Properties

Label 135.4.a.e.1.1
Level $135$
Weight $4$
Character 135.1
Self dual yes
Analytic conductor $7.965$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,4,Mod(1,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 135.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.96525785077\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1772.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.654334\) of defining polynomial
Character \(\chi\) \(=\) 135.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.45876 q^{2} +21.7980 q^{4} -5.00000 q^{5} -11.8065 q^{7} -75.3201 q^{8} +27.2938 q^{10} +56.2376 q^{11} +34.5961 q^{13} +64.4489 q^{14} +236.770 q^{16} -39.2675 q^{17} -146.561 q^{19} -108.990 q^{20} -306.987 q^{22} +23.5777 q^{23} +25.0000 q^{25} -188.851 q^{26} -257.359 q^{28} -161.003 q^{29} -29.5465 q^{31} -689.908 q^{32} +214.352 q^{34} +59.0326 q^{35} -217.688 q^{37} +800.039 q^{38} +376.600 q^{40} -142.290 q^{41} -468.030 q^{43} +1225.87 q^{44} -128.705 q^{46} -394.318 q^{47} -203.606 q^{49} -136.469 q^{50} +754.126 q^{52} +134.780 q^{53} -281.188 q^{55} +889.268 q^{56} +878.875 q^{58} +131.195 q^{59} +259.801 q^{61} +161.287 q^{62} +1871.88 q^{64} -172.980 q^{65} +445.244 q^{67} -855.954 q^{68} -322.245 q^{70} -560.841 q^{71} -88.6681 q^{73} +1188.30 q^{74} -3194.74 q^{76} -663.970 q^{77} +450.342 q^{79} -1183.85 q^{80} +776.726 q^{82} -284.295 q^{83} +196.337 q^{85} +2554.86 q^{86} -4235.82 q^{88} -625.305 q^{89} -408.459 q^{91} +513.948 q^{92} +2152.49 q^{94} +732.804 q^{95} -193.261 q^{97} +1111.44 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 5 q^{2} + 17 q^{4} - 15 q^{5} - 4 q^{7} - 75 q^{8} + 25 q^{10} - 5 q^{11} + 7 q^{13} - 60 q^{14} + 161 q^{16} - 155 q^{17} - 50 q^{19} - 85 q^{20} - 229 q^{22} - 285 q^{23} + 75 q^{25} - 185 q^{26}+ \cdots + 305 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.45876 −1.92996 −0.964981 0.262320i \(-0.915513\pi\)
−0.964981 + 0.262320i \(0.915513\pi\)
\(3\) 0 0
\(4\) 21.7980 2.72475
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −11.8065 −0.637492 −0.318746 0.947840i \(-0.603262\pi\)
−0.318746 + 0.947840i \(0.603262\pi\)
\(8\) −75.3201 −3.32871
\(9\) 0 0
\(10\) 27.2938 0.863105
\(11\) 56.2376 1.54148 0.770740 0.637150i \(-0.219887\pi\)
0.770740 + 0.637150i \(0.219887\pi\)
\(12\) 0 0
\(13\) 34.5961 0.738094 0.369047 0.929411i \(-0.379684\pi\)
0.369047 + 0.929411i \(0.379684\pi\)
\(14\) 64.4489 1.23034
\(15\) 0 0
\(16\) 236.770 3.69953
\(17\) −39.2675 −0.560221 −0.280111 0.959968i \(-0.590371\pi\)
−0.280111 + 0.959968i \(0.590371\pi\)
\(18\) 0 0
\(19\) −146.561 −1.76965 −0.884825 0.465924i \(-0.845722\pi\)
−0.884825 + 0.465924i \(0.845722\pi\)
\(20\) −108.990 −1.21855
\(21\) 0 0
\(22\) −306.987 −2.97500
\(23\) 23.5777 0.213752 0.106876 0.994272i \(-0.465915\pi\)
0.106876 + 0.994272i \(0.465915\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −188.851 −1.42449
\(27\) 0 0
\(28\) −257.359 −1.73701
\(29\) −161.003 −1.03095 −0.515473 0.856906i \(-0.672384\pi\)
−0.515473 + 0.856906i \(0.672384\pi\)
\(30\) 0 0
\(31\) −29.5465 −0.171184 −0.0855921 0.996330i \(-0.527278\pi\)
−0.0855921 + 0.996330i \(0.527278\pi\)
\(32\) −689.908 −3.81124
\(33\) 0 0
\(34\) 214.352 1.08121
\(35\) 59.0326 0.285095
\(36\) 0 0
\(37\) −217.688 −0.967233 −0.483617 0.875280i \(-0.660677\pi\)
−0.483617 + 0.875280i \(0.660677\pi\)
\(38\) 800.039 3.41536
\(39\) 0 0
\(40\) 376.600 1.48864
\(41\) −142.290 −0.541999 −0.270999 0.962580i \(-0.587354\pi\)
−0.270999 + 0.962580i \(0.587354\pi\)
\(42\) 0 0
\(43\) −468.030 −1.65986 −0.829929 0.557869i \(-0.811619\pi\)
−0.829929 + 0.557869i \(0.811619\pi\)
\(44\) 1225.87 4.20015
\(45\) 0 0
\(46\) −128.705 −0.412533
\(47\) −394.318 −1.22377 −0.611886 0.790946i \(-0.709589\pi\)
−0.611886 + 0.790946i \(0.709589\pi\)
\(48\) 0 0
\(49\) −203.606 −0.593604
\(50\) −136.469 −0.385992
\(51\) 0 0
\(52\) 754.126 2.01112
\(53\) 134.780 0.349311 0.174655 0.984630i \(-0.444119\pi\)
0.174655 + 0.984630i \(0.444119\pi\)
\(54\) 0 0
\(55\) −281.188 −0.689371
\(56\) 889.268 2.12203
\(57\) 0 0
\(58\) 878.875 1.98969
\(59\) 131.195 0.289495 0.144747 0.989469i \(-0.453763\pi\)
0.144747 + 0.989469i \(0.453763\pi\)
\(60\) 0 0
\(61\) 259.801 0.545313 0.272657 0.962111i \(-0.412098\pi\)
0.272657 + 0.962111i \(0.412098\pi\)
\(62\) 161.287 0.330379
\(63\) 0 0
\(64\) 1871.88 3.65602
\(65\) −172.980 −0.330086
\(66\) 0 0
\(67\) 445.244 0.811869 0.405935 0.913902i \(-0.366946\pi\)
0.405935 + 0.913902i \(0.366946\pi\)
\(68\) −855.954 −1.52647
\(69\) 0 0
\(70\) −322.245 −0.550223
\(71\) −560.841 −0.937459 −0.468729 0.883342i \(-0.655288\pi\)
−0.468729 + 0.883342i \(0.655288\pi\)
\(72\) 0 0
\(73\) −88.6681 −0.142162 −0.0710809 0.997471i \(-0.522645\pi\)
−0.0710809 + 0.997471i \(0.522645\pi\)
\(74\) 1188.30 1.86672
\(75\) 0 0
\(76\) −3194.74 −4.82186
\(77\) −663.970 −0.982681
\(78\) 0 0
\(79\) 450.342 0.641360 0.320680 0.947188i \(-0.396089\pi\)
0.320680 + 0.947188i \(0.396089\pi\)
\(80\) −1183.85 −1.65448
\(81\) 0 0
\(82\) 776.726 1.04604
\(83\) −284.295 −0.375969 −0.187985 0.982172i \(-0.560196\pi\)
−0.187985 + 0.982172i \(0.560196\pi\)
\(84\) 0 0
\(85\) 196.337 0.250539
\(86\) 2554.86 3.20346
\(87\) 0 0
\(88\) −4235.82 −5.13114
\(89\) −625.305 −0.744744 −0.372372 0.928083i \(-0.621455\pi\)
−0.372372 + 0.928083i \(0.621455\pi\)
\(90\) 0 0
\(91\) −408.459 −0.470529
\(92\) 513.948 0.582421
\(93\) 0 0
\(94\) 2152.49 2.36183
\(95\) 732.804 0.791411
\(96\) 0 0
\(97\) −193.261 −0.202296 −0.101148 0.994871i \(-0.532252\pi\)
−0.101148 + 0.994871i \(0.532252\pi\)
\(98\) 1111.44 1.14563
\(99\) 0 0
\(100\) 544.951 0.544951
\(101\) −1374.86 −1.35449 −0.677245 0.735758i \(-0.736826\pi\)
−0.677245 + 0.735758i \(0.736826\pi\)
\(102\) 0 0
\(103\) 2029.60 1.94158 0.970789 0.239935i \(-0.0771260\pi\)
0.970789 + 0.239935i \(0.0771260\pi\)
\(104\) −2605.78 −2.45690
\(105\) 0 0
\(106\) −735.732 −0.674156
\(107\) 823.062 0.743630 0.371815 0.928307i \(-0.378736\pi\)
0.371815 + 0.928307i \(0.378736\pi\)
\(108\) 0 0
\(109\) −829.868 −0.729238 −0.364619 0.931157i \(-0.618801\pi\)
−0.364619 + 0.931157i \(0.618801\pi\)
\(110\) 1534.94 1.33046
\(111\) 0 0
\(112\) −2795.43 −2.35842
\(113\) 1503.37 1.25155 0.625773 0.780005i \(-0.284784\pi\)
0.625773 + 0.780005i \(0.284784\pi\)
\(114\) 0 0
\(115\) −117.889 −0.0955928
\(116\) −3509.54 −2.80908
\(117\) 0 0
\(118\) −716.164 −0.558714
\(119\) 463.612 0.357137
\(120\) 0 0
\(121\) 1831.67 1.37616
\(122\) −1418.19 −1.05243
\(123\) 0 0
\(124\) −644.056 −0.466435
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −576.348 −0.402698 −0.201349 0.979520i \(-0.564532\pi\)
−0.201349 + 0.979520i \(0.564532\pi\)
\(128\) −4698.89 −3.24474
\(129\) 0 0
\(130\) 944.257 0.637053
\(131\) −2390.04 −1.59403 −0.797017 0.603957i \(-0.793590\pi\)
−0.797017 + 0.603957i \(0.793590\pi\)
\(132\) 0 0
\(133\) 1730.37 1.12814
\(134\) −2430.48 −1.56688
\(135\) 0 0
\(136\) 2957.63 1.86481
\(137\) −1002.46 −0.625152 −0.312576 0.949893i \(-0.601192\pi\)
−0.312576 + 0.949893i \(0.601192\pi\)
\(138\) 0 0
\(139\) 131.817 0.0804356 0.0402178 0.999191i \(-0.487195\pi\)
0.0402178 + 0.999191i \(0.487195\pi\)
\(140\) 1286.79 0.776814
\(141\) 0 0
\(142\) 3061.50 1.80926
\(143\) 1945.60 1.13776
\(144\) 0 0
\(145\) 805.013 0.461053
\(146\) 484.017 0.274367
\(147\) 0 0
\(148\) −4745.16 −2.63547
\(149\) −1019.49 −0.560533 −0.280267 0.959922i \(-0.590423\pi\)
−0.280267 + 0.959922i \(0.590423\pi\)
\(150\) 0 0
\(151\) 2822.38 1.52107 0.760537 0.649295i \(-0.224936\pi\)
0.760537 + 0.649295i \(0.224936\pi\)
\(152\) 11039.0 5.89065
\(153\) 0 0
\(154\) 3624.45 1.89654
\(155\) 147.733 0.0765559
\(156\) 0 0
\(157\) 476.499 0.242222 0.121111 0.992639i \(-0.461354\pi\)
0.121111 + 0.992639i \(0.461354\pi\)
\(158\) −2458.31 −1.23780
\(159\) 0 0
\(160\) 3449.54 1.70444
\(161\) −278.371 −0.136265
\(162\) 0 0
\(163\) −2242.26 −1.07747 −0.538734 0.842476i \(-0.681097\pi\)
−0.538734 + 0.842476i \(0.681097\pi\)
\(164\) −3101.64 −1.47681
\(165\) 0 0
\(166\) 1551.90 0.725607
\(167\) −95.0390 −0.0440380 −0.0220190 0.999758i \(-0.507009\pi\)
−0.0220190 + 0.999758i \(0.507009\pi\)
\(168\) 0 0
\(169\) −1000.11 −0.455217
\(170\) −1071.76 −0.483530
\(171\) 0 0
\(172\) −10202.1 −4.52270
\(173\) 2133.76 0.937727 0.468864 0.883271i \(-0.344664\pi\)
0.468864 + 0.883271i \(0.344664\pi\)
\(174\) 0 0
\(175\) −295.163 −0.127498
\(176\) 13315.4 5.70275
\(177\) 0 0
\(178\) 3413.39 1.43733
\(179\) 1704.68 0.711808 0.355904 0.934523i \(-0.384173\pi\)
0.355904 + 0.934523i \(0.384173\pi\)
\(180\) 0 0
\(181\) −1360.98 −0.558902 −0.279451 0.960160i \(-0.590152\pi\)
−0.279451 + 0.960160i \(0.590152\pi\)
\(182\) 2229.68 0.908103
\(183\) 0 0
\(184\) −1775.88 −0.711518
\(185\) 1088.44 0.432560
\(186\) 0 0
\(187\) −2208.31 −0.863570
\(188\) −8595.36 −3.33447
\(189\) 0 0
\(190\) −4000.20 −1.52739
\(191\) 1096.84 0.415522 0.207761 0.978180i \(-0.433382\pi\)
0.207761 + 0.978180i \(0.433382\pi\)
\(192\) 0 0
\(193\) −2867.27 −1.06938 −0.534691 0.845048i \(-0.679572\pi\)
−0.534691 + 0.845048i \(0.679572\pi\)
\(194\) 1054.97 0.390424
\(195\) 0 0
\(196\) −4438.21 −1.61742
\(197\) −724.139 −0.261892 −0.130946 0.991389i \(-0.541801\pi\)
−0.130946 + 0.991389i \(0.541801\pi\)
\(198\) 0 0
\(199\) −1693.65 −0.603315 −0.301658 0.953416i \(-0.597540\pi\)
−0.301658 + 0.953416i \(0.597540\pi\)
\(200\) −1883.00 −0.665742
\(201\) 0 0
\(202\) 7505.02 2.61411
\(203\) 1900.88 0.657220
\(204\) 0 0
\(205\) 711.449 0.242389
\(206\) −11079.1 −3.74717
\(207\) 0 0
\(208\) 8191.30 2.73060
\(209\) −8242.22 −2.72788
\(210\) 0 0
\(211\) 947.452 0.309124 0.154562 0.987983i \(-0.450603\pi\)
0.154562 + 0.987983i \(0.450603\pi\)
\(212\) 2937.94 0.951785
\(213\) 0 0
\(214\) −4492.89 −1.43518
\(215\) 2340.15 0.742311
\(216\) 0 0
\(217\) 348.841 0.109129
\(218\) 4530.05 1.40740
\(219\) 0 0
\(220\) −6129.34 −1.87837
\(221\) −1358.50 −0.413496
\(222\) 0 0
\(223\) 111.866 0.0335923 0.0167961 0.999859i \(-0.494653\pi\)
0.0167961 + 0.999859i \(0.494653\pi\)
\(224\) 8145.41 2.42964
\(225\) 0 0
\(226\) −8206.51 −2.41544
\(227\) −1200.70 −0.351072 −0.175536 0.984473i \(-0.556166\pi\)
−0.175536 + 0.984473i \(0.556166\pi\)
\(228\) 0 0
\(229\) 822.380 0.237312 0.118656 0.992935i \(-0.462141\pi\)
0.118656 + 0.992935i \(0.462141\pi\)
\(230\) 643.525 0.184490
\(231\) 0 0
\(232\) 12126.7 3.43172
\(233\) 5329.21 1.49840 0.749202 0.662341i \(-0.230437\pi\)
0.749202 + 0.662341i \(0.230437\pi\)
\(234\) 0 0
\(235\) 1971.59 0.547287
\(236\) 2859.80 0.788802
\(237\) 0 0
\(238\) −2530.75 −0.689260
\(239\) 7085.61 1.91770 0.958850 0.283914i \(-0.0916331\pi\)
0.958850 + 0.283914i \(0.0916331\pi\)
\(240\) 0 0
\(241\) −6560.09 −1.75341 −0.876707 0.481025i \(-0.840265\pi\)
−0.876707 + 0.481025i \(0.840265\pi\)
\(242\) −9998.63 −2.65593
\(243\) 0 0
\(244\) 5663.15 1.48584
\(245\) 1018.03 0.265468
\(246\) 0 0
\(247\) −5070.42 −1.30617
\(248\) 2225.45 0.569822
\(249\) 0 0
\(250\) 682.345 0.172621
\(251\) −714.222 −0.179607 −0.0898033 0.995960i \(-0.528624\pi\)
−0.0898033 + 0.995960i \(0.528624\pi\)
\(252\) 0 0
\(253\) 1325.95 0.329494
\(254\) 3146.14 0.777191
\(255\) 0 0
\(256\) 10675.0 2.60621
\(257\) −4396.59 −1.06713 −0.533563 0.845760i \(-0.679147\pi\)
−0.533563 + 0.845760i \(0.679147\pi\)
\(258\) 0 0
\(259\) 2570.13 0.616604
\(260\) −3770.63 −0.899402
\(261\) 0 0
\(262\) 13046.6 3.07643
\(263\) 7550.31 1.77024 0.885118 0.465367i \(-0.154078\pi\)
0.885118 + 0.465367i \(0.154078\pi\)
\(264\) 0 0
\(265\) −673.900 −0.156216
\(266\) −9445.68 −2.17726
\(267\) 0 0
\(268\) 9705.45 2.21214
\(269\) 5536.86 1.25497 0.627487 0.778627i \(-0.284083\pi\)
0.627487 + 0.778627i \(0.284083\pi\)
\(270\) 0 0
\(271\) 3058.25 0.685518 0.342759 0.939423i \(-0.388639\pi\)
0.342759 + 0.939423i \(0.388639\pi\)
\(272\) −9297.36 −2.07256
\(273\) 0 0
\(274\) 5472.18 1.20652
\(275\) 1405.94 0.308296
\(276\) 0 0
\(277\) −4070.19 −0.882865 −0.441433 0.897294i \(-0.645530\pi\)
−0.441433 + 0.897294i \(0.645530\pi\)
\(278\) −719.556 −0.155238
\(279\) 0 0
\(280\) −4446.34 −0.948998
\(281\) −7446.19 −1.58079 −0.790396 0.612597i \(-0.790125\pi\)
−0.790396 + 0.612597i \(0.790125\pi\)
\(282\) 0 0
\(283\) −774.651 −0.162715 −0.0813573 0.996685i \(-0.525925\pi\)
−0.0813573 + 0.996685i \(0.525925\pi\)
\(284\) −12225.2 −2.55434
\(285\) 0 0
\(286\) −10620.6 −2.19583
\(287\) 1679.95 0.345520
\(288\) 0 0
\(289\) −3371.06 −0.686152
\(290\) −4394.37 −0.889815
\(291\) 0 0
\(292\) −1932.79 −0.387356
\(293\) −6749.23 −1.34571 −0.672857 0.739772i \(-0.734933\pi\)
−0.672857 + 0.739772i \(0.734933\pi\)
\(294\) 0 0
\(295\) −655.977 −0.129466
\(296\) 16396.3 3.21964
\(297\) 0 0
\(298\) 5565.12 1.08181
\(299\) 815.696 0.157769
\(300\) 0 0
\(301\) 5525.80 1.05815
\(302\) −15406.7 −2.93561
\(303\) 0 0
\(304\) −34701.2 −6.54687
\(305\) −1299.01 −0.243872
\(306\) 0 0
\(307\) −2204.39 −0.409808 −0.204904 0.978782i \(-0.565688\pi\)
−0.204904 + 0.978782i \(0.565688\pi\)
\(308\) −14473.2 −2.67756
\(309\) 0 0
\(310\) −806.436 −0.147750
\(311\) 6032.98 1.10000 0.549998 0.835166i \(-0.314628\pi\)
0.549998 + 0.835166i \(0.314628\pi\)
\(312\) 0 0
\(313\) −5772.96 −1.04251 −0.521257 0.853400i \(-0.674537\pi\)
−0.521257 + 0.853400i \(0.674537\pi\)
\(314\) −2601.09 −0.467479
\(315\) 0 0
\(316\) 9816.57 1.74755
\(317\) 3302.07 0.585057 0.292528 0.956257i \(-0.405503\pi\)
0.292528 + 0.956257i \(0.405503\pi\)
\(318\) 0 0
\(319\) −9054.41 −1.58918
\(320\) −9359.42 −1.63502
\(321\) 0 0
\(322\) 1519.56 0.262986
\(323\) 5755.07 0.991395
\(324\) 0 0
\(325\) 864.901 0.147619
\(326\) 12239.9 2.07947
\(327\) 0 0
\(328\) 10717.3 1.80416
\(329\) 4655.53 0.780144
\(330\) 0 0
\(331\) 8053.15 1.33728 0.668642 0.743584i \(-0.266876\pi\)
0.668642 + 0.743584i \(0.266876\pi\)
\(332\) −6197.08 −1.02442
\(333\) 0 0
\(334\) 518.795 0.0849916
\(335\) −2226.22 −0.363079
\(336\) 0 0
\(337\) 3460.33 0.559335 0.279668 0.960097i \(-0.409776\pi\)
0.279668 + 0.960097i \(0.409776\pi\)
\(338\) 5459.37 0.878552
\(339\) 0 0
\(340\) 4279.77 0.682656
\(341\) −1661.62 −0.263877
\(342\) 0 0
\(343\) 6453.51 1.01591
\(344\) 35252.0 5.52518
\(345\) 0 0
\(346\) −11647.7 −1.80978
\(347\) 9328.27 1.44314 0.721568 0.692344i \(-0.243422\pi\)
0.721568 + 0.692344i \(0.243422\pi\)
\(348\) 0 0
\(349\) 8899.42 1.36497 0.682486 0.730899i \(-0.260899\pi\)
0.682486 + 0.730899i \(0.260899\pi\)
\(350\) 1611.22 0.246067
\(351\) 0 0
\(352\) −38798.8 −5.87495
\(353\) −3722.45 −0.561264 −0.280632 0.959816i \(-0.590544\pi\)
−0.280632 + 0.959816i \(0.590544\pi\)
\(354\) 0 0
\(355\) 2804.21 0.419244
\(356\) −13630.4 −2.02924
\(357\) 0 0
\(358\) −9305.42 −1.37376
\(359\) −11029.3 −1.62145 −0.810727 0.585425i \(-0.800928\pi\)
−0.810727 + 0.585425i \(0.800928\pi\)
\(360\) 0 0
\(361\) 14621.1 2.13166
\(362\) 7429.29 1.07866
\(363\) 0 0
\(364\) −8903.60 −1.28208
\(365\) 443.340 0.0635767
\(366\) 0 0
\(367\) −4853.11 −0.690274 −0.345137 0.938552i \(-0.612167\pi\)
−0.345137 + 0.938552i \(0.612167\pi\)
\(368\) 5582.49 0.790781
\(369\) 0 0
\(370\) −5941.52 −0.834824
\(371\) −1591.28 −0.222683
\(372\) 0 0
\(373\) −12373.8 −1.71767 −0.858834 0.512254i \(-0.828811\pi\)
−0.858834 + 0.512254i \(0.828811\pi\)
\(374\) 12054.6 1.66666
\(375\) 0 0
\(376\) 29700.1 4.07358
\(377\) −5570.06 −0.760935
\(378\) 0 0
\(379\) 11150.6 1.51127 0.755634 0.654994i \(-0.227329\pi\)
0.755634 + 0.654994i \(0.227329\pi\)
\(380\) 15973.7 2.15640
\(381\) 0 0
\(382\) −5987.39 −0.801941
\(383\) −2199.59 −0.293457 −0.146728 0.989177i \(-0.546874\pi\)
−0.146728 + 0.989177i \(0.546874\pi\)
\(384\) 0 0
\(385\) 3319.85 0.439468
\(386\) 15651.7 2.06386
\(387\) 0 0
\(388\) −4212.72 −0.551207
\(389\) −9218.92 −1.20159 −0.600794 0.799404i \(-0.705149\pi\)
−0.600794 + 0.799404i \(0.705149\pi\)
\(390\) 0 0
\(391\) −925.838 −0.119748
\(392\) 15335.6 1.97594
\(393\) 0 0
\(394\) 3952.90 0.505442
\(395\) −2251.71 −0.286825
\(396\) 0 0
\(397\) 1119.36 0.141509 0.0707544 0.997494i \(-0.477459\pi\)
0.0707544 + 0.997494i \(0.477459\pi\)
\(398\) 9245.23 1.16438
\(399\) 0 0
\(400\) 5919.25 0.739906
\(401\) −12296.9 −1.53137 −0.765683 0.643218i \(-0.777599\pi\)
−0.765683 + 0.643218i \(0.777599\pi\)
\(402\) 0 0
\(403\) −1022.19 −0.126350
\(404\) −29969.2 −3.69065
\(405\) 0 0
\(406\) −10376.4 −1.26841
\(407\) −12242.2 −1.49097
\(408\) 0 0
\(409\) 2500.22 0.302269 0.151134 0.988513i \(-0.451707\pi\)
0.151134 + 0.988513i \(0.451707\pi\)
\(410\) −3883.63 −0.467802
\(411\) 0 0
\(412\) 44241.3 5.29032
\(413\) −1548.96 −0.184551
\(414\) 0 0
\(415\) 1421.48 0.168139
\(416\) −23868.1 −2.81305
\(417\) 0 0
\(418\) 44992.3 5.26470
\(419\) 8332.97 0.971581 0.485790 0.874075i \(-0.338532\pi\)
0.485790 + 0.874075i \(0.338532\pi\)
\(420\) 0 0
\(421\) 11374.2 1.31673 0.658367 0.752697i \(-0.271248\pi\)
0.658367 + 0.752697i \(0.271248\pi\)
\(422\) −5171.91 −0.596598
\(423\) 0 0
\(424\) −10151.6 −1.16275
\(425\) −981.687 −0.112044
\(426\) 0 0
\(427\) −3067.35 −0.347633
\(428\) 17941.1 2.02621
\(429\) 0 0
\(430\) −12774.3 −1.43263
\(431\) 10030.2 1.12097 0.560484 0.828165i \(-0.310615\pi\)
0.560484 + 0.828165i \(0.310615\pi\)
\(432\) 0 0
\(433\) 7609.38 0.844535 0.422267 0.906471i \(-0.361234\pi\)
0.422267 + 0.906471i \(0.361234\pi\)
\(434\) −1904.24 −0.210614
\(435\) 0 0
\(436\) −18089.5 −1.98699
\(437\) −3455.57 −0.378266
\(438\) 0 0
\(439\) −12370.5 −1.34490 −0.672450 0.740143i \(-0.734758\pi\)
−0.672450 + 0.740143i \(0.734758\pi\)
\(440\) 21179.1 2.29471
\(441\) 0 0
\(442\) 7415.72 0.798032
\(443\) 12084.4 1.29605 0.648023 0.761621i \(-0.275596\pi\)
0.648023 + 0.761621i \(0.275596\pi\)
\(444\) 0 0
\(445\) 3126.53 0.333060
\(446\) −610.647 −0.0648318
\(447\) 0 0
\(448\) −22100.4 −2.33068
\(449\) 625.550 0.0657495 0.0328747 0.999459i \(-0.489534\pi\)
0.0328747 + 0.999459i \(0.489534\pi\)
\(450\) 0 0
\(451\) −8002.04 −0.835480
\(452\) 32770.4 3.41016
\(453\) 0 0
\(454\) 6554.33 0.677555
\(455\) 2042.29 0.210427
\(456\) 0 0
\(457\) 1811.22 0.185395 0.0926974 0.995694i \(-0.470451\pi\)
0.0926974 + 0.995694i \(0.470451\pi\)
\(458\) −4489.17 −0.458003
\(459\) 0 0
\(460\) −2569.74 −0.260467
\(461\) 11625.0 1.17447 0.587233 0.809418i \(-0.300217\pi\)
0.587233 + 0.809418i \(0.300217\pi\)
\(462\) 0 0
\(463\) 7291.88 0.731928 0.365964 0.930629i \(-0.380739\pi\)
0.365964 + 0.930629i \(0.380739\pi\)
\(464\) −38120.6 −3.81402
\(465\) 0 0
\(466\) −29090.9 −2.89186
\(467\) 11637.6 1.15316 0.576579 0.817042i \(-0.304387\pi\)
0.576579 + 0.817042i \(0.304387\pi\)
\(468\) 0 0
\(469\) −5256.78 −0.517560
\(470\) −10762.4 −1.05624
\(471\) 0 0
\(472\) −9881.66 −0.963644
\(473\) −26320.9 −2.55864
\(474\) 0 0
\(475\) −3664.02 −0.353930
\(476\) 10105.8 0.973109
\(477\) 0 0
\(478\) −38678.6 −3.70109
\(479\) −12041.4 −1.14862 −0.574309 0.818639i \(-0.694729\pi\)
−0.574309 + 0.818639i \(0.694729\pi\)
\(480\) 0 0
\(481\) −7531.14 −0.713909
\(482\) 35810.0 3.38402
\(483\) 0 0
\(484\) 39926.7 3.74969
\(485\) 966.307 0.0904695
\(486\) 0 0
\(487\) 7037.81 0.654853 0.327427 0.944877i \(-0.393819\pi\)
0.327427 + 0.944877i \(0.393819\pi\)
\(488\) −19568.2 −1.81519
\(489\) 0 0
\(490\) −5557.18 −0.512343
\(491\) −6603.07 −0.606909 −0.303454 0.952846i \(-0.598140\pi\)
−0.303454 + 0.952846i \(0.598140\pi\)
\(492\) 0 0
\(493\) 6322.17 0.577558
\(494\) 27678.2 2.52085
\(495\) 0 0
\(496\) −6995.72 −0.633301
\(497\) 6621.58 0.597623
\(498\) 0 0
\(499\) −36.7047 −0.00329284 −0.00164642 0.999999i \(-0.500524\pi\)
−0.00164642 + 0.999999i \(0.500524\pi\)
\(500\) −2724.75 −0.243709
\(501\) 0 0
\(502\) 3898.76 0.346634
\(503\) −21242.5 −1.88302 −0.941508 0.336990i \(-0.890591\pi\)
−0.941508 + 0.336990i \(0.890591\pi\)
\(504\) 0 0
\(505\) 6874.29 0.605746
\(506\) −7238.06 −0.635911
\(507\) 0 0
\(508\) −12563.2 −1.09725
\(509\) 11280.4 0.982309 0.491155 0.871072i \(-0.336575\pi\)
0.491155 + 0.871072i \(0.336575\pi\)
\(510\) 0 0
\(511\) 1046.86 0.0906270
\(512\) −20681.3 −1.78514
\(513\) 0 0
\(514\) 23999.9 2.05951
\(515\) −10148.0 −0.868300
\(516\) 0 0
\(517\) −22175.5 −1.88642
\(518\) −14029.7 −1.19002
\(519\) 0 0
\(520\) 13028.9 1.09876
\(521\) 10239.3 0.861023 0.430511 0.902585i \(-0.358333\pi\)
0.430511 + 0.902585i \(0.358333\pi\)
\(522\) 0 0
\(523\) −2822.00 −0.235942 −0.117971 0.993017i \(-0.537639\pi\)
−0.117971 + 0.993017i \(0.537639\pi\)
\(524\) −52098.1 −4.34335
\(525\) 0 0
\(526\) −41215.3 −3.41649
\(527\) 1160.22 0.0959010
\(528\) 0 0
\(529\) −11611.1 −0.954310
\(530\) 3678.66 0.301492
\(531\) 0 0
\(532\) 37718.7 3.07390
\(533\) −4922.67 −0.400046
\(534\) 0 0
\(535\) −4115.31 −0.332561
\(536\) −33535.8 −2.70248
\(537\) 0 0
\(538\) −30224.4 −2.42205
\(539\) −11450.3 −0.915028
\(540\) 0 0
\(541\) −9409.63 −0.747785 −0.373892 0.927472i \(-0.621977\pi\)
−0.373892 + 0.927472i \(0.621977\pi\)
\(542\) −16694.2 −1.32302
\(543\) 0 0
\(544\) 27091.0 2.13514
\(545\) 4149.34 0.326125
\(546\) 0 0
\(547\) −3836.43 −0.299879 −0.149940 0.988695i \(-0.547908\pi\)
−0.149940 + 0.988695i \(0.547908\pi\)
\(548\) −21851.6 −1.70339
\(549\) 0 0
\(550\) −7674.69 −0.594999
\(551\) 23596.7 1.82441
\(552\) 0 0
\(553\) −5316.97 −0.408862
\(554\) 22218.2 1.70390
\(555\) 0 0
\(556\) 2873.35 0.219167
\(557\) −6145.92 −0.467524 −0.233762 0.972294i \(-0.575104\pi\)
−0.233762 + 0.972294i \(0.575104\pi\)
\(558\) 0 0
\(559\) −16192.0 −1.22513
\(560\) 13977.1 1.05472
\(561\) 0 0
\(562\) 40646.9 3.05087
\(563\) −13247.9 −0.991707 −0.495854 0.868406i \(-0.665145\pi\)
−0.495854 + 0.868406i \(0.665145\pi\)
\(564\) 0 0
\(565\) −7516.83 −0.559709
\(566\) 4228.63 0.314033
\(567\) 0 0
\(568\) 42242.6 3.12053
\(569\) −6544.89 −0.482208 −0.241104 0.970499i \(-0.577509\pi\)
−0.241104 + 0.970499i \(0.577509\pi\)
\(570\) 0 0
\(571\) 20362.1 1.49234 0.746170 0.665755i \(-0.231890\pi\)
0.746170 + 0.665755i \(0.231890\pi\)
\(572\) 42410.2 3.10011
\(573\) 0 0
\(574\) −9170.43 −0.666840
\(575\) 589.443 0.0427504
\(576\) 0 0
\(577\) −26247.4 −1.89375 −0.946876 0.321600i \(-0.895779\pi\)
−0.946876 + 0.321600i \(0.895779\pi\)
\(578\) 18401.8 1.32425
\(579\) 0 0
\(580\) 17547.7 1.25626
\(581\) 3356.54 0.239677
\(582\) 0 0
\(583\) 7579.71 0.538455
\(584\) 6678.49 0.473215
\(585\) 0 0
\(586\) 36842.4 2.59718
\(587\) 14098.2 0.991301 0.495650 0.868522i \(-0.334930\pi\)
0.495650 + 0.868522i \(0.334930\pi\)
\(588\) 0 0
\(589\) 4330.36 0.302936
\(590\) 3580.82 0.249865
\(591\) 0 0
\(592\) −51541.9 −3.57831
\(593\) −3476.71 −0.240761 −0.120380 0.992728i \(-0.538411\pi\)
−0.120380 + 0.992728i \(0.538411\pi\)
\(594\) 0 0
\(595\) −2318.06 −0.159716
\(596\) −22222.8 −1.52732
\(597\) 0 0
\(598\) −4452.69 −0.304488
\(599\) 16179.0 1.10360 0.551798 0.833978i \(-0.313942\pi\)
0.551798 + 0.833978i \(0.313942\pi\)
\(600\) 0 0
\(601\) 8112.16 0.550586 0.275293 0.961360i \(-0.411225\pi\)
0.275293 + 0.961360i \(0.411225\pi\)
\(602\) −30164.0 −2.04218
\(603\) 0 0
\(604\) 61522.3 4.14455
\(605\) −9158.34 −0.615437
\(606\) 0 0
\(607\) 21139.2 1.41353 0.706765 0.707449i \(-0.250154\pi\)
0.706765 + 0.707449i \(0.250154\pi\)
\(608\) 101113. 6.74456
\(609\) 0 0
\(610\) 7090.95 0.470663
\(611\) −13641.9 −0.903258
\(612\) 0 0
\(613\) −11440.3 −0.753785 −0.376892 0.926257i \(-0.623007\pi\)
−0.376892 + 0.926257i \(0.623007\pi\)
\(614\) 12033.2 0.790915
\(615\) 0 0
\(616\) 50010.3 3.27106
\(617\) −21566.2 −1.40717 −0.703584 0.710612i \(-0.748418\pi\)
−0.703584 + 0.710612i \(0.748418\pi\)
\(618\) 0 0
\(619\) −15198.3 −0.986866 −0.493433 0.869784i \(-0.664258\pi\)
−0.493433 + 0.869784i \(0.664258\pi\)
\(620\) 3220.28 0.208596
\(621\) 0 0
\(622\) −32932.6 −2.12295
\(623\) 7382.68 0.474769
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 31513.2 2.01201
\(627\) 0 0
\(628\) 10386.7 0.659994
\(629\) 8548.05 0.541865
\(630\) 0 0
\(631\) −4929.66 −0.311009 −0.155504 0.987835i \(-0.549700\pi\)
−0.155504 + 0.987835i \(0.549700\pi\)
\(632\) −33919.8 −2.13490
\(633\) 0 0
\(634\) −18025.2 −1.12914
\(635\) 2881.74 0.180092
\(636\) 0 0
\(637\) −7043.97 −0.438135
\(638\) 49425.8 3.06706
\(639\) 0 0
\(640\) 23494.4 1.45109
\(641\) 7535.73 0.464342 0.232171 0.972675i \(-0.425417\pi\)
0.232171 + 0.972675i \(0.425417\pi\)
\(642\) 0 0
\(643\) −15997.2 −0.981135 −0.490568 0.871403i \(-0.663211\pi\)
−0.490568 + 0.871403i \(0.663211\pi\)
\(644\) −6067.93 −0.371289
\(645\) 0 0
\(646\) −31415.5 −1.91336
\(647\) −6020.46 −0.365825 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(648\) 0 0
\(649\) 7378.12 0.446250
\(650\) −4721.29 −0.284899
\(651\) 0 0
\(652\) −48876.8 −2.93583
\(653\) −10948.7 −0.656133 −0.328067 0.944655i \(-0.606397\pi\)
−0.328067 + 0.944655i \(0.606397\pi\)
\(654\) 0 0
\(655\) 11950.2 0.712874
\(656\) −33690.0 −2.00514
\(657\) 0 0
\(658\) −25413.4 −1.50565
\(659\) 12338.3 0.729334 0.364667 0.931138i \(-0.381183\pi\)
0.364667 + 0.931138i \(0.381183\pi\)
\(660\) 0 0
\(661\) 20016.8 1.17786 0.588928 0.808186i \(-0.299550\pi\)
0.588928 + 0.808186i \(0.299550\pi\)
\(662\) −43960.2 −2.58091
\(663\) 0 0
\(664\) 21413.1 1.25149
\(665\) −8651.86 −0.504518
\(666\) 0 0
\(667\) −3796.08 −0.220367
\(668\) −2071.66 −0.119993
\(669\) 0 0
\(670\) 12152.4 0.700729
\(671\) 14610.6 0.840589
\(672\) 0 0
\(673\) −8419.22 −0.482225 −0.241112 0.970497i \(-0.577512\pi\)
−0.241112 + 0.970497i \(0.577512\pi\)
\(674\) −18889.1 −1.07950
\(675\) 0 0
\(676\) −21800.5 −1.24036
\(677\) 25707.1 1.45938 0.729692 0.683776i \(-0.239663\pi\)
0.729692 + 0.683776i \(0.239663\pi\)
\(678\) 0 0
\(679\) 2281.74 0.128962
\(680\) −14788.2 −0.833970
\(681\) 0 0
\(682\) 9070.41 0.509272
\(683\) −19624.3 −1.09942 −0.549708 0.835357i \(-0.685261\pi\)
−0.549708 + 0.835357i \(0.685261\pi\)
\(684\) 0 0
\(685\) 5012.30 0.279577
\(686\) −35228.2 −1.96067
\(687\) 0 0
\(688\) −110815. −6.14069
\(689\) 4662.86 0.257824
\(690\) 0 0
\(691\) 7273.23 0.400415 0.200207 0.979754i \(-0.435838\pi\)
0.200207 + 0.979754i \(0.435838\pi\)
\(692\) 46511.8 2.55508
\(693\) 0 0
\(694\) −50920.8 −2.78520
\(695\) −659.084 −0.0359719
\(696\) 0 0
\(697\) 5587.37 0.303639
\(698\) −48579.8 −2.63434
\(699\) 0 0
\(700\) −6433.97 −0.347402
\(701\) 17644.3 0.950664 0.475332 0.879807i \(-0.342328\pi\)
0.475332 + 0.879807i \(0.342328\pi\)
\(702\) 0 0
\(703\) 31904.5 1.71166
\(704\) 105270. 5.63568
\(705\) 0 0
\(706\) 20320.0 1.08322
\(707\) 16232.3 0.863476
\(708\) 0 0
\(709\) 24304.4 1.28741 0.643703 0.765276i \(-0.277397\pi\)
0.643703 + 0.765276i \(0.277397\pi\)
\(710\) −15307.5 −0.809126
\(711\) 0 0
\(712\) 47098.1 2.47904
\(713\) −696.639 −0.0365909
\(714\) 0 0
\(715\) −9728.00 −0.508820
\(716\) 37158.6 1.93950
\(717\) 0 0
\(718\) 60206.0 3.12934
\(719\) −15170.2 −0.786863 −0.393431 0.919354i \(-0.628712\pi\)
−0.393431 + 0.919354i \(0.628712\pi\)
\(720\) 0 0
\(721\) −23962.5 −1.23774
\(722\) −79812.8 −4.11402
\(723\) 0 0
\(724\) −29666.8 −1.52287
\(725\) −4025.07 −0.206189
\(726\) 0 0
\(727\) −17487.0 −0.892102 −0.446051 0.895008i \(-0.647170\pi\)
−0.446051 + 0.895008i \(0.647170\pi\)
\(728\) 30765.2 1.56625
\(729\) 0 0
\(730\) −2420.09 −0.122701
\(731\) 18378.4 0.929888
\(732\) 0 0
\(733\) 18698.0 0.942194 0.471097 0.882082i \(-0.343858\pi\)
0.471097 + 0.882082i \(0.343858\pi\)
\(734\) 26492.0 1.33220
\(735\) 0 0
\(736\) −16266.5 −0.814660
\(737\) 25039.5 1.25148
\(738\) 0 0
\(739\) −35250.3 −1.75467 −0.877336 0.479876i \(-0.840682\pi\)
−0.877336 + 0.479876i \(0.840682\pi\)
\(740\) 23725.8 1.17862
\(741\) 0 0
\(742\) 8686.43 0.429769
\(743\) −11133.6 −0.549731 −0.274866 0.961483i \(-0.588633\pi\)
−0.274866 + 0.961483i \(0.588633\pi\)
\(744\) 0 0
\(745\) 5097.43 0.250678
\(746\) 67545.5 3.31503
\(747\) 0 0
\(748\) −48136.8 −2.35301
\(749\) −9717.49 −0.474058
\(750\) 0 0
\(751\) 17197.6 0.835619 0.417809 0.908535i \(-0.362798\pi\)
0.417809 + 0.908535i \(0.362798\pi\)
\(752\) −93362.7 −4.52738
\(753\) 0 0
\(754\) 30405.6 1.46858
\(755\) −14111.9 −0.680245
\(756\) 0 0
\(757\) 804.647 0.0386333 0.0193166 0.999813i \(-0.493851\pi\)
0.0193166 + 0.999813i \(0.493851\pi\)
\(758\) −60868.7 −2.91669
\(759\) 0 0
\(760\) −55194.8 −2.63438
\(761\) −26208.9 −1.24845 −0.624225 0.781245i \(-0.714585\pi\)
−0.624225 + 0.781245i \(0.714585\pi\)
\(762\) 0 0
\(763\) 9797.85 0.464883
\(764\) 23909.0 1.13219
\(765\) 0 0
\(766\) 12007.0 0.566360
\(767\) 4538.85 0.213674
\(768\) 0 0
\(769\) 36544.2 1.71367 0.856837 0.515587i \(-0.172426\pi\)
0.856837 + 0.515587i \(0.172426\pi\)
\(770\) −18122.3 −0.848157
\(771\) 0 0
\(772\) −62500.8 −2.91380
\(773\) 42387.4 1.97228 0.986139 0.165923i \(-0.0530603\pi\)
0.986139 + 0.165923i \(0.0530603\pi\)
\(774\) 0 0
\(775\) −738.663 −0.0342368
\(776\) 14556.5 0.673385
\(777\) 0 0
\(778\) 50323.8 2.31902
\(779\) 20854.1 0.959148
\(780\) 0 0
\(781\) −31540.4 −1.44507
\(782\) 5053.92 0.231110
\(783\) 0 0
\(784\) −48207.8 −2.19606
\(785\) −2382.50 −0.108325
\(786\) 0 0
\(787\) 26849.4 1.21611 0.608054 0.793896i \(-0.291950\pi\)
0.608054 + 0.793896i \(0.291950\pi\)
\(788\) −15784.8 −0.713592
\(789\) 0 0
\(790\) 12291.5 0.553561
\(791\) −17749.5 −0.797851
\(792\) 0 0
\(793\) 8988.09 0.402492
\(794\) −6110.31 −0.273107
\(795\) 0 0
\(796\) −36918.3 −1.64389
\(797\) 31307.0 1.39141 0.695704 0.718328i \(-0.255092\pi\)
0.695704 + 0.718328i \(0.255092\pi\)
\(798\) 0 0
\(799\) 15483.9 0.685583
\(800\) −17247.7 −0.762248
\(801\) 0 0
\(802\) 67125.7 2.95548
\(803\) −4986.48 −0.219140
\(804\) 0 0
\(805\) 1391.85 0.0609396
\(806\) 5579.90 0.243851
\(807\) 0 0
\(808\) 103554. 4.50870
\(809\) 10011.9 0.435106 0.217553 0.976049i \(-0.430193\pi\)
0.217553 + 0.976049i \(0.430193\pi\)
\(810\) 0 0
\(811\) 4603.68 0.199331 0.0996653 0.995021i \(-0.468223\pi\)
0.0996653 + 0.995021i \(0.468223\pi\)
\(812\) 41435.5 1.79076
\(813\) 0 0
\(814\) 66827.4 2.87752
\(815\) 11211.3 0.481858
\(816\) 0 0
\(817\) 68594.8 2.93737
\(818\) −13648.1 −0.583367
\(819\) 0 0
\(820\) 15508.2 0.660451
\(821\) 35429.0 1.50607 0.753033 0.657983i \(-0.228590\pi\)
0.753033 + 0.657983i \(0.228590\pi\)
\(822\) 0 0
\(823\) −28297.6 −1.19853 −0.599265 0.800550i \(-0.704541\pi\)
−0.599265 + 0.800550i \(0.704541\pi\)
\(824\) −152870. −6.46295
\(825\) 0 0
\(826\) 8455.40 0.356176
\(827\) −41059.9 −1.72647 −0.863236 0.504800i \(-0.831566\pi\)
−0.863236 + 0.504800i \(0.831566\pi\)
\(828\) 0 0
\(829\) 9030.68 0.378345 0.189173 0.981944i \(-0.439419\pi\)
0.189173 + 0.981944i \(0.439419\pi\)
\(830\) −7759.49 −0.324501
\(831\) 0 0
\(832\) 64759.8 2.69849
\(833\) 7995.10 0.332550
\(834\) 0 0
\(835\) 475.195 0.0196944
\(836\) −179664. −7.43280
\(837\) 0 0
\(838\) −45487.7 −1.87511
\(839\) −5227.81 −0.215118 −0.107559 0.994199i \(-0.534303\pi\)
−0.107559 + 0.994199i \(0.534303\pi\)
\(840\) 0 0
\(841\) 1532.87 0.0628508
\(842\) −62089.0 −2.54125
\(843\) 0 0
\(844\) 20652.6 0.842288
\(845\) 5000.56 0.203579
\(846\) 0 0
\(847\) −21625.6 −0.877290
\(848\) 31911.8 1.29228
\(849\) 0 0
\(850\) 5358.79 0.216241
\(851\) −5132.58 −0.206748
\(852\) 0 0
\(853\) −30002.9 −1.20432 −0.602158 0.798377i \(-0.705692\pi\)
−0.602158 + 0.798377i \(0.705692\pi\)
\(854\) 16743.9 0.670918
\(855\) 0 0
\(856\) −61993.1 −2.47533
\(857\) −15671.7 −0.624662 −0.312331 0.949973i \(-0.601110\pi\)
−0.312331 + 0.949973i \(0.601110\pi\)
\(858\) 0 0
\(859\) −31306.8 −1.24351 −0.621755 0.783212i \(-0.713580\pi\)
−0.621755 + 0.783212i \(0.713580\pi\)
\(860\) 51010.6 2.02261
\(861\) 0 0
\(862\) −54752.3 −2.16342
\(863\) −13212.3 −0.521150 −0.260575 0.965454i \(-0.583912\pi\)
−0.260575 + 0.965454i \(0.583912\pi\)
\(864\) 0 0
\(865\) −10668.8 −0.419364
\(866\) −41537.8 −1.62992
\(867\) 0 0
\(868\) 7604.05 0.297348
\(869\) 25326.2 0.988643
\(870\) 0 0
\(871\) 15403.7 0.599236
\(872\) 62505.7 2.42742
\(873\) 0 0
\(874\) 18863.1 0.730039
\(875\) 1475.81 0.0570190
\(876\) 0 0
\(877\) 15440.6 0.594519 0.297260 0.954797i \(-0.403927\pi\)
0.297260 + 0.954797i \(0.403927\pi\)
\(878\) 67527.5 2.59561
\(879\) 0 0
\(880\) −66576.8 −2.55035
\(881\) 27563.1 1.05406 0.527029 0.849847i \(-0.323306\pi\)
0.527029 + 0.849847i \(0.323306\pi\)
\(882\) 0 0
\(883\) 19897.7 0.758337 0.379169 0.925328i \(-0.376210\pi\)
0.379169 + 0.925328i \(0.376210\pi\)
\(884\) −29612.6 −1.12667
\(885\) 0 0
\(886\) −65965.9 −2.50132
\(887\) −40061.6 −1.51650 −0.758251 0.651963i \(-0.773946\pi\)
−0.758251 + 0.651963i \(0.773946\pi\)
\(888\) 0 0
\(889\) 6804.66 0.256716
\(890\) −17067.0 −0.642793
\(891\) 0 0
\(892\) 2438.45 0.0915306
\(893\) 57791.6 2.16565
\(894\) 0 0
\(895\) −8523.39 −0.318330
\(896\) 55477.5 2.06850
\(897\) 0 0
\(898\) −3414.72 −0.126894
\(899\) 4757.07 0.176482
\(900\) 0 0
\(901\) −5292.47 −0.195691
\(902\) 43681.2 1.61244
\(903\) 0 0
\(904\) −113234. −4.16603
\(905\) 6804.92 0.249948
\(906\) 0 0
\(907\) 27839.6 1.01918 0.509591 0.860417i \(-0.329797\pi\)
0.509591 + 0.860417i \(0.329797\pi\)
\(908\) −26172.9 −0.956584
\(909\) 0 0
\(910\) −11148.4 −0.406116
\(911\) −22251.0 −0.809232 −0.404616 0.914487i \(-0.632595\pi\)
−0.404616 + 0.914487i \(0.632595\pi\)
\(912\) 0 0
\(913\) −15988.1 −0.579549
\(914\) −9887.02 −0.357805
\(915\) 0 0
\(916\) 17926.3 0.646616
\(917\) 28218.0 1.01618
\(918\) 0 0
\(919\) 29480.5 1.05819 0.529093 0.848564i \(-0.322532\pi\)
0.529093 + 0.848564i \(0.322532\pi\)
\(920\) 8879.38 0.318200
\(921\) 0 0
\(922\) −63457.9 −2.26668
\(923\) −19402.9 −0.691933
\(924\) 0 0
\(925\) −5442.19 −0.193447
\(926\) −39804.6 −1.41259
\(927\) 0 0
\(928\) 111077. 3.92919
\(929\) −42351.8 −1.49571 −0.747857 0.663860i \(-0.768917\pi\)
−0.747857 + 0.663860i \(0.768917\pi\)
\(930\) 0 0
\(931\) 29840.7 1.05047
\(932\) 116166. 4.08278
\(933\) 0 0
\(934\) −63526.9 −2.22555
\(935\) 11041.5 0.386200
\(936\) 0 0
\(937\) −35930.6 −1.25272 −0.626362 0.779532i \(-0.715457\pi\)
−0.626362 + 0.779532i \(0.715457\pi\)
\(938\) 28695.5 0.998872
\(939\) 0 0
\(940\) 42976.8 1.49122
\(941\) 21564.0 0.747041 0.373521 0.927622i \(-0.378151\pi\)
0.373521 + 0.927622i \(0.378151\pi\)
\(942\) 0 0
\(943\) −3354.87 −0.115853
\(944\) 31063.1 1.07099
\(945\) 0 0
\(946\) 143679. 4.93807
\(947\) 16632.4 0.570729 0.285364 0.958419i \(-0.407885\pi\)
0.285364 + 0.958419i \(0.407885\pi\)
\(948\) 0 0
\(949\) −3067.57 −0.104929
\(950\) 20001.0 0.683071
\(951\) 0 0
\(952\) −34919.3 −1.18880
\(953\) −39557.8 −1.34460 −0.672299 0.740279i \(-0.734693\pi\)
−0.672299 + 0.740279i \(0.734693\pi\)
\(954\) 0 0
\(955\) −5484.21 −0.185827
\(956\) 154452. 5.22526
\(957\) 0 0
\(958\) 65731.4 2.21679
\(959\) 11835.5 0.398529
\(960\) 0 0
\(961\) −28918.0 −0.970696
\(962\) 41110.6 1.37782
\(963\) 0 0
\(964\) −142997. −4.77762
\(965\) 14336.3 0.478242
\(966\) 0 0
\(967\) −10666.2 −0.354707 −0.177354 0.984147i \(-0.556754\pi\)
−0.177354 + 0.984147i \(0.556754\pi\)
\(968\) −137961. −4.58083
\(969\) 0 0
\(970\) −5274.83 −0.174603
\(971\) −31821.8 −1.05171 −0.525855 0.850574i \(-0.676254\pi\)
−0.525855 + 0.850574i \(0.676254\pi\)
\(972\) 0 0
\(973\) −1556.30 −0.0512771
\(974\) −38417.7 −1.26384
\(975\) 0 0
\(976\) 61513.0 2.01740
\(977\) −11126.5 −0.364347 −0.182173 0.983266i \(-0.558313\pi\)
−0.182173 + 0.983266i \(0.558313\pi\)
\(978\) 0 0
\(979\) −35165.7 −1.14801
\(980\) 22191.1 0.723334
\(981\) 0 0
\(982\) 36044.5 1.17131
\(983\) 991.225 0.0321619 0.0160810 0.999871i \(-0.494881\pi\)
0.0160810 + 0.999871i \(0.494881\pi\)
\(984\) 0 0
\(985\) 3620.69 0.117122
\(986\) −34511.2 −1.11467
\(987\) 0 0
\(988\) −110525. −3.55898
\(989\) −11035.1 −0.354798
\(990\) 0 0
\(991\) −48714.9 −1.56153 −0.780767 0.624822i \(-0.785171\pi\)
−0.780767 + 0.624822i \(0.785171\pi\)
\(992\) 20384.4 0.652424
\(993\) 0 0
\(994\) −36145.6 −1.15339
\(995\) 8468.25 0.269811
\(996\) 0 0
\(997\) −42207.2 −1.34074 −0.670369 0.742028i \(-0.733864\pi\)
−0.670369 + 0.742028i \(0.733864\pi\)
\(998\) 200.362 0.00635505
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.4.a.e.1.1 3
3.2 odd 2 135.4.a.h.1.3 yes 3
4.3 odd 2 2160.4.a.bi.1.2 3
5.2 odd 4 675.4.b.m.649.1 6
5.3 odd 4 675.4.b.m.649.6 6
5.4 even 2 675.4.a.s.1.3 3
9.2 odd 6 405.4.e.q.271.1 6
9.4 even 3 405.4.e.v.136.3 6
9.5 odd 6 405.4.e.q.136.1 6
9.7 even 3 405.4.e.v.271.3 6
12.11 even 2 2160.4.a.bq.1.2 3
15.2 even 4 675.4.b.n.649.6 6
15.8 even 4 675.4.b.n.649.1 6
15.14 odd 2 675.4.a.p.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.a.e.1.1 3 1.1 even 1 trivial
135.4.a.h.1.3 yes 3 3.2 odd 2
405.4.e.q.136.1 6 9.5 odd 6
405.4.e.q.271.1 6 9.2 odd 6
405.4.e.v.136.3 6 9.4 even 3
405.4.e.v.271.3 6 9.7 even 3
675.4.a.p.1.1 3 15.14 odd 2
675.4.a.s.1.3 3 5.4 even 2
675.4.b.m.649.1 6 5.2 odd 4
675.4.b.m.649.6 6 5.3 odd 4
675.4.b.n.649.1 6 15.8 even 4
675.4.b.n.649.6 6 15.2 even 4
2160.4.a.bi.1.2 3 4.3 odd 2
2160.4.a.bq.1.2 3 12.11 even 2