 0.874962i \(0.660886\pi\)
\(68\) −13.2689 −0.0236631
\(69\) 0 0
\(70\) 295.885 0.505214
\(71\) −933.534 −1.56042 −0.780212 0.625515i \(-0.784889\pi\)
−0.780212 + 0.625515i \(0.784889\pi\)
\(72\) 0 0
\(73\) −560.199 −0.898169 −0.449085 0.893489i \(-0.648250\pi\)
−0.449085 + 0.893489i \(0.648250\pi\)
\(74\) −646.409 −1.01545
\(75\) 0 0
\(76\) −155.394 −0.234539
\(77\) −253.725 −0.375514
\(78\) 0 0
\(79\) 810.781 1.15468 0.577342 0.816503i \(-0.304090\pi\)
0.577342 + 0.816503i \(0.304090\pi\)
\(80\) −258.572 −0.361366
\(81\) 0 0
\(82\) −934.611 −1.25867
\(83\) 538.210 0.711762 0.355881 0.934531i \(-0.384181\pi\)
0.355881 + 0.934531i \(0.384181\pi\)
\(84\) 0 0
\(85\) 50.3214 0.0642132
\(86\) 932.384 1.16909
\(87\) 0 0
\(88\) 266.951 0.323376
\(89\) 686.173 0.817238 0.408619 0.912705i \(-0.366010\pi\)
0.408619 + 0.912705i \(0.366010\pi\)
\(90\) 0 0
\(91\) 266.408 0.306892
\(92\) −227.348 −0.257638
\(93\) 0 0
\(94\) 1551.24 1.70211
\(95\) 589.324 0.636456
\(96\) 0 0
\(97\) 714.655 0.748064 0.374032 0.927416i \(-0.377975\pi\)
0.374032 + 0.927416i \(0.377975\pi\)
\(98\) −468.156 −0.482560
\(99\) 0 0
\(100\) −32.9603 −0.0329603
\(101\) 973.907 0.959479 0.479739 0.877411i \(-0.340731\pi\)
0.479739 + 0.877411i \(0.340731\pi\)
\(102\) 0 0
\(103\) −759.229 −0.726301 −0.363151 0.931730i \(-0.618299\pi\)
−0.363151 + 0.931730i \(0.618299\pi\)
\(104\) −280.296 −0.264281
\(105\) 0 0
\(106\) −520.366 −0.476815
\(107\) 1832.06 1.65525 0.827625 0.561282i \(-0.189692\pi\)
0.827625 + 0.561282i \(0.189692\pi\)
\(108\) 0 0
\(109\) 1370.91 1.20467 0.602335 0.798244i \(-0.294237\pi\)
0.602335 + 0.798244i \(0.294237\pi\)
\(110\) −143.238 −0.124157
\(111\) 0 0
\(112\) 1183.93 0.998844
\(113\) 583.567 0.485817 0.242909 0.970049i \(-0.421898\pi\)
0.242909 + 0.970049i \(0.421898\pi\)
\(114\) 0 0
\(115\) 862.204 0.699139
\(116\) −235.100 −0.188177
\(117\) 0 0
\(118\) −1074.72 −0.838439
\(119\) −230.407 −0.177491
\(120\) 0 0
\(121\) −1208.17 −0.907717
\(122\) 141.204 0.104787
\(123\) 0 0
\(124\) −185.274 −0.134178
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −2432.76 −1.69978 −0.849891 0.526958i \(-0.823333\pi\)
−0.849891 + 0.526958i \(0.823333\pi\)
\(128\) −991.592 −0.684728
\(129\) 0 0
\(130\) 150.399 0.101468
\(131\) 501.073 0.334191 0.167095 0.985941i \(-0.446561\pi\)
0.167095 + 0.985941i \(0.446561\pi\)
\(132\) 0 0
\(133\) −2698.34 −1.75922
\(134\) 1372.77 0.884996
\(135\) 0 0
\(136\) 242.418 0.152847
\(137\) 2523.07 1.57343 0.786716 0.617316i \(-0.211780\pi\)
0.786716 + 0.617316i \(0.211780\pi\)
\(138\) 0 0
\(139\) −638.842 −0.389826 −0.194913 0.980821i \(-0.562442\pi\)
−0.194913 + 0.980821i \(0.562442\pi\)
\(140\) 150.916 0.0911050
\(141\) 0 0
\(142\) 2413.07 1.42606
\(143\) −128.969 −0.0754189
\(144\) 0 0
\(145\) 891.603 0.510645
\(146\) 1448.05 0.820829
\(147\) 0 0
\(148\) −329.700 −0.183116
\(149\) −2674.13 −1.47029 −0.735146 0.677909i \(-0.762886\pi\)
−0.735146 + 0.677909i \(0.762886\pi\)
\(150\) 0 0
\(151\) −1036.68 −0.558700 −0.279350 0.960189i \(-0.590119\pi\)
−0.279350 + 0.960189i \(0.590119\pi\)
\(152\) 2839.00 1.51496
\(153\) 0 0
\(154\) 655.847 0.343179
\(155\) 702.642 0.364113
\(156\) 0 0
\(157\) −381.858 −0.194112 −0.0970560 0.995279i \(-0.530943\pi\)
−0.0970560 + 0.995279i \(0.530943\pi\)
\(158\) −2095.77 −1.05526
\(159\) 0 0
\(160\) −295.100 −0.145811
\(161\) −3947.78 −1.93248
\(162\) 0 0
\(163\) 2421.17 1.16344 0.581719 0.813390i \(-0.302380\pi\)
0.581719 + 0.813390i \(0.302380\pi\)
\(164\) −476.697 −0.226974
\(165\) 0 0
\(166\) −1391.21 −0.650473
\(167\) −3535.76 −1.63836 −0.819178 0.573540i \(-0.805570\pi\)
−0.819178 + 0.573540i \(0.805570\pi\)
\(168\) 0 0
\(169\) −2061.58 −0.938363
\(170\) −130.075 −0.0586840
\(171\) 0 0
\(172\) 475.561 0.210821
\(173\) 3143.88 1.38165 0.690824 0.723023i \(-0.257248\pi\)
0.690824 + 0.723023i \(0.257248\pi\)
\(174\) 0 0
\(175\) −572.338 −0.247227
\(176\) −573.142 −0.245467
\(177\) 0 0
\(178\) −1773.67 −0.746867
\(179\) −3299.06 −1.37756 −0.688780 0.724970i \(-0.741853\pi\)
−0.688780 + 0.724970i \(0.741853\pi\)
\(180\) 0 0
\(181\) 1875.10 0.770026 0.385013 0.922911i \(-0.374197\pi\)
0.385013 + 0.922911i \(0.374197\pi\)
\(182\) −688.632 −0.280466
\(183\) 0 0
\(184\) 4153.57 1.66416
\(185\) 1250.37 0.496913
\(186\) 0 0
\(187\) 111.541 0.0436185
\(188\) 791.207 0.306940
\(189\) 0 0
\(190\) −1523.33 −0.581652
\(191\) −1361.62 −0.515829 −0.257915 0.966168i \(-0.583035\pi\)
−0.257915 + 0.966168i \(0.583035\pi\)
\(192\) 0 0
\(193\) 2234.20 0.833271 0.416636 0.909074i \(-0.363209\pi\)
0.416636 + 0.909074i \(0.363209\pi\)
\(194\) −1847.29 −0.683650
\(195\) 0 0
\(196\) −238.782 −0.0870199
\(197\) −346.625 −0.125360 −0.0626801 0.998034i \(-0.519965\pi\)
−0.0626801 + 0.998034i \(0.519965\pi\)
\(198\) 0 0
\(199\) 4198.77 1.49569 0.747846 0.663872i \(-0.231088\pi\)
0.747846 + 0.663872i \(0.231088\pi\)
\(200\) 602.174 0.212901
\(201\) 0 0
\(202\) −2517.43 −0.876860
\(203\) −4082.39 −1.41146
\(204\) 0 0
\(205\) 1807.84 0.615929
\(206\) 1962.51 0.663761
\(207\) 0 0
\(208\) 601.792 0.200610
\(209\) 1306.27 0.432329
\(210\) 0 0
\(211\) 4728.46 1.54275 0.771375 0.636380i \(-0.219569\pi\)
0.771375 + 0.636380i \(0.219569\pi\)
\(212\) −265.412 −0.0859839
\(213\) 0 0
\(214\) −4735.64 −1.51272
\(215\) −1803.54 −0.572094
\(216\) 0 0
\(217\) −3217.19 −1.00644
\(218\) −3543.62 −1.10094
\(219\) 0 0
\(220\) −73.0586 −0.0223891
\(221\) −117.116 −0.0356475
\(222\) 0 0
\(223\) 2430.16 0.729756 0.364878 0.931055i \(-0.381111\pi\)
0.364878 + 0.931055i \(0.381111\pi\)
\(224\) 1351.18 0.403032
\(225\) 0 0
\(226\) −1508.45 −0.443985
\(227\) −584.687 −0.170956 −0.0854780 0.996340i \(-0.527242\pi\)
−0.0854780 + 0.996340i \(0.527242\pi\)
\(228\) 0 0
\(229\) −4731.77 −1.36543 −0.682717 0.730683i \(-0.739202\pi\)
−0.682717 + 0.730683i \(0.739202\pi\)
\(230\) −2228.69 −0.638937
\(231\) 0 0
\(232\) 4295.20 1.21549
\(233\) 1228.45 0.345401 0.172701 0.984974i \(-0.444751\pi\)
0.172701 + 0.984974i \(0.444751\pi\)
\(234\) 0 0
\(235\) −3000.60 −0.832927
\(236\) −548.159 −0.151195
\(237\) 0 0
\(238\) 595.574 0.162207
\(239\) −120.545 −0.0326253 −0.0163126 0.999867i \(-0.505193\pi\)
−0.0163126 + 0.999867i \(0.505193\pi\)
\(240\) 0 0
\(241\) 1732.56 0.463086 0.231543 0.972825i \(-0.425623\pi\)
0.231543 + 0.972825i \(0.425623\pi\)
\(242\) 3122.97 0.829555
\(243\) 0 0
\(244\) 72.0209 0.0188962
\(245\) 905.568 0.236141
\(246\) 0 0
\(247\) −1371.57 −0.353324
\(248\) 3384.90 0.866699
\(249\) 0 0
\(250\) −323.110 −0.0817410
\(251\) −3287.82 −0.826793 −0.413397 0.910551i \(-0.635658\pi\)
−0.413397 + 0.910551i \(0.635658\pi\)
\(252\) 0 0
\(253\) 1911.13 0.474908
\(254\) 6288.38 1.55342
\(255\) 0 0
\(256\) −1967.06 −0.480239
\(257\) −1489.82 −0.361605 −0.180803 0.983519i \(-0.557870\pi\)
−0.180803 + 0.983519i \(0.557870\pi\)
\(258\) 0 0
\(259\) −5725.07 −1.37351
\(260\) 76.7107 0.0182977
\(261\) 0 0
\(262\) −1295.21 −0.305414
\(263\) 710.144 0.166499 0.0832497 0.996529i \(-0.473470\pi\)
0.0832497 + 0.996529i \(0.473470\pi\)
\(264\) 0 0
\(265\) 1006.56 0.233330
\(266\) 6974.87 1.60773
\(267\) 0 0
\(268\) 700.181 0.159591
\(269\) 3667.61 0.831294 0.415647 0.909526i \(-0.363555\pi\)
0.415647 + 0.909526i \(0.363555\pi\)
\(270\) 0 0
\(271\) −1990.45 −0.446166 −0.223083 0.974799i \(-0.571612\pi\)
−0.223083 + 0.974799i \(0.571612\pi\)
\(272\) −520.469 −0.116022
\(273\) 0 0
\(274\) −6521.81 −1.43795
\(275\) 277.070 0.0607562
\(276\) 0 0
\(277\) 8314.68 1.80354 0.901770 0.432215i \(-0.142268\pi\)
0.901770 + 0.432215i \(0.142268\pi\)
\(278\) 1651.33 0.356259
\(279\) 0 0
\(280\) −2757.18 −0.588474
\(281\) 5765.13 1.22391 0.611955 0.790892i \(-0.290383\pi\)
0.611955 + 0.790892i \(0.290383\pi\)
\(282\) 0 0
\(283\) 457.561 0.0961102 0.0480551 0.998845i \(-0.484698\pi\)
0.0480551 + 0.998845i \(0.484698\pi\)
\(284\) 1230.78 0.257160
\(285\) 0 0
\(286\) 333.368 0.0689247
\(287\) −8277.59 −1.70248
\(288\) 0 0
\(289\) −4811.71 −0.979383
\(290\) −2304.68 −0.466675
\(291\) 0 0
\(292\) 738.574 0.148020
\(293\) 5302.82 1.05732 0.528659 0.848834i \(-0.322695\pi\)
0.528659 + 0.848834i \(0.322695\pi\)
\(294\) 0 0
\(295\) 2078.86 0.410291
\(296\) 6023.51 1.18280
\(297\) 0 0
\(298\) 6912.30 1.34369
\(299\) −2006.66 −0.388122
\(300\) 0 0
\(301\) 8257.86 1.58131
\(302\) 2679.68 0.510591
\(303\) 0 0
\(304\) −6095.31 −1.14997
\(305\) −273.135 −0.0512776
\(306\) 0 0
\(307\) −6583.54 −1.22392 −0.611959 0.790890i \(-0.709618\pi\)
−0.611959 + 0.790890i \(0.709618\pi\)
\(308\) 334.514 0.0618853
\(309\) 0 0
\(310\) −1816.24 −0.332760
\(311\) −8128.05 −1.48199 −0.740996 0.671510i \(-0.765646\pi\)
−0.740996 + 0.671510i \(0.765646\pi\)
\(312\) 0 0
\(313\) −5207.63 −0.940424 −0.470212 0.882554i \(-0.655823\pi\)
−0.470212 + 0.882554i \(0.655823\pi\)
\(314\) 987.056 0.177397
\(315\) 0 0
\(316\) −1068.94 −0.190294
\(317\) −3262.34 −0.578016 −0.289008 0.957327i \(-0.593325\pi\)
−0.289008 + 0.957327i \(0.593325\pi\)
\(318\) 0 0
\(319\) 1976.29 0.346869
\(320\) 2831.38 0.494621
\(321\) 0 0
\(322\) 10204.5 1.76607
\(323\) 1186.22 0.204345
\(324\) 0 0
\(325\) −290.921 −0.0496535
\(326\) −6258.41 −1.06326
\(327\) 0 0
\(328\) 8709.09 1.46610
\(329\) 13738.9 2.30228
\(330\) 0 0
\(331\) 10360.5 1.72043 0.860216 0.509930i \(-0.170329\pi\)
0.860216 + 0.509930i \(0.170329\pi\)
\(332\) −709.583 −0.117299
\(333\) 0 0
\(334\) 9139.51 1.49728
\(335\) −2655.39 −0.433074
\(336\) 0 0
\(337\) −3735.26 −0.603777 −0.301888 0.953343i \(-0.597617\pi\)
−0.301888 + 0.953343i \(0.597617\pi\)
\(338\) 5328.94 0.857563
\(339\) 0 0
\(340\) −66.3444 −0.0105824
\(341\) 1557.45 0.247333
\(342\) 0 0
\(343\) 3706.15 0.583421
\(344\) −8688.34 −1.36176
\(345\) 0 0
\(346\) −8126.55 −1.26268
\(347\) 197.010 0.0304785 0.0152393 0.999884i \(-0.495149\pi\)
0.0152393 + 0.999884i \(0.495149\pi\)
\(348\) 0 0
\(349\) −7334.20 −1.12490 −0.562451 0.826831i \(-0.690141\pi\)
−0.562451 + 0.826831i \(0.690141\pi\)
\(350\) 1479.42 0.225939
\(351\) 0 0
\(352\) −654.107 −0.0990456
\(353\) 4616.28 0.696034 0.348017 0.937488i \(-0.386855\pi\)
0.348017 + 0.937488i \(0.386855\pi\)
\(354\) 0 0
\(355\) −4667.67 −0.697843
\(356\) −904.659 −0.134682
\(357\) 0 0
\(358\) 8527.66 1.25894
\(359\) −1153.79 −0.169623 −0.0848115 0.996397i \(-0.527029\pi\)
−0.0848115 + 0.996397i \(0.527029\pi\)
\(360\) 0 0
\(361\) 7033.09 1.02538
\(362\) −4846.89 −0.703721
\(363\) 0 0
\(364\) −351.236 −0.0505763
\(365\) −2801.00 −0.401673
\(366\) 0 0
\(367\) −3449.05 −0.490569 −0.245285 0.969451i \(-0.578881\pi\)
−0.245285 + 0.969451i \(0.578881\pi\)
\(368\) −8917.69 −1.26322
\(369\) 0 0
\(370\) −3232.05 −0.454125
\(371\) −4608.74 −0.644943
\(372\) 0 0
\(373\) 362.880 0.0503732 0.0251866 0.999683i \(-0.491982\pi\)
0.0251866 + 0.999683i \(0.491982\pi\)
\(374\) −288.319 −0.0398626
\(375\) 0 0
\(376\) −14455.1 −1.98262
\(377\) −2075.09 −0.283481
\(378\) 0 0
\(379\) −7719.79 −1.04628 −0.523139 0.852248i \(-0.675239\pi\)
−0.523139 + 0.852248i \(0.675239\pi\)
\(380\) −776.972 −0.104889
\(381\) 0 0
\(382\) 3519.62 0.471412
\(383\) −5673.66 −0.756946 −0.378473 0.925612i \(-0.623551\pi\)
−0.378473 + 0.925612i \(0.623551\pi\)
\(384\) 0 0
\(385\) −1268.62 −0.167935
\(386\) −5775.13 −0.761520
\(387\) 0 0
\(388\) −942.210 −0.123282
\(389\) −8180.45 −1.06623 −0.533117 0.846041i \(-0.678980\pi\)
−0.533117 + 0.846041i \(0.678980\pi\)
\(390\) 0 0
\(391\) 1735.49 0.224470
\(392\) 4362.47 0.562087
\(393\) 0 0
\(394\) 895.982 0.114566
\(395\) 4053.91 0.516390
\(396\) 0 0
\(397\) −12940.5 −1.63594 −0.817968 0.575263i \(-0.804900\pi\)
−0.817968 + 0.575263i \(0.804900\pi\)
\(398\) −10853.3 −1.36690
\(399\) 0 0
\(400\) −1292.86 −0.161608
\(401\) 6581.29 0.819586 0.409793 0.912179i \(-0.365601\pi\)
0.409793 + 0.912179i \(0.365601\pi\)
\(402\) 0 0
\(403\) −1635.30 −0.202135
\(404\) −1284.01 −0.158124
\(405\) 0 0
\(406\) 10552.5 1.28993
\(407\) 2771.52 0.337541
\(408\) 0 0
\(409\) 4921.85 0.595036 0.297518 0.954716i \(-0.403841\pi\)
0.297518 + 0.954716i \(0.403841\pi\)
\(410\) −4673.06 −0.562892
\(411\) 0 0
\(412\) 1000.98 0.119696
\(413\) −9518.48 −1.13408
\(414\) 0 0
\(415\) 2691.05 0.318310
\(416\) 686.806 0.0809457
\(417\) 0 0
\(418\) −3376.55 −0.395102
\(419\) −3914.29 −0.456385 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(420\) 0 0
\(421\) −5258.76 −0.608780 −0.304390 0.952547i \(-0.598453\pi\)
−0.304390 + 0.952547i \(0.598453\pi\)
\(422\) −12222.5 −1.40991
\(423\) 0 0
\(424\) 4848.99 0.555395
\(425\) 251.607 0.0287170
\(426\) 0 0
\(427\) 1250.60 0.141735
\(428\) −2415.41 −0.272788
\(429\) 0 0
\(430\) 4661.92 0.522832
\(431\) 14350.1 1.60376 0.801881 0.597484i \(-0.203833\pi\)
0.801881 + 0.597484i \(0.203833\pi\)
\(432\) 0 0
\(433\) 863.149 0.0957974 0.0478987 0.998852i \(-0.484748\pi\)
0.0478987 + 0.998852i \(0.484748\pi\)
\(434\) 8316.04 0.919776
\(435\) 0 0
\(436\) −1807.42 −0.198532
\(437\) 20324.7 2.22486
\(438\) 0 0
\(439\) −16142.1 −1.75494 −0.877470 0.479632i \(-0.840770\pi\)
−0.877470 + 0.479632i \(0.840770\pi\)
\(440\) 1334.75 0.144618
\(441\) 0 0
\(442\) 302.731 0.0325780
\(443\) 5884.09 0.631065 0.315532 0.948915i \(-0.397817\pi\)
0.315532 + 0.948915i \(0.397817\pi\)
\(444\) 0 0
\(445\) 3430.87 0.365480
\(446\) −6281.67 −0.666918
\(447\) 0 0
\(448\) −12964.0 −1.36717
\(449\) −16858.4 −1.77193 −0.885965 0.463753i \(-0.846503\pi\)
−0.885965 + 0.463753i \(0.846503\pi\)
\(450\) 0 0
\(451\) 4007.20 0.418385
\(452\) −769.382 −0.0800635
\(453\) 0 0
\(454\) 1511.34 0.156235
\(455\) 1332.04 0.137246
\(456\) 0 0
\(457\) 7623.04 0.780286 0.390143 0.920754i \(-0.372426\pi\)
0.390143 + 0.920754i \(0.372426\pi\)
\(458\) 12231.1 1.24786
\(459\) 0 0
\(460\) −1136.74 −0.115219
\(461\) −4079.39 −0.412139 −0.206070 0.978537i \(-0.566067\pi\)
−0.206070 + 0.978537i \(0.566067\pi\)
\(462\) 0 0
\(463\) −5499.22 −0.551988 −0.275994 0.961159i \(-0.589007\pi\)
−0.275994 + 0.961159i \(0.589007\pi\)
\(464\) −9221.75 −0.922649
\(465\) 0 0
\(466\) −3175.40 −0.315660
\(467\) 6422.51 0.636399 0.318199 0.948024i \(-0.396922\pi\)
0.318199 + 0.948024i \(0.396922\pi\)
\(468\) 0 0
\(469\) 12158.3 1.19705
\(470\) 7756.19 0.761205
\(471\) 0 0
\(472\) 10014.7 0.976615
\(473\) −3997.65 −0.388609
\(474\) 0 0
\(475\) 2946.62 0.284632
\(476\) 303.772 0.0292507
\(477\) 0 0
\(478\) 311.595 0.0298160
\(479\) 198.760 0.0189595 0.00947973 0.999955i \(-0.496982\pi\)
0.00947973 + 0.999955i \(0.496982\pi\)
\(480\) 0 0
\(481\) −2910.06 −0.275858
\(482\) −4478.44 −0.423211
\(483\) 0 0
\(484\) 1592.87 0.149593
\(485\) 3573.27 0.334544
\(486\) 0 0
\(487\) −1308.73 −0.121774 −0.0608871 0.998145i \(-0.519393\pi\)
−0.0608871 + 0.998145i \(0.519393\pi\)
\(488\) −1315.80 −0.122056
\(489\) 0 0
\(490\) −2340.78 −0.215808
\(491\) −12474.8 −1.14660 −0.573300 0.819346i \(-0.694337\pi\)
−0.573300 + 0.819346i \(0.694337\pi\)
\(492\) 0 0
\(493\) 1794.67 0.163951
\(494\) 3545.34 0.322900
\(495\) 0 0
\(496\) −7267.35 −0.657890
\(497\) 21371.9 1.92889
\(498\) 0 0
\(499\) 3146.82 0.282307 0.141153 0.989988i \(-0.454919\pi\)
0.141153 + 0.989988i \(0.454919\pi\)
\(500\) −164.802 −0.0147403
\(501\) 0 0
\(502\) 8498.60 0.755600
\(503\) 5419.35 0.480391 0.240196 0.970725i \(-0.422788\pi\)
0.240196 + 0.970725i \(0.422788\pi\)
\(504\) 0 0
\(505\) 4869.53 0.429092
\(506\) −4940.03 −0.434014
\(507\) 0 0
\(508\) 3207.38 0.280127
\(509\) 17194.6 1.49732 0.748660 0.662954i \(-0.230698\pi\)
0.748660 + 0.662954i \(0.230698\pi\)
\(510\) 0 0
\(511\) 12824.9 1.11026
\(512\) 13017.3 1.12361
\(513\) 0 0
\(514\) 3851.01 0.330468
\(515\) −3796.14 −0.324812
\(516\) 0 0
\(517\) −6651.02 −0.565787
\(518\) 14798.6 1.25524
\(519\) 0 0
\(520\) −1401.48 −0.118190
\(521\) 19829.5 1.66746 0.833730 0.552172i \(-0.186201\pi\)
0.833730 + 0.552172i \(0.186201\pi\)
\(522\) 0 0
\(523\) 5392.82 0.450882 0.225441 0.974257i \(-0.427618\pi\)
0.225441 + 0.974257i \(0.427618\pi\)
\(524\) −660.621 −0.0550752
\(525\) 0 0
\(526\) −1835.63 −0.152162
\(527\) 1414.32 0.116904
\(528\) 0 0
\(529\) 17568.8 1.44397
\(530\) −2601.83 −0.213238
\(531\) 0 0
\(532\) 3557.53 0.289922
\(533\) −4207.52 −0.341928
\(534\) 0 0
\(535\) 9160.29 0.740250
\(536\) −12792.1 −1.03085
\(537\) 0 0
\(538\) −9480.32 −0.759713
\(539\) 2007.25 0.160405
\(540\) 0 0
\(541\) −11475.8 −0.911984 −0.455992 0.889984i \(-0.650715\pi\)
−0.455992 + 0.889984i \(0.650715\pi\)
\(542\) 5145.06 0.407747
\(543\) 0 0
\(544\) −593.994 −0.0468149
\(545\) 6854.53 0.538745
\(546\) 0 0
\(547\) −7929.09 −0.619787 −0.309893 0.950771i \(-0.600293\pi\)
−0.309893 + 0.950771i \(0.600293\pi\)
\(548\) −3326.44 −0.259304
\(549\) 0 0
\(550\) −716.192 −0.0555246
\(551\) 21017.7 1.62502
\(552\) 0 0
\(553\) −18561.6 −1.42734
\(554\) −21492.4 −1.64824
\(555\) 0 0
\(556\) 842.257 0.0642440
\(557\) −9519.36 −0.724144 −0.362072 0.932150i \(-0.617931\pi\)
−0.362072 + 0.932150i \(0.617931\pi\)
\(558\) 0 0
\(559\) 4197.49 0.317594
\(560\) 5919.63 0.446697
\(561\) 0 0
\(562\) −14902.1 −1.11852
\(563\) −11922.3 −0.892476 −0.446238 0.894914i \(-0.647237\pi\)
−0.446238 + 0.894914i \(0.647237\pi\)
\(564\) 0 0
\(565\) 2917.83 0.217264
\(566\) −1182.74 −0.0878343
\(567\) 0 0
\(568\) −22486.0 −1.66108
\(569\) 17591.4 1.29608 0.648042 0.761605i \(-0.275588\pi\)
0.648042 + 0.761605i \(0.275588\pi\)
\(570\) 0 0
\(571\) 8250.73 0.604698 0.302349 0.953197i \(-0.402229\pi\)
0.302349 + 0.953197i \(0.402229\pi\)
\(572\) 170.034 0.0124292
\(573\) 0 0
\(574\) 21396.5 1.55588
\(575\) 4311.02 0.312664
\(576\) 0 0
\(577\) −15922.4 −1.14880 −0.574401 0.818574i \(-0.694765\pi\)
−0.574401 + 0.818574i \(0.694765\pi\)
\(578\) 12437.7 0.895050
\(579\) 0 0
\(580\) −1175.50 −0.0841552
\(581\) −12321.5 −0.879833
\(582\) 0 0
\(583\) 2231.10 0.158495
\(584\) −13493.5 −0.956103
\(585\) 0 0
\(586\) −13707.1 −0.966274
\(587\) −9589.65 −0.674288 −0.337144 0.941453i \(-0.609461\pi\)
−0.337144 + 0.941453i \(0.609461\pi\)
\(588\) 0 0
\(589\) 16563.3 1.15871
\(590\) −5373.59 −0.374961
\(591\) 0 0
\(592\) −12932.4 −0.897837
\(593\) 5311.77 0.367838 0.183919 0.982941i \(-0.441122\pi\)
0.183919 + 0.982941i \(0.441122\pi\)
\(594\) 0 0
\(595\) −1152.04 −0.0793762
\(596\) 3525.61 0.242307
\(597\) 0 0
\(598\) 5186.98 0.354701
\(599\) −6346.04 −0.432875 −0.216437 0.976296i \(-0.569444\pi\)
−0.216437 + 0.976296i \(0.569444\pi\)
\(600\) 0 0
\(601\) −9813.33 −0.666047 −0.333023 0.942919i \(-0.608069\pi\)
−0.333023 + 0.942919i \(0.608069\pi\)
\(602\) −21345.6 −1.44515
\(603\) 0 0
\(604\) 1366.77 0.0920746
\(605\) −6040.86 −0.405943
\(606\) 0 0
\(607\) −4170.95 −0.278902 −0.139451 0.990229i \(-0.544534\pi\)
−0.139451 + 0.990229i \(0.544534\pi\)
\(608\) −6956.38 −0.464011
\(609\) 0 0
\(610\) 706.020 0.0468621
\(611\) 6983.50 0.462393
\(612\) 0 0
\(613\) −3157.32 −0.208031 −0.104016 0.994576i \(-0.533169\pi\)
−0.104016 + 0.994576i \(0.533169\pi\)
\(614\) 17017.6 1.11853
\(615\) 0 0
\(616\) −6111.45 −0.399736
\(617\) −2962.95 −0.193329 −0.0966643 0.995317i \(-0.530817\pi\)
−0.0966643 + 0.995317i \(0.530817\pi\)
\(618\) 0 0
\(619\) 4695.72 0.304906 0.152453 0.988311i \(-0.451283\pi\)
0.152453 + 0.988311i \(0.451283\pi\)
\(620\) −926.372 −0.0600064
\(621\) 0 0
\(622\) 21010.0 1.35438
\(623\) −15708.9 −1.01022
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 13461.1 0.859446
\(627\) 0 0
\(628\) 503.447 0.0319900
\(629\) 2516.81 0.159542
\(630\) 0 0
\(631\) −17397.6 −1.09760 −0.548800 0.835954i \(-0.684915\pi\)
−0.548800 + 0.835954i \(0.684915\pi\)
\(632\) 19529.2 1.22916
\(633\) 0 0
\(634\) 8432.74 0.528244
\(635\) −12163.8 −0.760166
\(636\) 0 0
\(637\) −2107.59 −0.131092
\(638\) −5108.47 −0.317000
\(639\) 0 0
\(640\) −4957.96 −0.306220
\(641\) −6903.46 −0.425383 −0.212691 0.977119i \(-0.568223\pi\)
−0.212691 + 0.977119i \(0.568223\pi\)
\(642\) 0 0
\(643\) −12132.1 −0.744079 −0.372039 0.928217i \(-0.621341\pi\)
−0.372039 + 0.928217i \(0.621341\pi\)
\(644\) 5204.80 0.318475
\(645\) 0 0
\(646\) −3066.24 −0.186749
\(647\) 16784.3 1.01988 0.509939 0.860211i \(-0.329668\pi\)
0.509939 + 0.860211i \(0.329668\pi\)
\(648\) 0 0
\(649\) 4607.92 0.278700
\(650\) 751.994 0.0453779
\(651\) 0 0
\(652\) −3192.10 −0.191736
\(653\) −15711.5 −0.941561 −0.470781 0.882250i \(-0.656028\pi\)
−0.470781 + 0.882250i \(0.656028\pi\)
\(654\) 0 0
\(655\) 2505.37 0.149455
\(656\) −18698.4 −1.11288
\(657\) 0 0
\(658\) −35513.3 −2.10403
\(659\) −20227.0 −1.19565 −0.597825 0.801626i \(-0.703968\pi\)
−0.597825 + 0.801626i \(0.703968\pi\)
\(660\) 0 0
\(661\) 14986.8 0.881875 0.440938 0.897538i \(-0.354646\pi\)
0.440938 + 0.897538i \(0.354646\pi\)
\(662\) −26780.5 −1.57229
\(663\) 0 0
\(664\) 12963.8 0.757672
\(665\) −13491.7 −0.786745
\(666\) 0 0
\(667\) 30749.7 1.78506
\(668\) 4661.59 0.270004
\(669\) 0 0
\(670\) 6863.86 0.395782
\(671\) −605.420 −0.0348316
\(672\) 0 0
\(673\) 6833.74 0.391414 0.195707 0.980662i \(-0.437300\pi\)
0.195707 + 0.980662i \(0.437300\pi\)
\(674\) 9655.19 0.551787
\(675\) 0 0
\(676\) 2718.02 0.154644
\(677\) −30439.3 −1.72803 −0.864015 0.503467i \(-0.832058\pi\)
−0.864015 + 0.503467i \(0.832058\pi\)
\(678\) 0 0
\(679\) −16361.0 −0.924707
\(680\) 1212.09 0.0683552
\(681\) 0 0
\(682\) −4025.81 −0.226036
\(683\) −9675.88 −0.542075 −0.271038 0.962569i \(-0.587367\pi\)
−0.271038 + 0.962569i \(0.587367\pi\)
\(684\) 0 0
\(685\) 12615.3 0.703660
\(686\) −9579.94 −0.533184
\(687\) 0 0
\(688\) 18653.8 1.03368
\(689\) −2342.63 −0.129531
\(690\) 0 0
\(691\) 13410.6 0.738295 0.369147 0.929371i \(-0.379650\pi\)
0.369147 + 0.929371i \(0.379650\pi\)
\(692\) −4144.94 −0.227698
\(693\) 0 0
\(694\) −509.247 −0.0278541
\(695\) −3194.21 −0.174336
\(696\) 0 0
\(697\) 3638.93 0.197754
\(698\) 18958.0 1.02804
\(699\) 0 0
\(700\) 754.578 0.0407434
\(701\) −12796.5 −0.689466 −0.344733 0.938701i \(-0.612031\pi\)
−0.344733 + 0.938701i \(0.612031\pi\)
\(702\) 0 0
\(703\) 29474.9 1.58132
\(704\) 6275.92 0.335984
\(705\) 0 0
\(706\) −11932.5 −0.636100
\(707\) −22296.2 −1.18604
\(708\) 0 0
\(709\) 4849.33 0.256869 0.128435 0.991718i \(-0.459005\pi\)
0.128435 + 0.991718i \(0.459005\pi\)
\(710\) 12065.4 0.637753
\(711\) 0 0
\(712\) 16527.8 0.869952
\(713\) 24232.8 1.27283
\(714\) 0 0
\(715\) −644.843 −0.0337284
\(716\) 4349.52 0.227024
\(717\) 0 0
\(718\) 2982.40 0.155017
\(719\) 33988.7 1.76296 0.881479 0.472224i \(-0.156549\pi\)
0.881479 + 0.472224i \(0.156549\pi\)
\(720\) 0 0
\(721\) 17381.4 0.897806
\(722\) −18179.7 −0.937088
\(723\) 0 0
\(724\) −2472.15 −0.126902
\(725\) 4458.01 0.228368
\(726\) 0 0
\(727\) −16312.3 −0.832170 −0.416085 0.909326i \(-0.636598\pi\)
−0.416085 + 0.909326i \(0.636598\pi\)
\(728\) 6416.96 0.326687
\(729\) 0 0
\(730\) 7240.23 0.367086
\(731\) −3630.26 −0.183680
\(732\) 0 0
\(733\) −37831.8 −1.90634 −0.953172 0.302430i \(-0.902202\pi\)
−0.953172 + 0.302430i \(0.902202\pi\)
\(734\) 8915.36 0.448327
\(735\) 0 0
\(736\) −10177.5 −0.509710
\(737\) −5885.84 −0.294176
\(738\) 0 0
\(739\) −16860.9 −0.839295 −0.419647 0.907687i \(-0.637846\pi\)
−0.419647 + 0.907687i \(0.637846\pi\)
\(740\) −1648.50 −0.0818921
\(741\) 0 0
\(742\) 11913.0 0.589408
\(743\) 406.077 0.0200505 0.0100253 0.999950i \(-0.496809\pi\)
0.0100253 + 0.999950i \(0.496809\pi\)
\(744\) 0 0
\(745\) −13370.7 −0.657535
\(746\) −937.999 −0.0460357
\(747\) 0 0
\(748\) −147.056 −0.00718839
\(749\) −41942.3 −2.04611
\(750\) 0 0
\(751\) −15106.3 −0.734004 −0.367002 0.930220i \(-0.619616\pi\)
−0.367002 + 0.930220i \(0.619616\pi\)
\(752\) 31034.9 1.50496
\(753\) 0 0
\(754\) 5363.84 0.259071
\(755\) −5183.39 −0.249858
\(756\) 0 0
\(757\) −14265.4 −0.684919 −0.342460 0.939533i \(-0.611260\pi\)
−0.342460 + 0.939533i \(0.611260\pi\)
\(758\) 19954.7 0.956184
\(759\) 0 0
\(760\) 14195.0 0.677509
\(761\) 23001.3 1.09566 0.547828 0.836591i \(-0.315455\pi\)
0.547828 + 0.836591i \(0.315455\pi\)
\(762\) 0 0
\(763\) −31384.9 −1.48913
\(764\) 1795.18 0.0850095
\(765\) 0 0
\(766\) 14665.7 0.691767
\(767\) −4838.26 −0.227770
\(768\) 0 0
\(769\) 12294.6 0.576535 0.288267 0.957550i \(-0.406921\pi\)
0.288267 + 0.957550i \(0.406921\pi\)
\(770\) 3279.23 0.153474
\(771\) 0 0
\(772\) −2945.60 −0.137324
\(773\) 5938.46 0.276315 0.138158 0.990410i \(-0.455882\pi\)
0.138158 + 0.990410i \(0.455882\pi\)
\(774\) 0 0
\(775\) 3513.21 0.162836
\(776\) 17213.9 0.796316
\(777\) 0 0
\(778\) 21145.5 0.974423
\(779\) 42616.2 1.96006
\(780\) 0 0
\(781\) −10346.2 −0.474027
\(782\) −4486.04 −0.205141
\(783\) 0 0
\(784\) −9366.19 −0.426667
\(785\) −1909.29 −0.0868096
\(786\) 0 0
\(787\) 32425.0 1.46865 0.734325 0.678798i \(-0.237499\pi\)
0.734325 + 0.678798i \(0.237499\pi\)
\(788\) 456.994 0.0206596
\(789\) 0 0
\(790\) −10478.8 −0.471925
\(791\) −13359.9 −0.600535
\(792\) 0 0
\(793\) 635.685 0.0284664
\(794\) 33449.7 1.49507
\(795\) 0 0
\(796\) −5535.71 −0.246492
\(797\) −20990.4 −0.932897 −0.466449 0.884548i \(-0.654467\pi\)
−0.466449 + 0.884548i \(0.654467\pi\)
\(798\) 0 0
\(799\) −6039.79 −0.267425
\(800\) −1475.50 −0.0652085
\(801\) 0 0
\(802\) −17011.8 −0.749013
\(803\) −6208.58 −0.272847
\(804\) 0 0
\(805\) −19738.9 −0.864229
\(806\) 4227.06 0.184729
\(807\) 0 0
\(808\) 23458.4 1.02137
\(809\) −4943.95 −0.214858 −0.107429 0.994213i \(-0.534262\pi\)
−0.107429 + 0.994213i \(0.534262\pi\)
\(810\) 0 0
\(811\) −19844.5 −0.859230 −0.429615 0.903012i \(-0.641351\pi\)
−0.429615 + 0.903012i \(0.641351\pi\)
\(812\) 5382.27 0.232612
\(813\) 0 0
\(814\) −7164.03 −0.308476
\(815\) 12105.8 0.520305
\(816\) 0 0
\(817\) −42514.7 −1.82056
\(818\) −12722.4 −0.543798
\(819\) 0 0
\(820\) −2383.49 −0.101506
\(821\) 12608.2 0.535969 0.267985 0.963423i \(-0.413642\pi\)
0.267985 + 0.963423i \(0.413642\pi\)
\(822\) 0 0
\(823\) 24843.4 1.05223 0.526116 0.850413i \(-0.323648\pi\)
0.526116 + 0.850413i \(0.323648\pi\)
\(824\) −18287.5 −0.773149
\(825\) 0 0
\(826\) 24604.1 1.03642
\(827\) 33361.1 1.40276 0.701379 0.712789i \(-0.252568\pi\)
0.701379 + 0.712789i \(0.252568\pi\)
\(828\) 0 0
\(829\) −5049.62 −0.211557 −0.105778 0.994390i \(-0.533733\pi\)
−0.105778 + 0.994390i \(0.533733\pi\)
\(830\) −6956.03 −0.290901
\(831\) 0 0
\(832\) −6589.65 −0.274585
\(833\) 1822.78 0.0758170
\(834\) 0 0
\(835\) −17678.8 −0.732695
\(836\) −1722.21 −0.0712485
\(837\) 0 0
\(838\) 10117.9 0.417087
\(839\) −17464.7 −0.718650 −0.359325 0.933213i \(-0.616993\pi\)
−0.359325 + 0.933213i \(0.616993\pi\)
\(840\) 0 0
\(841\) 7409.22 0.303793
\(842\) 13593.3 0.556359
\(843\) 0 0
\(844\) −6234.06 −0.254248
\(845\) −10307.9 −0.419649
\(846\) 0 0
\(847\) 27659.3 1.12206
\(848\) −10410.7 −0.421587
\(849\) 0 0
\(850\) −650.373 −0.0262443
\(851\) 43122.9 1.73706
\(852\) 0 0
\(853\) 2746.47 0.110243 0.0551216 0.998480i \(-0.482445\pi\)
0.0551216 + 0.998480i \(0.482445\pi\)
\(854\) −3232.66 −0.129531
\(855\) 0 0
\(856\) 44128.7 1.76202
\(857\) 15656.8 0.624069 0.312034 0.950071i \(-0.398990\pi\)
0.312034 + 0.950071i \(0.398990\pi\)
\(858\) 0 0
\(859\) −34507.3 −1.37063 −0.685317 0.728245i \(-0.740336\pi\)
−0.685317 + 0.728245i \(0.740336\pi\)
\(860\) 2377.81 0.0942820
\(861\) 0 0
\(862\) −37093.3 −1.46567
\(863\) 26576.7 1.04830 0.524150 0.851626i \(-0.324383\pi\)
0.524150 + 0.851626i \(0.324383\pi\)
\(864\) 0 0
\(865\) 15719.4 0.617892
\(866\) −2231.13 −0.0875485
\(867\) 0 0
\(868\) 4241.58 0.165863
\(869\) 8985.73 0.350771
\(870\) 0 0
\(871\) 6180.07 0.240418
\(872\) 33020.9 1.28237
\(873\) 0 0
\(874\) −52536.8 −2.03328
\(875\) −2861.69 −0.110563
\(876\) 0 0
\(877\) −13399.5 −0.515927 −0.257963 0.966155i \(-0.583051\pi\)
−0.257963 + 0.966155i \(0.583051\pi\)
\(878\) 41725.2 1.60383
\(879\) 0 0
\(880\) −2865.71 −0.109776
\(881\) −44435.4 −1.69928 −0.849641 0.527362i \(-0.823181\pi\)
−0.849641 + 0.527362i \(0.823181\pi\)
\(882\) 0 0
\(883\) −11162.1 −0.425408 −0.212704 0.977117i \(-0.568227\pi\)
−0.212704 + 0.977117i \(0.568227\pi\)
\(884\) 154.408 0.00587477
\(885\) 0 0
\(886\) −15209.7 −0.576725
\(887\) 11591.2 0.438776 0.219388 0.975638i \(-0.429594\pi\)
0.219388 + 0.975638i \(0.429594\pi\)
\(888\) 0 0
\(889\) 55694.4 2.10116
\(890\) −8868.36 −0.334009
\(891\) 0 0
\(892\) −3203.96 −0.120265
\(893\) −70733.1 −2.65061
\(894\) 0 0
\(895\) −16495.3 −0.616063
\(896\) 22701.0 0.846415
\(897\) 0 0
\(898\) 43576.8 1.61935
\(899\) 25059.1 0.929663
\(900\) 0 0
\(901\) 2026.06 0.0749144
\(902\) −10358.1 −0.382359
\(903\) 0 0
\(904\) 14056.3 0.517154
\(905\) 9375.48 0.344366
\(906\) 0 0
\(907\) 8652.39 0.316756 0.158378 0.987379i \(-0.449374\pi\)
0.158378 + 0.987379i \(0.449374\pi\)
\(908\) 770.859 0.0281738
\(909\) 0 0
\(910\) −3443.16 −0.125428
\(911\) −36712.4 −1.33517 −0.667583 0.744536i \(-0.732671\pi\)
−0.667583 + 0.744536i \(0.732671\pi\)
\(912\) 0 0
\(913\) 5964.88 0.216220
\(914\) −19704.6 −0.713097
\(915\) 0 0
\(916\) 6238.43 0.225026
\(917\) −11471.3 −0.413104
\(918\) 0 0
\(919\) −42003.3 −1.50768 −0.753841 0.657057i \(-0.771801\pi\)
−0.753841 + 0.657057i \(0.771801\pi\)
\(920\) 20767.9 0.744235
\(921\) 0 0
\(922\) 10544.7 0.376651
\(923\) 10863.4 0.387402
\(924\) 0 0
\(925\) 6251.84 0.222226
\(926\) 14214.8 0.504457
\(927\) 0 0
\(928\) −10524.5 −0.372288
\(929\) −13112.6 −0.463090 −0.231545 0.972824i \(-0.574378\pi\)
−0.231545 + 0.972824i \(0.574378\pi\)
\(930\) 0 0
\(931\) 21346.9 0.751468
\(932\) −1619.61 −0.0569227
\(933\) 0 0
\(934\) −16601.4 −0.581600
\(935\) 557.703 0.0195068
\(936\) 0 0
\(937\) 49863.5 1.73849 0.869247 0.494378i \(-0.164604\pi\)
0.869247 + 0.494378i \(0.164604\pi\)
\(938\) −31427.6 −1.09397
\(939\) 0 0
\(940\) 3956.04 0.137268
\(941\) −9352.28 −0.323991 −0.161996 0.986791i \(-0.551793\pi\)
−0.161996 + 0.986791i \(0.551793\pi\)
\(942\) 0 0
\(943\) 62349.3 2.15310
\(944\) −21501.4 −0.741326
\(945\) 0 0
\(946\) 10333.4 0.355147
\(947\) −4011.39 −0.137648 −0.0688239 0.997629i \(-0.521925\pi\)
−0.0688239 + 0.997629i \(0.521925\pi\)
\(948\) 0 0
\(949\) 6518.94 0.222986
\(950\) −7616.64 −0.260123
\(951\) 0 0
\(952\) −5549.80 −0.188939
\(953\) −39128.6 −1.33001 −0.665005 0.746839i \(-0.731571\pi\)
−0.665005 + 0.746839i \(0.731571\pi\)
\(954\) 0 0
\(955\) −6808.10 −0.230686
\(956\) 158.929 0.00537670
\(957\) 0 0
\(958\) −513.770 −0.0173269
\(959\) −57761.9 −1.94497
\(960\) 0 0
\(961\) −10042.8 −0.337108
\(962\) 7522.15 0.252104
\(963\) 0 0
\(964\) −2284.22 −0.0763174
\(965\) 11171.0 0.372650
\(966\) 0 0
\(967\) 17635.0 0.586456 0.293228 0.956043i \(-0.405271\pi\)
0.293228 + 0.956043i \(0.405271\pi\)
\(968\) −29101.2 −0.966267
\(969\) 0 0
\(970\) −9236.47 −0.305737
\(971\) 26827.3 0.886642 0.443321 0.896363i \(-0.353800\pi\)
0.443321 + 0.896363i \(0.353800\pi\)
\(972\) 0 0
\(973\) 14625.3 0.481877
\(974\) 3382.90 0.111288
\(975\) 0 0
\(976\) 2825.01 0.0926498
\(977\) 8343.63 0.273221 0.136610 0.990625i \(-0.456379\pi\)
0.136610 + 0.990625i \(0.456379\pi\)
\(978\) 0 0
\(979\) 7604.72 0.248261
\(980\) −1193.91 −0.0389165
\(981\) 0 0
\(982\) 32245.8 1.04787
\(983\) 36890.1 1.19696 0.598479 0.801138i \(-0.295772\pi\)
0.598479 + 0.801138i \(0.295772\pi\)
\(984\) 0 0
\(985\) −1733.12 −0.0560628
\(986\) −4639.00 −0.149833
\(987\) 0 0
\(988\) 1808.30 0.0582283
\(989\) −62200.7 −1.99987
\(990\) 0 0
\(991\) −24259.3 −0.777619 −0.388810 0.921318i \(-0.627114\pi\)
−0.388810 + 0.921318i \(0.627114\pi\)
\(992\) −8293.99 −0.265458
\(993\) 0 0
\(994\) −55243.7 −1.76280
\(995\) 20993.8 0.668894
\(996\) 0 0
\(997\) 31700.2 1.00698 0.503488 0.864002i \(-0.332050\pi\)
0.503488 + 0.864002i \(0.332050\pi\)
\(998\) −8134.15 −0.257998
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.4.a.h.1.1 yes 3
3.2 odd 2 135.4.a.e.1.3 3
4.3 odd 2 2160.4.a.bq.1.3 3
5.2 odd 4 675.4.b.n.649.2 6
5.3 odd 4 675.4.b.n.649.5 6
5.4 even 2 675.4.a.p.1.3 3
9.2 odd 6 405.4.e.v.271.1 6
9.4 even 3 405.4.e.q.136.3 6
9.5 odd 6 405.4.e.v.136.1 6
9.7 even 3 405.4.e.q.271.3 6
12.11 even 2 2160.4.a.bi.1.3 3
15.2 even 4 675.4.b.m.649.5 6
15.8 even 4 675.4.b.m.649.2 6
15.14 odd 2 675.4.a.s.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.a.e.1.3 3 3.2 odd 2
135.4.a.h.1.1 yes 3 1.1 even 1 trivial
405.4.e.q.136.3 6 9.4 even 3
405.4.e.q.271.3 6 9.7 even 3
405.4.e.v.136.1 6 9.5 odd 6
405.4.e.v.271.1 6 9.2 odd 6
675.4.a.p.1.3 3 5.4 even 2
675.4.a.s.1.1 3 15.14 odd 2
675.4.b.m.649.2 6 15.8 even 4
675.4.b.m.649.5 6 15.2 even 4
675.4.b.n.649.2 6 5.2 odd 4
675.4.b.n.649.5 6 5.3 odd 4
2160.4.a.bi.1.3 3 12.11 even 2
2160.4.a.bq.1.3 3 4.3 odd 2