Properties

Label 135.3.l.a.73.4
Level $135$
Weight $3$
Character 135.73
Analytic conductor $3.678$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,3,Mod(37,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 73.4
Character \(\chi\) \(=\) 135.73
Dual form 135.3.l.a.37.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.238965 - 0.891829i) q^{2} +(2.72585 - 1.57377i) q^{4} +(3.51824 + 3.55274i) q^{5} +(2.96175 + 11.0534i) q^{7} +(-4.66637 - 4.66637i) q^{8} +(2.32770 - 3.98665i) q^{10} +(1.30484 - 2.26005i) q^{11} +(-0.764853 + 2.85447i) q^{13} +(9.15000 - 5.28276i) q^{14} +(3.24857 - 5.62669i) q^{16} +(13.6850 - 13.6850i) q^{17} -11.4465i q^{19} +(15.1814 + 4.14733i) q^{20} +(-2.32738 - 0.623621i) q^{22} +(-2.89082 + 10.7887i) q^{23} +(-0.243925 + 24.9988i) q^{25} +2.72847 q^{26} +(25.4688 + 25.4688i) q^{28} +(-23.0262 - 13.2942i) q^{29} +(-21.8787 - 37.8950i) q^{31} +(-31.2919 - 8.38463i) q^{32} +(-15.4750 - 8.93448i) q^{34} +(-28.8498 + 49.4110i) q^{35} +(14.4324 - 14.4324i) q^{37} +(-10.2083 + 2.73530i) q^{38} +(0.160974 - 32.9958i) q^{40} +(0.924605 + 1.60146i) q^{41} +(-49.0742 + 13.1494i) q^{43} -8.21405i q^{44} +10.3125 q^{46} +(16.4309 + 61.3211i) q^{47} +(-70.9709 + 40.9750i) q^{49} +(22.3529 - 5.75630i) q^{50} +(2.40740 + 8.98455i) q^{52} +(-6.43481 - 6.43481i) q^{53} +(12.6201 - 3.31564i) q^{55} +(37.7587 - 65.4000i) q^{56} +(-6.35367 + 23.7122i) q^{58} +(-49.5170 + 28.5886i) q^{59} +(16.8393 - 29.1666i) q^{61} +(-28.5676 + 28.5676i) q^{62} +3.92205i q^{64} +(-12.8321 + 7.32540i) q^{65} +(31.4072 + 8.41554i) q^{67} +(15.7663 - 58.8405i) q^{68} +(50.9602 + 13.9216i) q^{70} +63.3498 q^{71} +(-50.9063 - 50.9063i) q^{73} +(-16.3201 - 9.42239i) q^{74} +(-18.0141 - 31.2013i) q^{76} +(28.8458 + 7.72922i) q^{77} +(59.5972 + 34.4084i) q^{79} +(31.4194 - 8.25473i) q^{80} +(1.20728 - 1.20728i) q^{82} +(-101.841 + 27.2882i) q^{83} +(96.7668 + 0.472089i) q^{85} +(23.4540 + 40.6236i) q^{86} +(-16.6351 + 4.45735i) q^{88} -136.887i q^{89} -33.8170 q^{91} +(9.09897 + 33.9578i) q^{92} +(50.7615 - 29.3072i) q^{94} +(40.6663 - 40.2715i) q^{95} +(-9.45952 - 35.3034i) q^{97} +(53.5023 + 53.5023i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + 2 q^{5} - 2 q^{7} + 24 q^{8} - 8 q^{10} - 8 q^{11} - 2 q^{13} + 28 q^{16} - 28 q^{17} + 114 q^{20} + 14 q^{22} - 82 q^{23} - 8 q^{25} + 112 q^{26} - 88 q^{28} - 4 q^{31} + 14 q^{32} - 352 q^{35}+ \cdots + 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.238965 0.891829i −0.119482 0.445914i 0.880101 0.474787i \(-0.157475\pi\)
−0.999583 + 0.0288727i \(0.990808\pi\)
\(3\) 0 0
\(4\) 2.72585 1.57377i 0.681462 0.393442i
\(5\) 3.51824 + 3.55274i 0.703649 + 0.710548i
\(6\) 0 0
\(7\) 2.96175 + 11.0534i 0.423108 + 1.57906i 0.768021 + 0.640425i \(0.221242\pi\)
−0.344913 + 0.938635i \(0.612091\pi\)
\(8\) −4.66637 4.66637i −0.583296 0.583296i
\(9\) 0 0
\(10\) 2.32770 3.98665i 0.232770 0.398665i
\(11\) 1.30484 2.26005i 0.118622 0.205459i −0.800600 0.599199i \(-0.795486\pi\)
0.919222 + 0.393740i \(0.128819\pi\)
\(12\) 0 0
\(13\) −0.764853 + 2.85447i −0.0588349 + 0.219575i −0.989084 0.147354i \(-0.952924\pi\)
0.930249 + 0.366929i \(0.119591\pi\)
\(14\) 9.15000 5.28276i 0.653572 0.377340i
\(15\) 0 0
\(16\) 3.24857 5.62669i 0.203036 0.351668i
\(17\) 13.6850 13.6850i 0.805003 0.805003i −0.178870 0.983873i \(-0.557244\pi\)
0.983873 + 0.178870i \(0.0572441\pi\)
\(18\) 0 0
\(19\) 11.4465i 0.602446i −0.953554 0.301223i \(-0.902605\pi\)
0.953554 0.301223i \(-0.0973948\pi\)
\(20\) 15.1814 + 4.14733i 0.759069 + 0.207366i
\(21\) 0 0
\(22\) −2.32738 0.623621i −0.105790 0.0283464i
\(23\) −2.89082 + 10.7887i −0.125688 + 0.469074i −0.999863 0.0165366i \(-0.994736\pi\)
0.874175 + 0.485611i \(0.161403\pi\)
\(24\) 0 0
\(25\) −0.243925 + 24.9988i −0.00975701 + 0.999952i
\(26\) 2.72847 0.104941
\(27\) 0 0
\(28\) 25.4688 + 25.4688i 0.909601 + 0.909601i
\(29\) −23.0262 13.2942i −0.794005 0.458419i 0.0473654 0.998878i \(-0.484917\pi\)
−0.841371 + 0.540458i \(0.818251\pi\)
\(30\) 0 0
\(31\) −21.8787 37.8950i −0.705764 1.22242i −0.966415 0.256985i \(-0.917271\pi\)
0.260652 0.965433i \(-0.416063\pi\)
\(32\) −31.2919 8.38463i −0.977870 0.262020i
\(33\) 0 0
\(34\) −15.4750 8.93448i −0.455146 0.262779i
\(35\) −28.8498 + 49.4110i −0.824279 + 1.41174i
\(36\) 0 0
\(37\) 14.4324 14.4324i 0.390065 0.390065i −0.484646 0.874711i \(-0.661051\pi\)
0.874711 + 0.484646i \(0.161051\pi\)
\(38\) −10.2083 + 2.73530i −0.268639 + 0.0719817i
\(39\) 0 0
\(40\) 0.160974 32.9958i 0.00402435 0.824896i
\(41\) 0.924605 + 1.60146i 0.0225513 + 0.0390601i 0.877081 0.480343i \(-0.159488\pi\)
−0.854529 + 0.519403i \(0.826154\pi\)
\(42\) 0 0
\(43\) −49.0742 + 13.1494i −1.14126 + 0.305800i −0.779458 0.626455i \(-0.784505\pi\)
−0.361803 + 0.932255i \(0.617839\pi\)
\(44\) 8.21405i 0.186683i
\(45\) 0 0
\(46\) 10.3125 0.224184
\(47\) 16.4309 + 61.3211i 0.349594 + 1.30470i 0.887152 + 0.461477i \(0.152680\pi\)
−0.537558 + 0.843227i \(0.680653\pi\)
\(48\) 0 0
\(49\) −70.9709 + 40.9750i −1.44838 + 0.836225i
\(50\) 22.3529 5.75630i 0.447059 0.115126i
\(51\) 0 0
\(52\) 2.40740 + 8.98455i 0.0462962 + 0.172780i
\(53\) −6.43481 6.43481i −0.121412 0.121412i 0.643790 0.765202i \(-0.277361\pi\)
−0.765202 + 0.643790i \(0.777361\pi\)
\(54\) 0 0
\(55\) 12.6201 3.31564i 0.229456 0.0602844i
\(56\) 37.7587 65.4000i 0.674262 1.16786i
\(57\) 0 0
\(58\) −6.35367 + 23.7122i −0.109546 + 0.408831i
\(59\) −49.5170 + 28.5886i −0.839271 + 0.484553i −0.857016 0.515289i \(-0.827684\pi\)
0.0177457 + 0.999843i \(0.494351\pi\)
\(60\) 0 0
\(61\) 16.8393 29.1666i 0.276055 0.478141i −0.694346 0.719641i \(-0.744306\pi\)
0.970401 + 0.241501i \(0.0776396\pi\)
\(62\) −28.5676 + 28.5676i −0.460768 + 0.460768i
\(63\) 0 0
\(64\) 3.92205i 0.0612820i
\(65\) −12.8321 + 7.32540i −0.197417 + 0.112698i
\(66\) 0 0
\(67\) 31.4072 + 8.41554i 0.468765 + 0.125605i 0.485466 0.874255i \(-0.338650\pi\)
−0.0167016 + 0.999861i \(0.505317\pi\)
\(68\) 15.7663 58.8405i 0.231857 0.865301i
\(69\) 0 0
\(70\) 50.9602 + 13.9216i 0.728003 + 0.198879i
\(71\) 63.3498 0.892251 0.446126 0.894970i \(-0.352803\pi\)
0.446126 + 0.894970i \(0.352803\pi\)
\(72\) 0 0
\(73\) −50.9063 50.9063i −0.697347 0.697347i 0.266491 0.963838i \(-0.414136\pi\)
−0.963838 + 0.266491i \(0.914136\pi\)
\(74\) −16.3201 9.42239i −0.220541 0.127330i
\(75\) 0 0
\(76\) −18.0141 31.2013i −0.237028 0.410544i
\(77\) 28.8458 + 7.72922i 0.374621 + 0.100379i
\(78\) 0 0
\(79\) 59.5972 + 34.4084i 0.754395 + 0.435550i 0.827280 0.561790i \(-0.189887\pi\)
−0.0728850 + 0.997340i \(0.523221\pi\)
\(80\) 31.4194 8.25473i 0.392743 0.103184i
\(81\) 0 0
\(82\) 1.20728 1.20728i 0.0147230 0.0147230i
\(83\) −101.841 + 27.2882i −1.22700 + 0.328773i −0.813410 0.581691i \(-0.802391\pi\)
−0.413589 + 0.910464i \(0.635725\pi\)
\(84\) 0 0
\(85\) 96.7668 + 0.472089i 1.13843 + 0.00555398i
\(86\) 23.4540 + 40.6236i 0.272721 + 0.472367i
\(87\) 0 0
\(88\) −16.6351 + 4.45735i −0.189035 + 0.0506517i
\(89\) 136.887i 1.53806i −0.639213 0.769029i \(-0.720740\pi\)
0.639213 0.769029i \(-0.279260\pi\)
\(90\) 0 0
\(91\) −33.8170 −0.371615
\(92\) 9.09897 + 33.9578i 0.0989019 + 0.369107i
\(93\) 0 0
\(94\) 50.7615 29.3072i 0.540016 0.311778i
\(95\) 40.6663 40.2715i 0.428067 0.423910i
\(96\) 0 0
\(97\) −9.45952 35.3034i −0.0975209 0.363953i 0.899869 0.436161i \(-0.143662\pi\)
−0.997390 + 0.0722080i \(0.976995\pi\)
\(98\) 53.5023 + 53.5023i 0.545941 + 0.545941i
\(99\) 0 0
\(100\) 38.6774 + 68.5268i 0.386774 + 0.685268i
\(101\) 48.3142 83.6827i 0.478359 0.828541i −0.521334 0.853353i \(-0.674565\pi\)
0.999692 + 0.0248116i \(0.00789858\pi\)
\(102\) 0 0
\(103\) −6.87754 + 25.6673i −0.0667723 + 0.249198i −0.991242 0.132058i \(-0.957842\pi\)
0.924470 + 0.381255i \(0.124508\pi\)
\(104\) 16.8891 9.75093i 0.162395 0.0937589i
\(105\) 0 0
\(106\) −4.20106 + 7.27645i −0.0396326 + 0.0686457i
\(107\) 43.8389 43.8389i 0.409709 0.409709i −0.471928 0.881637i \(-0.656442\pi\)
0.881637 + 0.471928i \(0.156442\pi\)
\(108\) 0 0
\(109\) 13.1212i 0.120378i −0.998187 0.0601892i \(-0.980830\pi\)
0.998187 0.0601892i \(-0.0191704\pi\)
\(110\) −5.97274 10.4626i −0.0542977 0.0951149i
\(111\) 0 0
\(112\) 71.8156 + 19.2429i 0.641211 + 0.171812i
\(113\) 8.41629 31.4100i 0.0744805 0.277965i −0.918635 0.395108i \(-0.870707\pi\)
0.993115 + 0.117143i \(0.0373737\pi\)
\(114\) 0 0
\(115\) −48.5001 + 27.6869i −0.421740 + 0.240756i
\(116\) −83.6877 −0.721446
\(117\) 0 0
\(118\) 37.3290 + 37.3290i 0.316347 + 0.316347i
\(119\) 191.798 + 110.735i 1.61175 + 0.930545i
\(120\) 0 0
\(121\) 57.0948 + 98.8911i 0.471858 + 0.817282i
\(122\) −30.0356 8.04801i −0.246193 0.0659673i
\(123\) 0 0
\(124\) −119.276 68.8639i −0.961902 0.555354i
\(125\) −89.6725 + 87.0853i −0.717380 + 0.696682i
\(126\) 0 0
\(127\) −108.223 + 108.223i −0.852153 + 0.852153i −0.990398 0.138245i \(-0.955854\pi\)
0.138245 + 0.990398i \(0.455854\pi\)
\(128\) −121.670 + 32.6013i −0.950544 + 0.254697i
\(129\) 0 0
\(130\) 9.59943 + 9.69355i 0.0738418 + 0.0745658i
\(131\) 3.28859 + 5.69601i 0.0251038 + 0.0434810i 0.878304 0.478102i \(-0.158675\pi\)
−0.853201 + 0.521583i \(0.825342\pi\)
\(132\) 0 0
\(133\) 126.523 33.9016i 0.951298 0.254900i
\(134\) 30.0209i 0.224036i
\(135\) 0 0
\(136\) −127.719 −0.939110
\(137\) −22.5393 84.1178i −0.164520 0.613998i −0.998101 0.0616003i \(-0.980380\pi\)
0.833581 0.552398i \(-0.186287\pi\)
\(138\) 0 0
\(139\) −75.7500 + 43.7343i −0.544964 + 0.314635i −0.747088 0.664725i \(-0.768549\pi\)
0.202124 + 0.979360i \(0.435215\pi\)
\(140\) −0.878589 + 180.090i −0.00627564 + 1.28635i
\(141\) 0 0
\(142\) −15.1384 56.4972i −0.106608 0.397868i
\(143\) 5.45322 + 5.45322i 0.0381344 + 0.0381344i
\(144\) 0 0
\(145\) −33.7809 128.578i −0.232972 0.886745i
\(146\) −33.2349 + 57.5646i −0.227636 + 0.394278i
\(147\) 0 0
\(148\) 16.6273 62.0538i 0.112346 0.419282i
\(149\) −144.963 + 83.6946i −0.972909 + 0.561709i −0.900122 0.435638i \(-0.856523\pi\)
−0.0727869 + 0.997348i \(0.523189\pi\)
\(150\) 0 0
\(151\) 124.775 216.117i 0.826325 1.43124i −0.0745766 0.997215i \(-0.523761\pi\)
0.900902 0.434022i \(-0.142906\pi\)
\(152\) −53.4135 + 53.4135i −0.351404 + 0.351404i
\(153\) 0 0
\(154\) 27.5726i 0.179043i
\(155\) 57.6565 211.053i 0.371977 1.36163i
\(156\) 0 0
\(157\) −48.3954 12.9675i −0.308251 0.0825957i 0.101377 0.994848i \(-0.467675\pi\)
−0.409629 + 0.912252i \(0.634342\pi\)
\(158\) 16.4448 61.3729i 0.104081 0.388436i
\(159\) 0 0
\(160\) −80.3040 140.671i −0.501900 0.879194i
\(161\) −127.814 −0.793875
\(162\) 0 0
\(163\) −23.5188 23.5188i −0.144287 0.144287i 0.631273 0.775560i \(-0.282533\pi\)
−0.775560 + 0.631273i \(0.782533\pi\)
\(164\) 5.04066 + 2.91023i 0.0307358 + 0.0177453i
\(165\) 0 0
\(166\) 48.6728 + 84.3037i 0.293210 + 0.507854i
\(167\) −106.889 28.6408i −0.640052 0.171502i −0.0758252 0.997121i \(-0.524159\pi\)
−0.564227 + 0.825620i \(0.690826\pi\)
\(168\) 0 0
\(169\) 138.795 + 80.1335i 0.821274 + 0.474163i
\(170\) −22.7028 86.4122i −0.133546 0.508307i
\(171\) 0 0
\(172\) −113.075 + 113.075i −0.657411 + 0.657411i
\(173\) 65.8811 17.6528i 0.380816 0.102039i −0.0633327 0.997992i \(-0.520173\pi\)
0.444149 + 0.895953i \(0.353506\pi\)
\(174\) 0 0
\(175\) −277.045 + 71.3441i −1.58311 + 0.407681i
\(176\) −8.47772 14.6838i −0.0481688 0.0834309i
\(177\) 0 0
\(178\) −122.080 + 32.7112i −0.685843 + 0.183771i
\(179\) 303.920i 1.69788i 0.528490 + 0.848939i \(0.322758\pi\)
−0.528490 + 0.848939i \(0.677242\pi\)
\(180\) 0 0
\(181\) 172.576 0.953460 0.476730 0.879050i \(-0.341822\pi\)
0.476730 + 0.879050i \(0.341822\pi\)
\(182\) 8.08107 + 30.1589i 0.0444015 + 0.165708i
\(183\) 0 0
\(184\) 63.8337 36.8544i 0.346922 0.200296i
\(185\) 102.051 + 0.497870i 0.551628 + 0.00269119i
\(186\) 0 0
\(187\) −13.0721 48.7856i −0.0699041 0.260886i
\(188\) 141.293 + 141.293i 0.751561 + 0.751561i
\(189\) 0 0
\(190\) −45.6331 26.6439i −0.240174 0.140231i
\(191\) −143.618 + 248.754i −0.751927 + 1.30238i 0.194960 + 0.980811i \(0.437542\pi\)
−0.946887 + 0.321565i \(0.895791\pi\)
\(192\) 0 0
\(193\) 9.52264 35.5390i 0.0493401 0.184140i −0.936858 0.349711i \(-0.886280\pi\)
0.986198 + 0.165571i \(0.0529466\pi\)
\(194\) −29.2241 + 16.8725i −0.150640 + 0.0869719i
\(195\) 0 0
\(196\) −128.970 + 223.383i −0.658013 + 1.13971i
\(197\) 226.659 226.659i 1.15056 1.15056i 0.164114 0.986441i \(-0.447524\pi\)
0.986441 0.164114i \(-0.0524764\pi\)
\(198\) 0 0
\(199\) 107.508i 0.540240i 0.962827 + 0.270120i \(0.0870633\pi\)
−0.962827 + 0.270120i \(0.912937\pi\)
\(200\) 117.792 115.515i 0.588960 0.577577i
\(201\) 0 0
\(202\) −86.1760 23.0908i −0.426614 0.114311i
\(203\) 78.7481 293.892i 0.387922 1.44774i
\(204\) 0 0
\(205\) −2.43660 + 8.91922i −0.0118858 + 0.0435084i
\(206\) 24.5344 0.119099
\(207\) 0 0
\(208\) 13.5765 + 13.5765i 0.0652718 + 0.0652718i
\(209\) −25.8695 14.9358i −0.123778 0.0714631i
\(210\) 0 0
\(211\) 45.5871 + 78.9591i 0.216053 + 0.374214i 0.953598 0.301084i \(-0.0973484\pi\)
−0.737545 + 0.675298i \(0.764015\pi\)
\(212\) −27.6672 7.41341i −0.130506 0.0349689i
\(213\) 0 0
\(214\) −49.5727 28.6208i −0.231648 0.133742i
\(215\) −219.371 128.085i −1.02033 0.595745i
\(216\) 0 0
\(217\) 354.070 354.070i 1.63166 1.63166i
\(218\) −11.7019 + 3.13551i −0.0536784 + 0.0143831i
\(219\) 0 0
\(220\) 29.1824 28.8990i 0.132647 0.131359i
\(221\) 28.5965 + 49.5306i 0.129396 + 0.224120i
\(222\) 0 0
\(223\) 229.262 61.4305i 1.02808 0.275473i 0.294914 0.955524i \(-0.404709\pi\)
0.733165 + 0.680051i \(0.238042\pi\)
\(224\) 370.715i 1.65498i
\(225\) 0 0
\(226\) −30.0236 −0.132848
\(227\) 31.7905 + 118.644i 0.140046 + 0.522660i 0.999926 + 0.0121631i \(0.00387174\pi\)
−0.859880 + 0.510497i \(0.829462\pi\)
\(228\) 0 0
\(229\) 285.203 164.662i 1.24543 0.719048i 0.275234 0.961377i \(-0.411245\pi\)
0.970194 + 0.242329i \(0.0779114\pi\)
\(230\) 36.2818 + 36.6376i 0.157747 + 0.159294i
\(231\) 0 0
\(232\) 45.4131 + 169.484i 0.195746 + 0.730534i
\(233\) 227.098 + 227.098i 0.974670 + 0.974670i 0.999687 0.0250170i \(-0.00796398\pi\)
−0.0250170 + 0.999687i \(0.507964\pi\)
\(234\) 0 0
\(235\) −160.050 + 274.117i −0.681063 + 1.16646i
\(236\) −89.9838 + 155.856i −0.381287 + 0.660409i
\(237\) 0 0
\(238\) 52.9235 197.513i 0.222367 0.829887i
\(239\) 123.443 71.2696i 0.516496 0.298199i −0.219004 0.975724i \(-0.570281\pi\)
0.735500 + 0.677525i \(0.236947\pi\)
\(240\) 0 0
\(241\) −228.867 + 396.410i −0.949656 + 1.64485i −0.203509 + 0.979073i \(0.565234\pi\)
−0.746148 + 0.665780i \(0.768099\pi\)
\(242\) 74.5503 74.5503i 0.308059 0.308059i
\(243\) 0 0
\(244\) 106.005i 0.434446i
\(245\) −395.266 107.981i −1.61333 0.440738i
\(246\) 0 0
\(247\) 32.6736 + 8.75487i 0.132282 + 0.0354448i
\(248\) −74.7380 + 278.926i −0.301363 + 1.12470i
\(249\) 0 0
\(250\) 99.0937 + 59.1622i 0.396375 + 0.236649i
\(251\) −102.580 −0.408684 −0.204342 0.978900i \(-0.565506\pi\)
−0.204342 + 0.978900i \(0.565506\pi\)
\(252\) 0 0
\(253\) 20.6109 + 20.6109i 0.0814660 + 0.0814660i
\(254\) 122.378 + 70.6552i 0.481805 + 0.278170i
\(255\) 0 0
\(256\) 65.9936 + 114.304i 0.257788 + 0.446501i
\(257\) 108.426 + 29.0526i 0.421890 + 0.113045i 0.463517 0.886088i \(-0.346587\pi\)
−0.0416268 + 0.999133i \(0.513254\pi\)
\(258\) 0 0
\(259\) 202.273 + 116.782i 0.780975 + 0.450896i
\(260\) −23.4499 + 40.1627i −0.0901921 + 0.154472i
\(261\) 0 0
\(262\) 4.29401 4.29401i 0.0163893 0.0163893i
\(263\) 143.911 38.5609i 0.547191 0.146619i 0.0253757 0.999678i \(-0.491922\pi\)
0.521815 + 0.853059i \(0.325255\pi\)
\(264\) 0 0
\(265\) 0.221980 45.5005i 0.000837659 0.171700i
\(266\) −60.4689 104.735i −0.227327 0.393742i
\(267\) 0 0
\(268\) 98.8554 26.4882i 0.368864 0.0988367i
\(269\) 31.0843i 0.115555i 0.998329 + 0.0577774i \(0.0184014\pi\)
−0.998329 + 0.0577774i \(0.981599\pi\)
\(270\) 0 0
\(271\) 4.22458 0.0155889 0.00779444 0.999970i \(-0.497519\pi\)
0.00779444 + 0.999970i \(0.497519\pi\)
\(272\) −32.5447 121.458i −0.119650 0.446538i
\(273\) 0 0
\(274\) −69.6325 + 40.2024i −0.254133 + 0.146724i
\(275\) 56.1802 + 33.1707i 0.204292 + 0.120621i
\(276\) 0 0
\(277\) −35.9912 134.321i −0.129932 0.484913i 0.870035 0.492990i \(-0.164096\pi\)
−0.999967 + 0.00807616i \(0.997429\pi\)
\(278\) 57.1051 + 57.1051i 0.205414 + 0.205414i
\(279\) 0 0
\(280\) 365.193 95.9462i 1.30426 0.342665i
\(281\) 251.702 435.961i 0.895737 1.55146i 0.0628471 0.998023i \(-0.479982\pi\)
0.832890 0.553439i \(-0.186685\pi\)
\(282\) 0 0
\(283\) −37.9311 + 141.561i −0.134032 + 0.500214i 0.865968 + 0.500099i \(0.166703\pi\)
−1.00000 0.000114837i \(0.999963\pi\)
\(284\) 172.682 99.6980i 0.608035 0.351049i
\(285\) 0 0
\(286\) 3.56021 6.16647i 0.0124483 0.0215611i
\(287\) −14.9632 + 14.9632i −0.0521365 + 0.0521365i
\(288\) 0 0
\(289\) 85.5611i 0.296059i
\(290\) −106.597 + 60.8524i −0.367576 + 0.209836i
\(291\) 0 0
\(292\) −218.878 58.6481i −0.749581 0.200850i
\(293\) 88.7756 331.315i 0.302988 1.13077i −0.631675 0.775234i \(-0.717632\pi\)
0.934663 0.355535i \(-0.115701\pi\)
\(294\) 0 0
\(295\) −275.781 75.3391i −0.934850 0.255387i
\(296\) −134.694 −0.455047
\(297\) 0 0
\(298\) 109.282 + 109.282i 0.366720 + 0.366720i
\(299\) −28.5850 16.5035i −0.0956019 0.0551958i
\(300\) 0 0
\(301\) −290.692 503.493i −0.965753 1.67273i
\(302\) −222.556 59.6337i −0.736941 0.197463i
\(303\) 0 0
\(304\) −64.4057 37.1847i −0.211861 0.122318i
\(305\) 162.866 42.7894i 0.533987 0.140293i
\(306\) 0 0
\(307\) −19.2282 + 19.2282i −0.0626327 + 0.0626327i −0.737729 0.675097i \(-0.764102\pi\)
0.675097 + 0.737729i \(0.264102\pi\)
\(308\) 90.7934 24.3280i 0.294784 0.0789870i
\(309\) 0 0
\(310\) −202.001 0.985487i −0.651616 0.00317899i
\(311\) 275.689 + 477.507i 0.886459 + 1.53539i 0.844032 + 0.536293i \(0.180176\pi\)
0.0424271 + 0.999100i \(0.486491\pi\)
\(312\) 0 0
\(313\) −463.260 + 124.130i −1.48006 + 0.396582i −0.906368 0.422488i \(-0.861157\pi\)
−0.573694 + 0.819070i \(0.694490\pi\)
\(314\) 46.2592i 0.147322i
\(315\) 0 0
\(316\) 216.604 0.685455
\(317\) 72.3487 + 270.009i 0.228229 + 0.851763i 0.981085 + 0.193578i \(0.0620092\pi\)
−0.752856 + 0.658186i \(0.771324\pi\)
\(318\) 0 0
\(319\) −60.0908 + 34.6934i −0.188372 + 0.108757i
\(320\) −13.9340 + 13.7987i −0.0435438 + 0.0431210i
\(321\) 0 0
\(322\) 30.5430 + 113.988i 0.0948541 + 0.354000i
\(323\) −156.646 156.646i −0.484971 0.484971i
\(324\) 0 0
\(325\) −71.1718 19.8167i −0.218990 0.0609744i
\(326\) −15.3545 + 26.5949i −0.0470998 + 0.0815793i
\(327\) 0 0
\(328\) 3.15847 11.7876i 0.00962948 0.0359377i
\(329\) −629.143 + 363.236i −1.91229 + 1.10406i
\(330\) 0 0
\(331\) −61.1788 + 105.965i −0.184830 + 0.320136i −0.943519 0.331317i \(-0.892507\pi\)
0.758689 + 0.651453i \(0.225840\pi\)
\(332\) −234.657 + 234.657i −0.706800 + 0.706800i
\(333\) 0 0
\(334\) 102.171i 0.305900i
\(335\) 80.6001 + 141.190i 0.240597 + 0.421462i
\(336\) 0 0
\(337\) −319.193 85.5276i −0.947161 0.253791i −0.248004 0.968759i \(-0.579775\pi\)
−0.699157 + 0.714968i \(0.746441\pi\)
\(338\) 38.2982 142.931i 0.113308 0.422872i
\(339\) 0 0
\(340\) 264.514 151.002i 0.777983 0.444122i
\(341\) −114.192 −0.334875
\(342\) 0 0
\(343\) −266.621 266.621i −0.777321 0.777321i
\(344\) 290.358 + 167.638i 0.844065 + 0.487321i
\(345\) 0 0
\(346\) −31.4865 54.5363i −0.0910016 0.157619i
\(347\) −343.816 92.1251i −0.990823 0.265490i −0.273227 0.961950i \(-0.588091\pi\)
−0.717596 + 0.696459i \(0.754758\pi\)
\(348\) 0 0
\(349\) −43.1516 24.9136i −0.123644 0.0713857i 0.436903 0.899509i \(-0.356075\pi\)
−0.560546 + 0.828123i \(0.689409\pi\)
\(350\) 129.831 + 230.028i 0.370945 + 0.657222i
\(351\) 0 0
\(352\) −59.7804 + 59.7804i −0.169831 + 0.169831i
\(353\) −606.831 + 162.600i −1.71907 + 0.460623i −0.977619 0.210385i \(-0.932528\pi\)
−0.741450 + 0.671008i \(0.765862\pi\)
\(354\) 0 0
\(355\) 222.880 + 225.065i 0.627831 + 0.633987i
\(356\) −215.429 373.134i −0.605137 1.04813i
\(357\) 0 0
\(358\) 271.045 72.6263i 0.757109 0.202867i
\(359\) 81.3046i 0.226475i 0.993568 + 0.113238i \(0.0361221\pi\)
−0.993568 + 0.113238i \(0.963878\pi\)
\(360\) 0 0
\(361\) 229.978 0.637059
\(362\) −41.2397 153.908i −0.113922 0.425162i
\(363\) 0 0
\(364\) −92.1799 + 53.2201i −0.253241 + 0.146209i
\(365\) 1.75610 359.958i 0.00481123 0.986186i
\(366\) 0 0
\(367\) 15.5484 + 58.0273i 0.0423661 + 0.158113i 0.983868 0.178894i \(-0.0572521\pi\)
−0.941502 + 0.337007i \(0.890585\pi\)
\(368\) 51.3136 + 51.3136i 0.139439 + 0.139439i
\(369\) 0 0
\(370\) −23.9426 91.1312i −0.0647098 0.246301i
\(371\) 52.0684 90.1851i 0.140346 0.243086i
\(372\) 0 0
\(373\) −50.4882 + 188.424i −0.135357 + 0.505159i 0.864639 + 0.502393i \(0.167547\pi\)
−0.999996 + 0.00276585i \(0.999120\pi\)
\(374\) −40.3846 + 23.3161i −0.107980 + 0.0623425i
\(375\) 0 0
\(376\) 209.474 362.820i 0.557112 0.964946i
\(377\) 55.5594 55.5594i 0.147372 0.147372i
\(378\) 0 0
\(379\) 145.837i 0.384795i 0.981317 + 0.192398i \(0.0616263\pi\)
−0.981317 + 0.192398i \(0.938374\pi\)
\(380\) 47.4722 173.773i 0.124927 0.457298i
\(381\) 0 0
\(382\) 256.166 + 68.6394i 0.670591 + 0.179684i
\(383\) −195.458 + 729.460i −0.510335 + 1.90459i −0.0934803 + 0.995621i \(0.529799\pi\)
−0.416854 + 0.908973i \(0.636867\pi\)
\(384\) 0 0
\(385\) 74.0268 + 129.675i 0.192277 + 0.336818i
\(386\) −33.9703 −0.0880059
\(387\) 0 0
\(388\) −81.3446 81.3446i −0.209651 0.209651i
\(389\) 37.3613 + 21.5705i 0.0960444 + 0.0554512i 0.547253 0.836967i \(-0.315674\pi\)
−0.451209 + 0.892419i \(0.649007\pi\)
\(390\) 0 0
\(391\) 108.083 + 187.205i 0.276427 + 0.478785i
\(392\) 522.381 + 139.972i 1.33260 + 0.357070i
\(393\) 0 0
\(394\) −256.305 147.978i −0.650520 0.375578i
\(395\) 87.4331 + 332.791i 0.221350 + 0.842508i
\(396\) 0 0
\(397\) −89.7953 + 89.7953i −0.226185 + 0.226185i −0.811097 0.584912i \(-0.801129\pi\)
0.584912 + 0.811097i \(0.301129\pi\)
\(398\) 95.8785 25.6906i 0.240901 0.0645491i
\(399\) 0 0
\(400\) 139.868 + 82.5829i 0.349670 + 0.206457i
\(401\) 144.777 + 250.762i 0.361041 + 0.625341i 0.988132 0.153604i \(-0.0490882\pi\)
−0.627092 + 0.778946i \(0.715755\pi\)
\(402\) 0 0
\(403\) 124.904 33.4679i 0.309936 0.0830470i
\(404\) 304.142i 0.752826i
\(405\) 0 0
\(406\) −280.919 −0.691919
\(407\) −13.7859 51.4498i −0.0338721 0.126412i
\(408\) 0 0
\(409\) −178.588 + 103.108i −0.436646 + 0.252098i −0.702174 0.712006i \(-0.747787\pi\)
0.265528 + 0.964103i \(0.414454\pi\)
\(410\) 8.53667 + 0.0416472i 0.0208212 + 0.000101579i
\(411\) 0 0
\(412\) 21.6473 + 80.7889i 0.0525421 + 0.196090i
\(413\) −462.659 462.659i −1.12024 1.12024i
\(414\) 0 0
\(415\) −455.249 265.808i −1.09699 0.640501i
\(416\) 47.8673 82.9087i 0.115066 0.199300i
\(417\) 0 0
\(418\) −7.13826 + 26.6403i −0.0170772 + 0.0637329i
\(419\) 621.108 358.597i 1.48236 0.855839i 0.482558 0.875864i \(-0.339708\pi\)
0.999799 + 0.0200248i \(0.00637453\pi\)
\(420\) 0 0
\(421\) 124.562 215.747i 0.295871 0.512463i −0.679316 0.733846i \(-0.737724\pi\)
0.975187 + 0.221382i \(0.0710569\pi\)
\(422\) 59.5243 59.5243i 0.141053 0.141053i
\(423\) 0 0
\(424\) 60.0544i 0.141638i
\(425\) 338.772 + 345.448i 0.797110 + 0.812819i
\(426\) 0 0
\(427\) 372.264 + 99.7479i 0.871814 + 0.233602i
\(428\) 50.5058 188.490i 0.118004 0.440398i
\(429\) 0 0
\(430\) −61.8080 + 226.250i −0.143739 + 0.526162i
\(431\) 234.096 0.543146 0.271573 0.962418i \(-0.412456\pi\)
0.271573 + 0.962418i \(0.412456\pi\)
\(432\) 0 0
\(433\) 372.915 + 372.915i 0.861236 + 0.861236i 0.991482 0.130245i \(-0.0415765\pi\)
−0.130245 + 0.991482i \(0.541577\pi\)
\(434\) −400.380 231.159i −0.922534 0.532625i
\(435\) 0 0
\(436\) −20.6498 35.7665i −0.0473619 0.0820332i
\(437\) 123.493 + 33.0897i 0.282592 + 0.0757202i
\(438\) 0 0
\(439\) −558.854 322.654i −1.27302 0.734976i −0.297461 0.954734i \(-0.596140\pi\)
−0.975554 + 0.219758i \(0.929473\pi\)
\(440\) −74.3620 43.4180i −0.169005 0.0986773i
\(441\) 0 0
\(442\) 37.3393 37.3393i 0.0844780 0.0844780i
\(443\) 265.585 71.1633i 0.599515 0.160640i 0.0537167 0.998556i \(-0.482893\pi\)
0.545798 + 0.837917i \(0.316227\pi\)
\(444\) 0 0
\(445\) 486.325 481.603i 1.09286 1.08225i
\(446\) −109.571 189.782i −0.245675 0.425521i
\(447\) 0 0
\(448\) −43.3520 + 11.6161i −0.0967679 + 0.0259289i
\(449\) 190.668i 0.424651i 0.977199 + 0.212325i \(0.0681036\pi\)
−0.977199 + 0.212325i \(0.931896\pi\)
\(450\) 0 0
\(451\) 4.82584 0.0107003
\(452\) −26.4906 98.8642i −0.0586075 0.218726i
\(453\) 0 0
\(454\) 98.2131 56.7034i 0.216328 0.124897i
\(455\) −118.976 120.143i −0.261486 0.264050i
\(456\) 0 0
\(457\) 80.9404 + 302.074i 0.177112 + 0.660993i 0.996182 + 0.0872988i \(0.0278235\pi\)
−0.819070 + 0.573694i \(0.805510\pi\)
\(458\) −215.004 215.004i −0.469441 0.469441i
\(459\) 0 0
\(460\) −88.6310 + 151.798i −0.192676 + 0.329996i
\(461\) 110.361 191.151i 0.239395 0.414645i −0.721146 0.692784i \(-0.756384\pi\)
0.960541 + 0.278139i \(0.0897174\pi\)
\(462\) 0 0
\(463\) 74.7605 279.010i 0.161470 0.602613i −0.836994 0.547211i \(-0.815689\pi\)
0.998464 0.0554018i \(-0.0176440\pi\)
\(464\) −149.604 + 86.3740i −0.322423 + 0.186151i
\(465\) 0 0
\(466\) 148.264 256.801i 0.318163 0.551075i
\(467\) 249.664 249.664i 0.534613 0.534613i −0.387329 0.921942i \(-0.626602\pi\)
0.921942 + 0.387329i \(0.126602\pi\)
\(468\) 0 0
\(469\) 372.082i 0.793352i
\(470\) 282.712 + 77.2327i 0.601515 + 0.164325i
\(471\) 0 0
\(472\) 364.470 + 97.6593i 0.772181 + 0.206905i
\(473\) −34.3157 + 128.068i −0.0725490 + 0.270756i
\(474\) 0 0
\(475\) 286.148 + 2.79208i 0.602417 + 0.00587807i
\(476\) 697.084 1.46446
\(477\) 0 0
\(478\) −93.0588 93.0588i −0.194684 0.194684i
\(479\) −757.971 437.615i −1.58240 0.913600i −0.994508 0.104663i \(-0.966624\pi\)
−0.587895 0.808938i \(-0.700043\pi\)
\(480\) 0 0
\(481\) 30.1582 + 52.2355i 0.0626989 + 0.108598i
\(482\) 408.221 + 109.382i 0.846931 + 0.226934i
\(483\) 0 0
\(484\) 311.263 + 179.708i 0.643106 + 0.371298i
\(485\) 92.1430 157.813i 0.189986 0.325388i
\(486\) 0 0
\(487\) −241.500 + 241.500i −0.495894 + 0.495894i −0.910157 0.414263i \(-0.864039\pi\)
0.414263 + 0.910157i \(0.364039\pi\)
\(488\) −214.681 + 57.5235i −0.439919 + 0.117876i
\(489\) 0 0
\(490\) −1.84565 + 378.314i −0.00376663 + 0.772069i
\(491\) 14.2377 + 24.6604i 0.0289973 + 0.0502248i 0.880160 0.474677i \(-0.157435\pi\)
−0.851163 + 0.524902i \(0.824102\pi\)
\(492\) 0 0
\(493\) −497.045 + 133.183i −1.00821 + 0.270148i
\(494\) 31.2314i 0.0632214i
\(495\) 0 0
\(496\) −284.298 −0.573181
\(497\) 187.627 + 700.232i 0.377518 + 1.40892i
\(498\) 0 0
\(499\) 409.907 236.660i 0.821457 0.474269i −0.0294615 0.999566i \(-0.509379\pi\)
0.850919 + 0.525297i \(0.176046\pi\)
\(500\) −107.381 + 378.505i −0.214763 + 0.757010i
\(501\) 0 0
\(502\) 24.5130 + 91.4836i 0.0488306 + 0.182238i
\(503\) −58.9981 58.9981i −0.117292 0.117292i 0.646024 0.763317i \(-0.276430\pi\)
−0.763317 + 0.646024i \(0.776430\pi\)
\(504\) 0 0
\(505\) 467.284 122.768i 0.925315 0.243105i
\(506\) 13.4561 23.3067i 0.0265931 0.0460606i
\(507\) 0 0
\(508\) −124.682 + 465.319i −0.245437 + 0.915983i
\(509\) 388.655 224.390i 0.763565 0.440844i −0.0670093 0.997752i \(-0.521346\pi\)
0.830574 + 0.556908i \(0.188012\pi\)
\(510\) 0 0
\(511\) 411.917 713.461i 0.806100 1.39621i
\(512\) −270.104 + 270.104i −0.527546 + 0.527546i
\(513\) 0 0
\(514\) 103.640i 0.201634i
\(515\) −115.386 + 65.8698i −0.224051 + 0.127903i
\(516\) 0 0
\(517\) 160.028 + 42.8794i 0.309532 + 0.0829389i
\(518\) 55.8136 208.299i 0.107748 0.402122i
\(519\) 0 0
\(520\) 94.0625 + 25.6965i 0.180889 + 0.0494163i
\(521\) 548.131 1.05208 0.526038 0.850461i \(-0.323677\pi\)
0.526038 + 0.850461i \(0.323677\pi\)
\(522\) 0 0
\(523\) −237.559 237.559i −0.454224 0.454224i 0.442530 0.896754i \(-0.354081\pi\)
−0.896754 + 0.442530i \(0.854081\pi\)
\(524\) 17.9284 + 10.3510i 0.0342145 + 0.0197538i
\(525\) 0 0
\(526\) −68.7794 119.129i −0.130759 0.226482i
\(527\) −818.005 219.184i −1.55219 0.415909i
\(528\) 0 0
\(529\) 350.088 + 202.124i 0.661793 + 0.382086i
\(530\) −40.6317 + 10.6750i −0.0766635 + 0.0201416i
\(531\) 0 0
\(532\) 291.528 291.528i 0.547985 0.547985i
\(533\) −5.27851 + 1.41437i −0.00990340 + 0.00265361i
\(534\) 0 0
\(535\) 309.984 + 1.51229i 0.579409 + 0.00282672i
\(536\) −107.288 185.828i −0.200164 0.346694i
\(537\) 0 0
\(538\) 27.7218 7.42804i 0.0515276 0.0138068i
\(539\) 213.863i 0.396778i
\(540\) 0 0
\(541\) −694.204 −1.28319 −0.641593 0.767045i \(-0.721726\pi\)
−0.641593 + 0.767045i \(0.721726\pi\)
\(542\) −1.00953 3.76761i −0.00186260 0.00695130i
\(543\) 0 0
\(544\) −542.975 + 313.487i −0.998115 + 0.576262i
\(545\) 46.6163 46.1637i 0.0855346 0.0847040i
\(546\) 0 0
\(547\) −229.183 855.323i −0.418982 1.56366i −0.776724 0.629841i \(-0.783120\pi\)
0.357742 0.933820i \(-0.383547\pi\)
\(548\) −193.821 193.821i −0.353687 0.353687i
\(549\) 0 0
\(550\) 16.1575 58.0297i 0.0293772 0.105509i
\(551\) −152.171 + 263.568i −0.276173 + 0.478345i
\(552\) 0 0
\(553\) −203.819 + 760.662i −0.368569 + 1.37552i
\(554\) −111.191 + 64.1960i −0.200705 + 0.115877i
\(555\) 0 0
\(556\) −137.655 + 238.426i −0.247581 + 0.428824i
\(557\) −598.653 + 598.653i −1.07478 + 1.07478i −0.0778138 + 0.996968i \(0.524794\pi\)
−0.996968 + 0.0778138i \(0.975206\pi\)
\(558\) 0 0
\(559\) 150.138i 0.268584i
\(560\) 184.300 + 322.844i 0.329107 + 0.576506i
\(561\) 0 0
\(562\) −448.950 120.296i −0.798844 0.214050i
\(563\) −80.5980 + 300.796i −0.143158 + 0.534273i 0.856672 + 0.515861i \(0.172528\pi\)
−0.999830 + 0.0184123i \(0.994139\pi\)
\(564\) 0 0
\(565\) 141.202 80.6072i 0.249915 0.142668i
\(566\) 135.312 0.239067
\(567\) 0 0
\(568\) −295.614 295.614i −0.520447 0.520447i
\(569\) −20.4998 11.8356i −0.0360278 0.0208006i 0.481878 0.876238i \(-0.339955\pi\)
−0.517906 + 0.855438i \(0.673288\pi\)
\(570\) 0 0
\(571\) 22.7049 + 39.3260i 0.0397633 + 0.0688721i 0.885222 0.465169i \(-0.154006\pi\)
−0.845459 + 0.534041i \(0.820673\pi\)
\(572\) 23.4468 + 6.28254i 0.0409909 + 0.0109835i
\(573\) 0 0
\(574\) 16.9203 + 9.76892i 0.0294778 + 0.0170190i
\(575\) −269.000 74.8988i −0.467825 0.130259i
\(576\) 0 0
\(577\) −333.577 + 333.577i −0.578124 + 0.578124i −0.934386 0.356262i \(-0.884051\pi\)
0.356262 + 0.934386i \(0.384051\pi\)
\(578\) −76.3059 + 20.4461i −0.132017 + 0.0353739i
\(579\) 0 0
\(580\) −294.434 297.321i −0.507644 0.512622i
\(581\) −603.256 1044.87i −1.03831 1.79840i
\(582\) 0 0
\(583\) −22.9394 + 6.14658i −0.0393471 + 0.0105430i
\(584\) 475.096i 0.813520i
\(585\) 0 0
\(586\) −316.691 −0.540428
\(587\) −201.489 751.967i −0.343252 1.28103i −0.894641 0.446786i \(-0.852568\pi\)
0.551388 0.834249i \(-0.314098\pi\)
\(588\) 0 0
\(589\) −433.764 + 250.434i −0.736441 + 0.425184i
\(590\) −1.28773 + 263.953i −0.00218258 + 0.447377i
\(591\) 0 0
\(592\) −34.3219 128.091i −0.0579763 0.216370i
\(593\) 464.151 + 464.151i 0.782717 + 0.782717i 0.980289 0.197571i \(-0.0633054\pi\)
−0.197571 + 0.980289i \(0.563305\pi\)
\(594\) 0 0
\(595\) 281.381 + 1071.00i 0.472910 + 1.80000i
\(596\) −263.432 + 456.278i −0.442000 + 0.765567i
\(597\) 0 0
\(598\) −7.88753 + 29.4367i −0.0131899 + 0.0492252i
\(599\) 402.592 232.437i 0.672108 0.388042i −0.124767 0.992186i \(-0.539818\pi\)
0.796875 + 0.604145i \(0.206485\pi\)
\(600\) 0 0
\(601\) −305.138 + 528.514i −0.507717 + 0.879392i 0.492243 + 0.870458i \(0.336177\pi\)
−0.999960 + 0.00893383i \(0.997156\pi\)
\(602\) −379.564 + 379.564i −0.630505 + 0.630505i
\(603\) 0 0
\(604\) 785.469i 1.30045i
\(605\) −150.461 + 550.766i −0.248696 + 0.910357i
\(606\) 0 0
\(607\) 81.5905 + 21.8621i 0.134416 + 0.0360167i 0.325400 0.945577i \(-0.394501\pi\)
−0.190984 + 0.981593i \(0.561168\pi\)
\(608\) −95.9744 + 358.181i −0.157853 + 0.589114i
\(609\) 0 0
\(610\) −77.0800 135.024i −0.126361 0.221350i
\(611\) −187.606 −0.307048
\(612\) 0 0
\(613\) 463.301 + 463.301i 0.755793 + 0.755793i 0.975554 0.219760i \(-0.0705276\pi\)
−0.219760 + 0.975554i \(0.570528\pi\)
\(614\) 21.7432 + 12.5534i 0.0354123 + 0.0204453i
\(615\) 0 0
\(616\) −98.5380 170.673i −0.159964 0.277066i
\(617\) 650.709 + 174.357i 1.05463 + 0.282588i 0.744165 0.667995i \(-0.232847\pi\)
0.310468 + 0.950584i \(0.399514\pi\)
\(618\) 0 0
\(619\) −759.400 438.440i −1.22682 0.708303i −0.260455 0.965486i \(-0.583872\pi\)
−0.966363 + 0.257183i \(0.917206\pi\)
\(620\) −174.986 666.036i −0.282235 1.07425i
\(621\) 0 0
\(622\) 359.975 359.975i 0.578737 0.578737i
\(623\) 1513.07 405.426i 2.42869 0.650765i
\(624\) 0 0
\(625\) −624.881 12.1957i −0.999810 0.0195131i
\(626\) 221.405 + 383.485i 0.353683 + 0.612597i
\(627\) 0 0
\(628\) −152.326 + 40.8157i −0.242558 + 0.0649932i
\(629\) 395.016i 0.628007i
\(630\) 0 0
\(631\) 1077.51 1.70762 0.853812 0.520581i \(-0.174285\pi\)
0.853812 + 0.520581i \(0.174285\pi\)
\(632\) −117.540 438.665i −0.185981 0.694090i
\(633\) 0 0
\(634\) 223.513 129.045i 0.352544 0.203541i
\(635\) −765.246 3.73335i −1.20511 0.00587929i
\(636\) 0 0
\(637\) −62.6798 233.924i −0.0983984 0.367228i
\(638\) 45.3002 + 45.3002i 0.0710034 + 0.0710034i
\(639\) 0 0
\(640\) −543.887 317.561i −0.849824 0.496190i
\(641\) 332.614 576.105i 0.518899 0.898759i −0.480860 0.876797i \(-0.659675\pi\)
0.999759 0.0219617i \(-0.00699118\pi\)
\(642\) 0 0
\(643\) 287.192 1071.82i 0.446644 1.66690i −0.264915 0.964272i \(-0.585344\pi\)
0.711559 0.702626i \(-0.247989\pi\)
\(644\) −348.401 + 201.150i −0.540996 + 0.312344i
\(645\) 0 0
\(646\) −102.268 + 177.134i −0.158310 + 0.274201i
\(647\) 231.177 231.177i 0.357306 0.357306i −0.505513 0.862819i \(-0.668697\pi\)
0.862819 + 0.505513i \(0.168697\pi\)
\(648\) 0 0
\(649\) 149.214i 0.229914i
\(650\) −0.665544 + 68.2086i −0.00102391 + 0.104936i
\(651\) 0 0
\(652\) −101.122 27.0955i −0.155094 0.0415574i
\(653\) −174.987 + 653.059i −0.267974 + 1.00009i 0.692432 + 0.721484i \(0.256539\pi\)
−0.960405 + 0.278607i \(0.910127\pi\)
\(654\) 0 0
\(655\) −8.66637 + 31.7235i −0.0132311 + 0.0484328i
\(656\) 12.0146 0.0183149
\(657\) 0 0
\(658\) 474.287 + 474.287i 0.720802 + 0.720802i
\(659\) −138.847 80.1633i −0.210693 0.121644i 0.390940 0.920416i \(-0.372150\pi\)
−0.601634 + 0.798772i \(0.705483\pi\)
\(660\) 0 0
\(661\) −471.803 817.186i −0.713771 1.23629i −0.963432 0.267954i \(-0.913652\pi\)
0.249660 0.968333i \(-0.419681\pi\)
\(662\) 109.122 + 29.2392i 0.164837 + 0.0441679i
\(663\) 0 0
\(664\) 602.564 + 347.891i 0.907476 + 0.523931i
\(665\) 565.581 + 330.228i 0.850498 + 0.496583i
\(666\) 0 0
\(667\) 209.991 209.991i 0.314829 0.314829i
\(668\) −336.436 + 90.1478i −0.503647 + 0.134952i
\(669\) 0 0
\(670\) 106.656 105.621i 0.159189 0.157643i
\(671\) −43.9452 76.1153i −0.0654921 0.113436i
\(672\) 0 0
\(673\) 549.114 147.135i 0.815919 0.218625i 0.173358 0.984859i \(-0.444538\pi\)
0.642562 + 0.766234i \(0.277872\pi\)
\(674\) 305.104i 0.452676i
\(675\) 0 0
\(676\) 504.446 0.746222
\(677\) −76.2369 284.520i −0.112610 0.420266i 0.886487 0.462753i \(-0.153138\pi\)
−0.999097 + 0.0424873i \(0.986472\pi\)
\(678\) 0 0
\(679\) 362.207 209.120i 0.533441 0.307983i
\(680\) −449.347 453.752i −0.660804 0.667283i
\(681\) 0 0
\(682\) 27.2880 + 101.840i 0.0400117 + 0.149326i
\(683\) −449.659 449.659i −0.658359 0.658359i 0.296632 0.954992i \(-0.404136\pi\)
−0.954992 + 0.296632i \(0.904136\pi\)
\(684\) 0 0
\(685\) 219.550 376.023i 0.320511 0.548939i
\(686\) −174.067 + 301.493i −0.253742 + 0.439495i
\(687\) 0 0
\(688\) −85.4335 + 318.842i −0.124177 + 0.463433i
\(689\) 23.2897 13.4463i 0.0338021 0.0195157i
\(690\) 0 0
\(691\) −465.762 + 806.723i −0.674040 + 1.16747i 0.302708 + 0.953083i \(0.402109\pi\)
−0.976748 + 0.214388i \(0.931224\pi\)
\(692\) 151.800 151.800i 0.219365 0.219365i
\(693\) 0 0
\(694\) 328.639i 0.473544i
\(695\) −421.883 115.252i −0.607027 0.165831i
\(696\) 0 0
\(697\) 34.5694 + 9.26283i 0.0495974 + 0.0132896i
\(698\) −11.9069 + 44.4373i −0.0170587 + 0.0636638i
\(699\) 0 0
\(700\) −642.903 + 630.478i −0.918432 + 0.900682i
\(701\) −1256.95 −1.79308 −0.896539 0.442964i \(-0.853927\pi\)
−0.896539 + 0.442964i \(0.853927\pi\)
\(702\) 0 0
\(703\) −165.200 165.200i −0.234993 0.234993i
\(704\) 8.86400 + 5.11763i 0.0125909 + 0.00726937i
\(705\) 0 0
\(706\) 290.023 + 502.334i 0.410797 + 0.711521i
\(707\) 1068.07 + 286.190i 1.51071 + 0.404795i
\(708\) 0 0
\(709\) 631.908 + 364.832i 0.891267 + 0.514573i 0.874357 0.485284i \(-0.161284\pi\)
0.0169102 + 0.999857i \(0.494617\pi\)
\(710\) 147.459 252.554i 0.207689 0.355709i
\(711\) 0 0
\(712\) −638.766 + 638.766i −0.897144 + 0.897144i
\(713\) 472.085 126.495i 0.662111 0.177412i
\(714\) 0 0
\(715\) −0.188118 + 38.5597i −0.000263102 + 0.0539296i
\(716\) 478.300 + 828.440i 0.668017 + 1.15704i
\(717\) 0 0
\(718\) 72.5097 19.4289i 0.100988 0.0270598i
\(719\) 806.713i 1.12199i −0.827818 0.560997i \(-0.810418\pi\)
0.827818 0.560997i \(-0.189582\pi\)
\(720\) 0 0
\(721\) −304.082 −0.421750
\(722\) −54.9567 205.101i −0.0761173 0.284074i
\(723\) 0 0
\(724\) 470.417 271.595i 0.649747 0.375131i
\(725\) 337.955 572.384i 0.466144 0.789495i
\(726\) 0 0
\(727\) 306.191 + 1142.72i 0.421171 + 1.57183i 0.772145 + 0.635446i \(0.219184\pi\)
−0.350974 + 0.936385i \(0.614150\pi\)
\(728\) 157.802 + 157.802i 0.216762 + 0.216762i
\(729\) 0 0
\(730\) −321.440 + 84.4511i −0.440329 + 0.115686i
\(731\) −491.633 + 851.533i −0.672548 + 1.16489i
\(732\) 0 0
\(733\) 264.670 987.760i 0.361077 1.34756i −0.511585 0.859233i \(-0.670941\pi\)
0.872662 0.488325i \(-0.162392\pi\)
\(734\) 48.0349 27.7330i 0.0654426 0.0377833i
\(735\) 0 0
\(736\) 180.918 313.360i 0.245813 0.425761i
\(737\) 60.0009 60.0009i 0.0814123 0.0814123i
\(738\) 0 0
\(739\) 808.791i 1.09444i −0.836989 0.547220i \(-0.815686\pi\)
0.836989 0.547220i \(-0.184314\pi\)
\(740\) 278.960 159.248i 0.376972 0.215200i
\(741\) 0 0
\(742\) −92.8721 24.8850i −0.125165 0.0335378i
\(743\) 164.727 614.769i 0.221705 0.827415i −0.761993 0.647586i \(-0.775779\pi\)
0.983698 0.179829i \(-0.0575545\pi\)
\(744\) 0 0
\(745\) −807.362 220.559i −1.08371 0.296052i
\(746\) 180.107 0.241431
\(747\) 0 0
\(748\) −112.410 112.410i −0.150280 0.150280i
\(749\) 614.409 + 354.729i 0.820306 + 0.473604i
\(750\) 0 0
\(751\) 709.826 + 1229.46i 0.945175 + 1.63709i 0.755401 + 0.655263i \(0.227442\pi\)
0.189774 + 0.981828i \(0.439224\pi\)
\(752\) 398.412 + 106.754i 0.529803 + 0.141960i
\(753\) 0 0
\(754\) −62.8262 36.2727i −0.0833239 0.0481071i
\(755\) 1206.80 317.058i 1.59841 0.419945i
\(756\) 0 0
\(757\) 582.278 582.278i 0.769192 0.769192i −0.208772 0.977964i \(-0.566947\pi\)
0.977964 + 0.208772i \(0.0669467\pi\)
\(758\) 130.062 34.8500i 0.171586 0.0459762i
\(759\) 0 0
\(760\) −377.686 1.84259i −0.496955 0.00242446i
\(761\) 73.5291 + 127.356i 0.0966217 + 0.167354i 0.910284 0.413984i \(-0.135863\pi\)
−0.813663 + 0.581337i \(0.802530\pi\)
\(762\) 0 0
\(763\) 145.035 38.8619i 0.190085 0.0509330i
\(764\) 904.087i 1.18336i
\(765\) 0 0
\(766\) 697.261 0.910262
\(767\) −43.7322 163.211i −0.0570172 0.212791i
\(768\) 0 0
\(769\) −798.259 + 460.875i −1.03805 + 0.599317i −0.919280 0.393605i \(-0.871228\pi\)
−0.118768 + 0.992922i \(0.537894\pi\)
\(770\) 97.9582 97.0070i 0.127218 0.125983i
\(771\) 0 0
\(772\) −29.9729 111.860i −0.0388250 0.144897i
\(773\) −646.946 646.946i −0.836928 0.836928i 0.151525 0.988453i \(-0.451582\pi\)
−0.988453 + 0.151525i \(0.951582\pi\)
\(774\) 0 0
\(775\) 952.666 537.697i 1.22925 0.693803i
\(776\) −120.597 + 208.880i −0.155409 + 0.269176i
\(777\) 0 0
\(778\) 10.3092 38.4744i 0.0132509 0.0494530i
\(779\) 18.3311 10.5835i 0.0235316 0.0135860i
\(780\) 0 0
\(781\) 82.6613 143.174i 0.105840 0.183321i
\(782\) 141.127 141.127i 0.180469 0.180469i
\(783\) 0 0
\(784\) 532.441i 0.679134i
\(785\) −124.197 217.559i −0.158212 0.277146i
\(786\) 0 0
\(787\) −105.372 28.2343i −0.133890 0.0358758i 0.191251 0.981541i \(-0.438745\pi\)
−0.325142 + 0.945665i \(0.605412\pi\)
\(788\) 261.129 974.548i 0.331382 1.23674i
\(789\) 0 0
\(790\) 275.899 157.501i 0.349239 0.199368i
\(791\) 372.115 0.470436
\(792\) 0 0
\(793\) 70.3755 + 70.3755i 0.0887459 + 0.0887459i
\(794\) 101.540 + 58.6241i 0.127884 + 0.0738339i
\(795\) 0 0
\(796\) 169.192 + 293.050i 0.212553 + 0.368153i
\(797\) −863.511 231.377i −1.08345 0.290310i −0.327443 0.944871i \(-0.606187\pi\)
−0.756009 + 0.654561i \(0.772854\pi\)
\(798\) 0 0
\(799\) 1064.04 + 614.324i 1.33171 + 0.768866i
\(800\) 217.239 780.214i 0.271548 0.975267i
\(801\) 0 0
\(802\) 189.040 189.040i 0.235711 0.235711i
\(803\) −181.475 + 48.6261i −0.225996 + 0.0605556i
\(804\) 0 0
\(805\) −449.681 454.090i −0.558609 0.564087i
\(806\) −59.6953 103.395i −0.0740637 0.128282i
\(807\) 0 0
\(808\) −615.946 + 165.042i −0.762310 + 0.204260i
\(809\) 920.002i 1.13721i 0.822611 + 0.568604i \(0.192516\pi\)
−0.822611 + 0.568604i \(0.807484\pi\)
\(810\) 0 0
\(811\) −174.196 −0.214792 −0.107396 0.994216i \(-0.534251\pi\)
−0.107396 + 0.994216i \(0.534251\pi\)
\(812\) −247.862 925.035i −0.305249 1.13921i
\(813\) 0 0
\(814\) −42.5901 + 24.5894i −0.0523220 + 0.0302081i
\(815\) 0.811319 166.301i 0.000995483 0.204050i
\(816\) 0 0
\(817\) 150.514 + 561.727i 0.184228 + 0.687548i
\(818\) 134.631 + 134.631i 0.164585 + 0.164585i
\(819\) 0 0
\(820\) 7.39500 + 28.1471i 0.00901829 + 0.0343257i
\(821\) −425.992 + 737.840i −0.518869 + 0.898708i 0.480890 + 0.876781i \(0.340314\pi\)
−0.999760 + 0.0219274i \(0.993020\pi\)
\(822\) 0 0
\(823\) −53.4313 + 199.408i −0.0649226 + 0.242295i −0.990760 0.135628i \(-0.956695\pi\)
0.925837 + 0.377923i \(0.123361\pi\)
\(824\) 151.866 87.6802i 0.184304 0.106408i
\(825\) 0 0
\(826\) −302.054 + 523.172i −0.365682 + 0.633380i
\(827\) 66.1579 66.1579i 0.0799974 0.0799974i −0.665976 0.745973i \(-0.731985\pi\)
0.745973 + 0.665976i \(0.231985\pi\)
\(828\) 0 0
\(829\) 71.1280i 0.0857998i 0.999079 + 0.0428999i \(0.0136596\pi\)
−0.999079 + 0.0428999i \(0.986340\pi\)
\(830\) −128.267 + 469.523i −0.154538 + 0.565690i
\(831\) 0 0
\(832\) −11.1954 2.99979i −0.0134560 0.00360552i
\(833\) −410.494 + 1531.98i −0.492790 + 1.83912i
\(834\) 0 0
\(835\) −274.307 480.513i −0.328512 0.575465i
\(836\) −94.0219 −0.112466
\(837\) 0 0
\(838\) −468.230 468.230i −0.558747 0.558747i
\(839\) 327.523 + 189.096i 0.390373 + 0.225382i 0.682322 0.731052i \(-0.260970\pi\)
−0.291949 + 0.956434i \(0.594304\pi\)
\(840\) 0 0
\(841\) −67.0308 116.101i −0.0797037 0.138051i
\(842\) −222.175 59.5317i −0.263866 0.0707027i
\(843\) 0 0
\(844\) 248.527 + 143.487i 0.294463 + 0.170008i
\(845\) 203.622 + 775.033i 0.240973 + 0.917199i
\(846\) 0 0
\(847\) −923.984 + 923.984i −1.09089 + 1.09089i
\(848\) −57.1106 + 15.3028i −0.0673475 + 0.0180457i
\(849\) 0 0
\(850\) 227.126 384.676i 0.267207 0.452560i
\(851\) 113.985 + 197.428i 0.133943 + 0.231996i
\(852\) 0 0
\(853\) 629.719 168.733i 0.738240 0.197811i 0.129944 0.991521i \(-0.458520\pi\)
0.608296 + 0.793711i \(0.291854\pi\)
\(854\) 355.832i 0.416665i
\(855\) 0 0
\(856\) −409.137 −0.477963
\(857\) 145.445 + 542.809i 0.169714 + 0.633382i 0.997392 + 0.0721782i \(0.0229950\pi\)
−0.827677 + 0.561204i \(0.810338\pi\)
\(858\) 0 0
\(859\) 468.778 270.649i 0.545725 0.315075i −0.201671 0.979453i \(-0.564637\pi\)
0.747396 + 0.664379i \(0.231304\pi\)
\(860\) −799.549 3.90070i −0.929709 0.00453570i
\(861\) 0 0
\(862\) −55.9407 208.774i −0.0648964 0.242197i
\(863\) −24.2188 24.2188i −0.0280635 0.0280635i 0.692936 0.720999i \(-0.256317\pi\)
−0.720999 + 0.692936i \(0.756317\pi\)
\(864\) 0 0
\(865\) 294.502 + 171.952i 0.340464 + 0.198788i
\(866\) 243.463 421.690i 0.281135 0.486940i
\(867\) 0 0
\(868\) 407.916 1522.36i 0.469950 1.75388i
\(869\) 155.529 89.7949i 0.178975 0.103331i
\(870\) 0 0
\(871\) −48.0438 + 83.2144i −0.0551594 + 0.0955389i
\(872\) −61.2285 + 61.2285i −0.0702162 + 0.0702162i
\(873\) 0 0
\(874\) 118.041i 0.135059i
\(875\) −1228.18 733.262i −1.40363 0.838014i
\(876\) 0 0
\(877\) −1200.73 321.735i −1.36913 0.366858i −0.501972 0.864884i \(-0.667392\pi\)
−0.867162 + 0.498025i \(0.834059\pi\)
\(878\) −154.206 + 575.505i −0.175633 + 0.655472i
\(879\) 0 0
\(880\) 22.3412 81.7804i 0.0253877 0.0929323i
\(881\) −1074.75 −1.21993 −0.609963 0.792430i \(-0.708816\pi\)
−0.609963 + 0.792430i \(0.708816\pi\)
\(882\) 0 0
\(883\) 285.903 + 285.903i 0.323786 + 0.323786i 0.850217 0.526432i \(-0.176470\pi\)
−0.526432 + 0.850217i \(0.676470\pi\)
\(884\) 155.899 + 90.0086i 0.176357 + 0.101820i
\(885\) 0 0
\(886\) −126.931 219.851i −0.143263 0.248139i
\(887\) −1036.58 277.751i −1.16864 0.313135i −0.378226 0.925713i \(-0.623466\pi\)
−0.790410 + 0.612578i \(0.790132\pi\)
\(888\) 0 0
\(889\) −1516.77 875.708i −1.70615 0.985048i
\(890\) −545.722 318.632i −0.613170 0.358014i
\(891\) 0 0
\(892\) 528.255 528.255i 0.592214 0.592214i
\(893\) 701.910 188.076i 0.786013 0.210612i
\(894\) 0 0
\(895\) −1079.75 + 1069.27i −1.20642 + 1.19471i
\(896\) −720.711 1248.31i −0.804365 1.39320i
\(897\) 0 0
\(898\) 170.043 45.5630i 0.189358 0.0507383i
\(899\) 1163.43i 1.29414i
\(900\) 0 0
\(901\) −176.122 −0.195473
\(902\) −1.15321 4.30382i −0.00127850 0.00477142i
\(903\) 0 0
\(904\) −185.844 + 107.297i −0.205580 + 0.118692i
\(905\) 607.165 + 613.119i 0.670901 + 0.677479i
\(906\) 0 0
\(907\) −442.672 1652.08i −0.488062 1.82147i −0.565858 0.824503i \(-0.691455\pi\)
0.0777954 0.996969i \(-0.475212\pi\)
\(908\) 273.374 + 273.374i 0.301073 + 0.301073i
\(909\) 0 0
\(910\) −78.7157 + 134.816i −0.0865008 + 0.148150i
\(911\) 203.177 351.913i 0.223026 0.386293i −0.732699 0.680553i \(-0.761740\pi\)
0.955726 + 0.294260i \(0.0950730\pi\)
\(912\) 0 0
\(913\) −71.2133 + 265.772i −0.0779993 + 0.291097i
\(914\) 250.056 144.370i 0.273584 0.157954i
\(915\) 0 0
\(916\) 518.280 897.687i 0.565808 0.980008i
\(917\) −53.2204 + 53.2204i −0.0580375 + 0.0580375i
\(918\) 0 0
\(919\) 975.596i 1.06158i −0.847502 0.530792i \(-0.821895\pi\)
0.847502 0.530792i \(-0.178105\pi\)
\(920\) 355.517 + 97.1218i 0.386431 + 0.105567i
\(921\) 0 0
\(922\) −196.847 52.7449i −0.213500 0.0572071i
\(923\) −48.4533 + 180.830i −0.0524955 + 0.195916i
\(924\) 0 0
\(925\) 357.272 + 364.313i 0.386240 + 0.393852i
\(926\) −266.694 −0.288007
\(927\) 0 0
\(928\) 609.065 + 609.065i 0.656320 + 0.656320i
\(929\) −1121.09 647.262i −1.20677 0.696730i −0.244719 0.969594i \(-0.578696\pi\)
−0.962052 + 0.272864i \(0.912029\pi\)
\(930\) 0 0
\(931\) 469.020 + 812.366i 0.503780 + 0.872573i
\(932\) 976.435 + 261.635i 1.04768 + 0.280724i
\(933\) 0 0
\(934\) −282.319 162.997i −0.302269 0.174515i
\(935\) 127.332 218.081i 0.136184 0.233242i
\(936\) 0 0
\(937\) −416.458 + 416.458i −0.444459 + 0.444459i −0.893507 0.449049i \(-0.851763\pi\)
0.449049 + 0.893507i \(0.351763\pi\)
\(938\) 331.834 88.9145i 0.353767 0.0947916i
\(939\) 0 0
\(940\) −4.87415 + 999.083i −0.00518527 + 1.06285i
\(941\) −6.23741 10.8035i −0.00662849 0.0114809i 0.862692 0.505729i \(-0.168777\pi\)
−0.869321 + 0.494249i \(0.835443\pi\)
\(942\) 0 0
\(943\) −19.9506 + 5.34574i −0.0211565 + 0.00566886i
\(944\) 371.489i 0.393526i
\(945\) 0 0
\(946\) 122.415 0.129403
\(947\) 307.908 + 1149.13i 0.325140 + 1.21344i 0.914171 + 0.405329i \(0.132843\pi\)
−0.589031 + 0.808111i \(0.700490\pi\)
\(948\) 0 0
\(949\) 184.246 106.375i 0.194148 0.112091i
\(950\) −65.8893 255.862i −0.0693571 0.269329i
\(951\) 0 0
\(952\) −378.272 1411.73i −0.397345 1.48291i
\(953\) 943.370 + 943.370i 0.989895 + 0.989895i 0.999949 0.0100546i \(-0.00320052\pi\)
−0.0100546 + 0.999949i \(0.503201\pi\)
\(954\) 0 0
\(955\) −1389.04 + 364.939i −1.45449 + 0.382135i
\(956\) 224.324 388.540i 0.234648 0.406423i
\(957\) 0 0
\(958\) −209.149 + 780.555i −0.218318 + 0.814775i
\(959\) 863.033 498.272i 0.899930 0.519575i
\(960\) 0 0
\(961\) −476.853 + 825.933i −0.496204 + 0.859451i
\(962\) 39.3784 39.3784i 0.0409339 0.0409339i
\(963\) 0 0
\(964\) 1440.74i 1.49454i
\(965\) 159.764 91.2033i 0.165558 0.0945112i
\(966\) 0 0
\(967\) 266.681 + 71.4571i 0.275782 + 0.0738956i 0.394059 0.919085i \(-0.371070\pi\)
−0.118277 + 0.992981i \(0.537737\pi\)
\(968\) 195.037 727.888i 0.201484 0.751950i
\(969\) 0 0
\(970\) −162.761 44.4639i −0.167795 0.0458391i
\(971\) 311.097 0.320388 0.160194 0.987086i \(-0.448788\pi\)
0.160194 + 0.987086i \(0.448788\pi\)
\(972\) 0 0
\(973\) −707.766 707.766i −0.727406 0.727406i
\(974\) 273.087 + 157.667i 0.280377 + 0.161876i
\(975\) 0 0
\(976\) −109.407 189.499i −0.112098 0.194159i
\(977\) −608.490 163.044i −0.622815 0.166883i −0.0664079 0.997793i \(-0.521154\pi\)
−0.556407 + 0.830910i \(0.687821\pi\)
\(978\) 0 0
\(979\) −309.371 178.616i −0.316008 0.182447i
\(980\) −1247.37 + 327.719i −1.27283 + 0.334407i
\(981\) 0 0
\(982\) 18.5905 18.5905i 0.0189313 0.0189313i
\(983\) −305.307 + 81.8068i −0.310587 + 0.0832216i −0.410746 0.911750i \(-0.634732\pi\)
0.100159 + 0.994971i \(0.468065\pi\)
\(984\) 0 0
\(985\) 1602.70 + 7.81899i 1.62711 + 0.00793806i
\(986\) 237.553 + 411.453i 0.240926 + 0.417295i
\(987\) 0 0
\(988\) 102.841 27.5563i 0.104091 0.0278910i
\(989\) 567.460i 0.573771i
\(990\) 0 0
\(991\) −1401.99 −1.41472 −0.707362 0.706852i \(-0.750115\pi\)
−0.707362 + 0.706852i \(0.750115\pi\)
\(992\) 366.889 + 1369.25i 0.369848 + 1.38029i
\(993\) 0 0
\(994\) 579.651 334.662i 0.583150 0.336682i
\(995\) −381.947 + 378.238i −0.383866 + 0.380139i
\(996\) 0 0
\(997\) 349.692 + 1305.07i 0.350745 + 1.30900i 0.885756 + 0.464152i \(0.153641\pi\)
−0.535011 + 0.844845i \(0.679693\pi\)
\(998\) −309.014 309.014i −0.309633 0.309633i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.l.a.73.4 40
3.2 odd 2 45.3.k.a.43.7 yes 40
5.2 odd 4 inner 135.3.l.a.127.7 40
9.2 odd 6 405.3.g.h.163.7 20
9.4 even 3 inner 135.3.l.a.118.7 40
9.5 odd 6 45.3.k.a.13.4 yes 40
9.7 even 3 405.3.g.g.163.4 20
15.2 even 4 45.3.k.a.7.4 40
15.8 even 4 225.3.o.b.7.7 40
15.14 odd 2 225.3.o.b.43.4 40
45.2 even 12 405.3.g.h.82.7 20
45.7 odd 12 405.3.g.g.82.4 20
45.14 odd 6 225.3.o.b.193.7 40
45.22 odd 12 inner 135.3.l.a.37.4 40
45.23 even 12 225.3.o.b.157.4 40
45.32 even 12 45.3.k.a.22.7 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.4 40 15.2 even 4
45.3.k.a.13.4 yes 40 9.5 odd 6
45.3.k.a.22.7 yes 40 45.32 even 12
45.3.k.a.43.7 yes 40 3.2 odd 2
135.3.l.a.37.4 40 45.22 odd 12 inner
135.3.l.a.73.4 40 1.1 even 1 trivial
135.3.l.a.118.7 40 9.4 even 3 inner
135.3.l.a.127.7 40 5.2 odd 4 inner
225.3.o.b.7.7 40 15.8 even 4
225.3.o.b.43.4 40 15.14 odd 2
225.3.o.b.157.4 40 45.23 even 12
225.3.o.b.193.7 40 45.14 odd 6
405.3.g.g.82.4 20 45.7 odd 12
405.3.g.g.163.4 20 9.7 even 3
405.3.g.h.82.7 20 45.2 even 12
405.3.g.h.163.7 20 9.2 odd 6