Properties

Label 135.3.l.a.118.5
Level $135$
Weight $3$
Character 135.118
Analytic conductor $3.678$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,3,Mod(37,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 118.5
Character \(\chi\) \(=\) 135.118
Dual form 135.3.l.a.127.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.183646 + 0.0492077i) q^{2} +(-3.43280 - 1.98193i) q^{4} +(1.61810 + 4.73094i) q^{5} +(8.70492 + 2.33248i) q^{7} +(-1.07064 - 1.07064i) q^{8} +(0.0643587 + 0.948439i) q^{10} +(7.04110 + 12.1955i) q^{11} +(12.9444 - 3.46845i) q^{13} +(1.48385 + 0.856699i) q^{14} +(7.78377 + 13.4819i) q^{16} +(0.740694 - 0.740694i) q^{17} -7.09073i q^{19} +(3.82175 - 19.4473i) q^{20} +(0.692953 + 2.58614i) q^{22} +(-19.0499 + 5.10441i) q^{23} +(-19.7635 + 15.3103i) q^{25} +2.54786 q^{26} +(-25.2594 - 25.2594i) q^{28} +(-6.18301 + 3.56976i) q^{29} +(13.0783 - 22.6522i) q^{31} +(2.33357 + 8.70902i) q^{32} +(0.172473 - 0.0995774i) q^{34} +(3.05064 + 44.9566i) q^{35} +(-23.0151 + 23.0151i) q^{37} +(0.348919 - 1.30218i) q^{38} +(3.33274 - 6.79756i) q^{40} +(36.0387 - 62.4209i) q^{41} +(3.22835 - 12.0484i) q^{43} -55.8198i q^{44} -3.74961 q^{46} +(-51.8935 - 13.9048i) q^{47} +(27.9000 + 16.1081i) q^{49} +(-4.38286 + 1.83915i) q^{50} +(-51.3098 - 13.7484i) q^{52} +(-17.2907 - 17.2907i) q^{53} +(-46.3031 + 53.0446i) q^{55} +(-6.82262 - 11.8171i) q^{56} +(-1.31114 + 0.351320i) q^{58} +(-27.5407 - 15.9006i) q^{59} +(40.7317 + 70.5494i) q^{61} +(3.51643 - 3.51643i) q^{62} -60.5560i q^{64} +(37.3544 + 55.6269i) q^{65} +(-17.1864 - 64.1404i) q^{67} +(-4.01065 + 1.07465i) q^{68} +(-1.65197 + 8.40620i) q^{70} +36.3928 q^{71} +(2.90991 + 2.90991i) q^{73} +(-5.35915 + 3.09411i) q^{74} +(-14.0533 + 24.3410i) q^{76} +(32.8464 + 122.584i) q^{77} +(71.8823 - 41.5012i) q^{79} +(-51.1870 + 58.6396i) q^{80} +(9.68994 - 9.68994i) q^{82} +(13.7671 - 51.3796i) q^{83} +(4.70269 + 2.30566i) q^{85} +(1.18574 - 2.05377i) q^{86} +(5.51857 - 20.5956i) q^{88} +22.5436i q^{89} +120.770 q^{91} +(75.5111 + 20.2331i) q^{92} +(-8.84580 - 5.10712i) q^{94} +(33.5458 - 11.4735i) q^{95} +(33.7192 + 9.03502i) q^{97} +(4.33107 + 4.33107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + 2 q^{5} - 2 q^{7} + 24 q^{8} - 8 q^{10} - 8 q^{11} - 2 q^{13} + 28 q^{16} - 28 q^{17} + 114 q^{20} + 14 q^{22} - 82 q^{23} - 8 q^{25} + 112 q^{26} - 88 q^{28} - 4 q^{31} + 14 q^{32} - 352 q^{35}+ \cdots + 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.183646 + 0.0492077i 0.0918228 + 0.0246039i 0.304438 0.952532i \(-0.401531\pi\)
−0.212615 + 0.977136i \(0.568198\pi\)
\(3\) 0 0
\(4\) −3.43280 1.98193i −0.858199 0.495482i
\(5\) 1.61810 + 4.73094i 0.323620 + 0.946187i
\(6\) 0 0
\(7\) 8.70492 + 2.33248i 1.24356 + 0.333211i 0.819846 0.572585i \(-0.194059\pi\)
0.423715 + 0.905796i \(0.360726\pi\)
\(8\) −1.07064 1.07064i −0.133831 0.133831i
\(9\) 0 0
\(10\) 0.0643587 + 0.948439i 0.00643587 + 0.0948439i
\(11\) 7.04110 + 12.1955i 0.640100 + 1.10869i 0.985410 + 0.170197i \(0.0544405\pi\)
−0.345310 + 0.938489i \(0.612226\pi\)
\(12\) 0 0
\(13\) 12.9444 3.46845i 0.995725 0.266804i 0.276071 0.961137i \(-0.410967\pi\)
0.719653 + 0.694333i \(0.244301\pi\)
\(14\) 1.48385 + 0.856699i 0.105989 + 0.0611928i
\(15\) 0 0
\(16\) 7.78377 + 13.4819i 0.486486 + 0.842618i
\(17\) 0.740694 0.740694i 0.0435702 0.0435702i −0.684986 0.728556i \(-0.740192\pi\)
0.728556 + 0.684986i \(0.240192\pi\)
\(18\) 0 0
\(19\) 7.09073i 0.373196i −0.982436 0.186598i \(-0.940254\pi\)
0.982436 0.186598i \(-0.0597463\pi\)
\(20\) 3.82175 19.4473i 0.191088 0.972365i
\(21\) 0 0
\(22\) 0.692953 + 2.58614i 0.0314979 + 0.117552i
\(23\) −19.0499 + 5.10441i −0.828257 + 0.221931i −0.647953 0.761680i \(-0.724375\pi\)
−0.180304 + 0.983611i \(0.557708\pi\)
\(24\) 0 0
\(25\) −19.7635 + 15.3103i −0.790540 + 0.612410i
\(26\) 2.54786 0.0979947
\(27\) 0 0
\(28\) −25.2594 25.2594i −0.902123 0.902123i
\(29\) −6.18301 + 3.56976i −0.213207 + 0.123095i −0.602801 0.797892i \(-0.705949\pi\)
0.389594 + 0.920987i \(0.372615\pi\)
\(30\) 0 0
\(31\) 13.0783 22.6522i 0.421879 0.730716i −0.574244 0.818684i \(-0.694704\pi\)
0.996123 + 0.0879678i \(0.0280373\pi\)
\(32\) 2.33357 + 8.70902i 0.0729242 + 0.272157i
\(33\) 0 0
\(34\) 0.172473 0.0995774i 0.00507274 0.00292875i
\(35\) 3.05064 + 44.9566i 0.0871612 + 1.28447i
\(36\) 0 0
\(37\) −23.0151 + 23.0151i −0.622031 + 0.622031i −0.946050 0.324020i \(-0.894966\pi\)
0.324020 + 0.946050i \(0.394966\pi\)
\(38\) 0.348919 1.30218i 0.00918207 0.0342680i
\(39\) 0 0
\(40\) 3.33274 6.79756i 0.0833185 0.169939i
\(41\) 36.0387 62.4209i 0.878993 1.52246i 0.0265459 0.999648i \(-0.491549\pi\)
0.852447 0.522813i \(-0.175117\pi\)
\(42\) 0 0
\(43\) 3.22835 12.0484i 0.0750779 0.280195i −0.918173 0.396180i \(-0.870336\pi\)
0.993251 + 0.115985i \(0.0370025\pi\)
\(44\) 55.8198i 1.26863i
\(45\) 0 0
\(46\) −3.74961 −0.0815133
\(47\) −51.8935 13.9048i −1.10412 0.295847i −0.339677 0.940542i \(-0.610318\pi\)
−0.764440 + 0.644695i \(0.776985\pi\)
\(48\) 0 0
\(49\) 27.9000 + 16.1081i 0.569388 + 0.328736i
\(50\) −4.38286 + 1.83915i −0.0876573 + 0.0367829i
\(51\) 0 0
\(52\) −51.3098 13.7484i −0.986727 0.264393i
\(53\) −17.2907 17.2907i −0.326240 0.326240i 0.524915 0.851155i \(-0.324097\pi\)
−0.851155 + 0.524915i \(0.824097\pi\)
\(54\) 0 0
\(55\) −46.3031 + 53.0446i −0.841875 + 0.964447i
\(56\) −6.82262 11.8171i −0.121833 0.211020i
\(57\) 0 0
\(58\) −1.31114 + 0.351320i −0.0226059 + 0.00605724i
\(59\) −27.5407 15.9006i −0.466792 0.269502i 0.248104 0.968733i \(-0.420193\pi\)
−0.714896 + 0.699231i \(0.753526\pi\)
\(60\) 0 0
\(61\) 40.7317 + 70.5494i 0.667733 + 1.15655i 0.978537 + 0.206073i \(0.0660684\pi\)
−0.310804 + 0.950474i \(0.600598\pi\)
\(62\) 3.51643 3.51643i 0.0567166 0.0567166i
\(63\) 0 0
\(64\) 60.5560i 0.946187i
\(65\) 37.3544 + 55.6269i 0.574683 + 0.855799i
\(66\) 0 0
\(67\) −17.1864 64.1404i −0.256513 0.957319i −0.967243 0.253854i \(-0.918302\pi\)
0.710730 0.703465i \(-0.248365\pi\)
\(68\) −4.01065 + 1.07465i −0.0589802 + 0.0158037i
\(69\) 0 0
\(70\) −1.65197 + 8.40620i −0.0235996 + 0.120089i
\(71\) 36.3928 0.512574 0.256287 0.966601i \(-0.417501\pi\)
0.256287 + 0.966601i \(0.417501\pi\)
\(72\) 0 0
\(73\) 2.90991 + 2.90991i 0.0398617 + 0.0398617i 0.726757 0.686895i \(-0.241027\pi\)
−0.686895 + 0.726757i \(0.741027\pi\)
\(74\) −5.35915 + 3.09411i −0.0724210 + 0.0418123i
\(75\) 0 0
\(76\) −14.0533 + 24.3410i −0.184912 + 0.320277i
\(77\) 32.8464 + 122.584i 0.426577 + 1.59201i
\(78\) 0 0
\(79\) 71.8823 41.5012i 0.909902 0.525332i 0.0295025 0.999565i \(-0.490608\pi\)
0.880400 + 0.474232i \(0.157274\pi\)
\(80\) −51.1870 + 58.6396i −0.639838 + 0.732995i
\(81\) 0 0
\(82\) 9.68994 9.68994i 0.118170 0.118170i
\(83\) 13.7671 51.3796i 0.165869 0.619031i −0.832059 0.554687i \(-0.812838\pi\)
0.997928 0.0643438i \(-0.0204954\pi\)
\(84\) 0 0
\(85\) 4.70269 + 2.30566i 0.0553258 + 0.0271254i
\(86\) 1.18574 2.05377i 0.0137877 0.0238811i
\(87\) 0 0
\(88\) 5.51857 20.5956i 0.0627111 0.234041i
\(89\) 22.5436i 0.253299i 0.991948 + 0.126650i \(0.0404224\pi\)
−0.991948 + 0.126650i \(0.959578\pi\)
\(90\) 0 0
\(91\) 120.770 1.32715
\(92\) 75.5111 + 20.2331i 0.820773 + 0.219925i
\(93\) 0 0
\(94\) −8.84580 5.10712i −0.0941042 0.0543311i
\(95\) 33.5458 11.4735i 0.353114 0.120774i
\(96\) 0 0
\(97\) 33.7192 + 9.03502i 0.347620 + 0.0931446i 0.428405 0.903587i \(-0.359076\pi\)
−0.0807843 + 0.996732i \(0.525742\pi\)
\(98\) 4.33107 + 4.33107i 0.0441946 + 0.0441946i
\(99\) 0 0
\(100\) 98.1879 13.3872i 0.981879 0.133872i
\(101\) 29.7283 + 51.4909i 0.294340 + 0.509811i 0.974831 0.222945i \(-0.0715670\pi\)
−0.680491 + 0.732756i \(0.738234\pi\)
\(102\) 0 0
\(103\) −76.0184 + 20.3691i −0.738043 + 0.197758i −0.608208 0.793778i \(-0.708111\pi\)
−0.129835 + 0.991536i \(0.541445\pi\)
\(104\) −17.5723 10.1454i −0.168965 0.0975519i
\(105\) 0 0
\(106\) −2.32453 4.02620i −0.0219295 0.0379830i
\(107\) 50.6865 50.6865i 0.473706 0.473706i −0.429406 0.903112i \(-0.641277\pi\)
0.903112 + 0.429406i \(0.141277\pi\)
\(108\) 0 0
\(109\) 47.8364i 0.438866i 0.975628 + 0.219433i \(0.0704208\pi\)
−0.975628 + 0.219433i \(0.929579\pi\)
\(110\) −11.1136 + 7.46294i −0.101032 + 0.0678449i
\(111\) 0 0
\(112\) 36.3109 + 135.514i 0.324205 + 1.20995i
\(113\) −168.318 + 45.1005i −1.48954 + 0.399120i −0.909580 0.415529i \(-0.863597\pi\)
−0.579955 + 0.814648i \(0.696930\pi\)
\(114\) 0 0
\(115\) −54.9733 81.8645i −0.478029 0.711865i
\(116\) 28.3000 0.243966
\(117\) 0 0
\(118\) −4.27530 4.27530i −0.0362313 0.0362313i
\(119\) 8.17534 4.72003i 0.0687003 0.0396641i
\(120\) 0 0
\(121\) −38.6542 + 66.9510i −0.319456 + 0.553314i
\(122\) 4.00863 + 14.9604i 0.0328576 + 0.122626i
\(123\) 0 0
\(124\) −89.7900 + 51.8403i −0.724113 + 0.418067i
\(125\) −104.411 68.7263i −0.835289 0.549810i
\(126\) 0 0
\(127\) 16.3333 16.3333i 0.128608 0.128608i −0.639873 0.768481i \(-0.721013\pi\)
0.768481 + 0.639873i \(0.221013\pi\)
\(128\) 12.3141 45.9569i 0.0962041 0.359038i
\(129\) 0 0
\(130\) 4.12270 + 12.0538i 0.0317130 + 0.0927213i
\(131\) 27.6049 47.8130i 0.210724 0.364985i −0.741217 0.671265i \(-0.765751\pi\)
0.951941 + 0.306280i \(0.0990845\pi\)
\(132\) 0 0
\(133\) 16.5390 61.7243i 0.124353 0.464092i
\(134\) 12.6248i 0.0942150i
\(135\) 0 0
\(136\) −1.58604 −0.0116621
\(137\) −189.371 50.7417i −1.38227 0.370377i −0.510323 0.859983i \(-0.670474\pi\)
−0.871944 + 0.489606i \(0.837141\pi\)
\(138\) 0 0
\(139\) −82.5364 47.6524i −0.593787 0.342823i 0.172806 0.984956i \(-0.444717\pi\)
−0.766594 + 0.642133i \(0.778050\pi\)
\(140\) 78.6285 160.373i 0.561632 1.14552i
\(141\) 0 0
\(142\) 6.68338 + 1.79081i 0.0470660 + 0.0126113i
\(143\) 133.443 + 133.443i 0.933165 + 0.933165i
\(144\) 0 0
\(145\) −26.8931 23.4752i −0.185469 0.161898i
\(146\) 0.391202 + 0.677581i 0.00267946 + 0.00464097i
\(147\) 0 0
\(148\) 124.621 33.3920i 0.842031 0.225622i
\(149\) 225.341 + 130.101i 1.51235 + 0.873158i 0.999896 + 0.0144460i \(0.00459846\pi\)
0.512458 + 0.858712i \(0.328735\pi\)
\(150\) 0 0
\(151\) −128.914 223.285i −0.853735 1.47871i −0.877814 0.479002i \(-0.840999\pi\)
0.0240792 0.999710i \(-0.492335\pi\)
\(152\) −7.59165 + 7.59165i −0.0499451 + 0.0499451i
\(153\) 0 0
\(154\) 24.1284i 0.156678i
\(155\) 128.328 + 25.2188i 0.827923 + 0.162702i
\(156\) 0 0
\(157\) −12.0301 44.8971i −0.0766251 0.285969i 0.916972 0.398952i \(-0.130626\pi\)
−0.993597 + 0.112983i \(0.963959\pi\)
\(158\) 15.2431 4.08436i 0.0964750 0.0258504i
\(159\) 0 0
\(160\) −37.4259 + 25.1321i −0.233912 + 0.157075i
\(161\) −177.734 −1.10394
\(162\) 0 0
\(163\) 76.8331 + 76.8331i 0.471369 + 0.471369i 0.902357 0.430989i \(-0.141835\pi\)
−0.430989 + 0.902357i \(0.641835\pi\)
\(164\) −247.427 + 142.852i −1.50870 + 0.871050i
\(165\) 0 0
\(166\) 5.05654 8.75819i 0.0304611 0.0527602i
\(167\) −80.7212 301.256i −0.483360 1.80393i −0.587333 0.809346i \(-0.699822\pi\)
0.103972 0.994580i \(-0.466845\pi\)
\(168\) 0 0
\(169\) 9.16964 5.29409i 0.0542582 0.0313260i
\(170\) 0.750173 + 0.654833i 0.00441278 + 0.00385196i
\(171\) 0 0
\(172\) −34.9612 + 34.9612i −0.203263 + 0.203263i
\(173\) 51.6158 192.633i 0.298357 1.11348i −0.640157 0.768244i \(-0.721131\pi\)
0.938514 0.345240i \(-0.112203\pi\)
\(174\) 0 0
\(175\) −207.751 + 87.1767i −1.18715 + 0.498153i
\(176\) −109.613 + 189.855i −0.622799 + 1.07872i
\(177\) 0 0
\(178\) −1.10932 + 4.14004i −0.00623214 + 0.0232587i
\(179\) 254.120i 1.41967i −0.704370 0.709833i \(-0.748770\pi\)
0.704370 0.709833i \(-0.251230\pi\)
\(180\) 0 0
\(181\) −236.998 −1.30938 −0.654691 0.755896i \(-0.727201\pi\)
−0.654691 + 0.755896i \(0.727201\pi\)
\(182\) 22.1789 + 5.94283i 0.121862 + 0.0326529i
\(183\) 0 0
\(184\) 25.8607 + 14.9307i 0.140547 + 0.0811450i
\(185\) −146.124 71.6423i −0.789859 0.387256i
\(186\) 0 0
\(187\) 14.2485 + 3.81787i 0.0761950 + 0.0204164i
\(188\) 150.582 + 150.582i 0.800966 + 0.800966i
\(189\) 0 0
\(190\) 6.72513 0.456350i 0.0353954 0.00240184i
\(191\) −27.2962 47.2784i −0.142912 0.247531i 0.785680 0.618633i \(-0.212313\pi\)
−0.928592 + 0.371102i \(0.878980\pi\)
\(192\) 0 0
\(193\) −193.408 + 51.8234i −1.00211 + 0.268515i −0.722330 0.691548i \(-0.756929\pi\)
−0.279782 + 0.960063i \(0.590262\pi\)
\(194\) 5.74779 + 3.31849i 0.0296278 + 0.0171056i
\(195\) 0 0
\(196\) −63.8500 110.591i −0.325765 0.564242i
\(197\) −18.5367 + 18.5367i −0.0940948 + 0.0940948i −0.752587 0.658492i \(-0.771194\pi\)
0.658492 + 0.752587i \(0.271194\pi\)
\(198\) 0 0
\(199\) 206.081i 1.03558i 0.855507 + 0.517792i \(0.173246\pi\)
−0.855507 + 0.517792i \(0.826754\pi\)
\(200\) 37.5515 + 4.76784i 0.187758 + 0.0238392i
\(201\) 0 0
\(202\) 2.92572 + 10.9190i 0.0144838 + 0.0540542i
\(203\) −62.1490 + 16.6528i −0.306153 + 0.0820334i
\(204\) 0 0
\(205\) 353.623 + 69.4936i 1.72499 + 0.338993i
\(206\) −14.9628 −0.0726348
\(207\) 0 0
\(208\) 147.518 + 147.518i 0.709219 + 0.709219i
\(209\) 86.4753 49.9266i 0.413758 0.238883i
\(210\) 0 0
\(211\) 121.373 210.225i 0.575230 0.996327i −0.420787 0.907159i \(-0.638246\pi\)
0.996017 0.0891675i \(-0.0284206\pi\)
\(212\) 25.0866 + 93.6244i 0.118333 + 0.441625i
\(213\) 0 0
\(214\) 11.8025 6.81419i 0.0551520 0.0318420i
\(215\) 62.2238 4.22235i 0.289413 0.0196389i
\(216\) 0 0
\(217\) 166.681 166.681i 0.768115 0.768115i
\(218\) −2.35392 + 8.78496i −0.0107978 + 0.0402980i
\(219\) 0 0
\(220\) 264.080 90.3220i 1.20036 0.410555i
\(221\) 7.01880 12.1569i 0.0317593 0.0550087i
\(222\) 0 0
\(223\) −53.2572 + 198.758i −0.238821 + 0.891293i 0.737568 + 0.675273i \(0.235974\pi\)
−0.976389 + 0.216020i \(0.930692\pi\)
\(224\) 81.2544i 0.362743i
\(225\) 0 0
\(226\) −33.1301 −0.146593
\(227\) 179.821 + 48.1829i 0.792163 + 0.212259i 0.632140 0.774854i \(-0.282177\pi\)
0.160022 + 0.987113i \(0.448843\pi\)
\(228\) 0 0
\(229\) 156.704 + 90.4733i 0.684298 + 0.395080i 0.801473 0.598031i \(-0.204050\pi\)
−0.117174 + 0.993111i \(0.537384\pi\)
\(230\) −6.06725 17.7392i −0.0263793 0.0771268i
\(231\) 0 0
\(232\) 10.4417 + 2.79786i 0.0450075 + 0.0120597i
\(233\) 120.230 + 120.230i 0.516010 + 0.516010i 0.916362 0.400351i \(-0.131112\pi\)
−0.400351 + 0.916362i \(0.631112\pi\)
\(234\) 0 0
\(235\) −18.1861 268.004i −0.0773877 1.14044i
\(236\) 63.0278 + 109.167i 0.267067 + 0.462573i
\(237\) 0 0
\(238\) 1.73363 0.464524i 0.00728415 0.00195178i
\(239\) 332.123 + 191.751i 1.38963 + 0.802306i 0.993274 0.115790i \(-0.0369398\pi\)
0.396360 + 0.918095i \(0.370273\pi\)
\(240\) 0 0
\(241\) 162.944 + 282.226i 0.676114 + 1.17106i 0.976142 + 0.217134i \(0.0696708\pi\)
−0.300028 + 0.953931i \(0.596996\pi\)
\(242\) −10.3932 + 10.3932i −0.0429470 + 0.0429470i
\(243\) 0 0
\(244\) 322.909i 1.32340i
\(245\) −31.0612 + 158.058i −0.126781 + 0.645133i
\(246\) 0 0
\(247\) −24.5938 91.7854i −0.0995702 0.371601i
\(248\) −38.2546 + 10.2503i −0.154252 + 0.0413318i
\(249\) 0 0
\(250\) −15.7928 17.7591i −0.0631712 0.0710365i
\(251\) −428.941 −1.70893 −0.854465 0.519509i \(-0.826115\pi\)
−0.854465 + 0.519509i \(0.826115\pi\)
\(252\) 0 0
\(253\) −196.383 196.383i −0.776219 0.776219i
\(254\) 3.80325 2.19581i 0.0149734 0.00864492i
\(255\) 0 0
\(256\) −116.589 + 201.938i −0.455426 + 0.788821i
\(257\) 95.3527 + 355.861i 0.371022 + 1.38467i 0.859070 + 0.511857i \(0.171042\pi\)
−0.488048 + 0.872817i \(0.662291\pi\)
\(258\) 0 0
\(259\) −254.027 + 146.663i −0.980800 + 0.566265i
\(260\) −17.9815 264.990i −0.0691597 1.01919i
\(261\) 0 0
\(262\) 7.42228 7.42228i 0.0283293 0.0283293i
\(263\) −17.0763 + 63.7296i −0.0649289 + 0.242318i −0.990761 0.135616i \(-0.956699\pi\)
0.925833 + 0.377934i \(0.123365\pi\)
\(264\) 0 0
\(265\) 53.8231 109.779i 0.203106 0.414262i
\(266\) 6.07462 10.5216i 0.0228369 0.0395547i
\(267\) 0 0
\(268\) −68.1242 + 254.243i −0.254195 + 0.948668i
\(269\) 146.927i 0.546197i 0.961986 + 0.273099i \(0.0880485\pi\)
−0.961986 + 0.273099i \(0.911951\pi\)
\(270\) 0 0
\(271\) −45.0155 −0.166109 −0.0830544 0.996545i \(-0.526468\pi\)
−0.0830544 + 0.996545i \(0.526468\pi\)
\(272\) 15.7513 + 4.22056i 0.0579094 + 0.0155168i
\(273\) 0 0
\(274\) −32.2802 18.6370i −0.117811 0.0680182i
\(275\) −325.874 133.226i −1.18500 0.484457i
\(276\) 0 0
\(277\) 153.339 + 41.0870i 0.553570 + 0.148329i 0.524751 0.851256i \(-0.324159\pi\)
0.0288193 + 0.999585i \(0.490825\pi\)
\(278\) −12.8126 12.8126i −0.0460885 0.0460885i
\(279\) 0 0
\(280\) 44.8664 51.3987i 0.160237 0.183567i
\(281\) 33.0937 + 57.3199i 0.117771 + 0.203986i 0.918884 0.394528i \(-0.129092\pi\)
−0.801113 + 0.598513i \(0.795758\pi\)
\(282\) 0 0
\(283\) 388.793 104.177i 1.37383 0.368116i 0.504952 0.863148i \(-0.331510\pi\)
0.868875 + 0.495032i \(0.164844\pi\)
\(284\) −124.929 72.1278i −0.439891 0.253971i
\(285\) 0 0
\(286\) 17.9397 + 31.0726i 0.0627264 + 0.108645i
\(287\) 459.310 459.310i 1.60038 1.60038i
\(288\) 0 0
\(289\) 287.903i 0.996203i
\(290\) −3.78363 5.63446i −0.0130470 0.0194292i
\(291\) 0 0
\(292\) −4.22190 15.7563i −0.0144586 0.0539600i
\(293\) 209.736 56.1985i 0.715821 0.191804i 0.117515 0.993071i \(-0.462507\pi\)
0.598306 + 0.801267i \(0.295841\pi\)
\(294\) 0 0
\(295\) 30.6612 156.022i 0.103936 0.528889i
\(296\) 49.2820 0.166493
\(297\) 0 0
\(298\) 34.9809 + 34.9809i 0.117386 + 0.117386i
\(299\) −228.886 + 132.147i −0.765504 + 0.441964i
\(300\) 0 0
\(301\) 56.2051 97.3500i 0.186728 0.323422i
\(302\) −12.6871 47.3490i −0.0420103 0.156785i
\(303\) 0 0
\(304\) 95.5965 55.1926i 0.314462 0.181555i
\(305\) −267.857 + 306.855i −0.878218 + 1.00608i
\(306\) 0 0
\(307\) −219.096 + 219.096i −0.713666 + 0.713666i −0.967300 0.253634i \(-0.918374\pi\)
0.253634 + 0.967300i \(0.418374\pi\)
\(308\) 130.198 485.907i 0.422722 1.57762i
\(309\) 0 0
\(310\) 22.3259 + 10.9461i 0.0720191 + 0.0353099i
\(311\) 68.8478 119.248i 0.221376 0.383434i −0.733850 0.679311i \(-0.762279\pi\)
0.955226 + 0.295877i \(0.0956120\pi\)
\(312\) 0 0
\(313\) 1.70804 6.37451i 0.00545701 0.0203658i −0.963144 0.268988i \(-0.913311\pi\)
0.968601 + 0.248622i \(0.0799776\pi\)
\(314\) 8.83713i 0.0281437i
\(315\) 0 0
\(316\) −329.010 −1.04117
\(317\) −427.280 114.489i −1.34789 0.361165i −0.488532 0.872546i \(-0.662467\pi\)
−0.859354 + 0.511381i \(0.829134\pi\)
\(318\) 0 0
\(319\) −87.0704 50.2701i −0.272948 0.157587i
\(320\) 286.486 97.9856i 0.895270 0.306205i
\(321\) 0 0
\(322\) −32.6401 8.74588i −0.101367 0.0271611i
\(323\) −5.25206 5.25206i −0.0162603 0.0162603i
\(324\) 0 0
\(325\) −202.724 + 266.731i −0.623767 + 0.820711i
\(326\) 10.3293 + 17.8909i 0.0316849 + 0.0548799i
\(327\) 0 0
\(328\) −105.415 + 28.2459i −0.321388 + 0.0861156i
\(329\) −419.296 242.081i −1.27446 0.735808i
\(330\) 0 0
\(331\) −130.851 226.641i −0.395321 0.684716i 0.597821 0.801630i \(-0.296033\pi\)
−0.993142 + 0.116913i \(0.962700\pi\)
\(332\) −149.090 + 149.090i −0.449067 + 0.449067i
\(333\) 0 0
\(334\) 59.2964i 0.177534i
\(335\) 275.635 185.093i 0.822791 0.552517i
\(336\) 0 0
\(337\) −37.7355 140.831i −0.111975 0.417895i 0.887068 0.461639i \(-0.152738\pi\)
−0.999043 + 0.0437433i \(0.986072\pi\)
\(338\) 1.94447 0.521020i 0.00575288 0.00154148i
\(339\) 0 0
\(340\) −11.5737 17.2352i −0.0340404 0.0506919i
\(341\) 368.341 1.08018
\(342\) 0 0
\(343\) −106.954 106.954i −0.311820 0.311820i
\(344\) −16.3559 + 9.44310i −0.0475463 + 0.0274509i
\(345\) 0 0
\(346\) 18.9580 32.8363i 0.0547920 0.0949025i
\(347\) 2.62052 + 9.77990i 0.00755192 + 0.0281842i 0.969599 0.244699i \(-0.0786893\pi\)
−0.962047 + 0.272884i \(0.912023\pi\)
\(348\) 0 0
\(349\) 94.1070 54.3327i 0.269648 0.155681i −0.359080 0.933307i \(-0.616909\pi\)
0.628727 + 0.777626i \(0.283576\pi\)
\(350\) −42.4423 + 5.78670i −0.121264 + 0.0165334i
\(351\) 0 0
\(352\) −89.7803 + 89.7803i −0.255058 + 0.255058i
\(353\) −125.168 + 467.133i −0.354583 + 1.32332i 0.526425 + 0.850221i \(0.323532\pi\)
−0.881008 + 0.473101i \(0.843135\pi\)
\(354\) 0 0
\(355\) 58.8872 + 172.172i 0.165879 + 0.484991i
\(356\) 44.6798 77.3877i 0.125505 0.217381i
\(357\) 0 0
\(358\) 12.5047 46.6681i 0.0349293 0.130358i
\(359\) 279.063i 0.777333i 0.921378 + 0.388667i \(0.127064\pi\)
−0.921378 + 0.388667i \(0.872936\pi\)
\(360\) 0 0
\(361\) 310.722 0.860724
\(362\) −43.5237 11.6621i −0.120231 0.0322159i
\(363\) 0 0
\(364\) −414.580 239.358i −1.13896 0.657576i
\(365\) −9.05805 + 18.4751i −0.0248166 + 0.0506167i
\(366\) 0 0
\(367\) −172.547 46.2339i −0.470156 0.125978i 0.0159593 0.999873i \(-0.494920\pi\)
−0.486115 + 0.873895i \(0.661586\pi\)
\(368\) −217.097 217.097i −0.589938 0.589938i
\(369\) 0 0
\(370\) −23.3097 20.3472i −0.0629991 0.0549925i
\(371\) −110.184 190.844i −0.296992 0.514406i
\(372\) 0 0
\(373\) 84.7938 22.7204i 0.227329 0.0609127i −0.143356 0.989671i \(-0.545789\pi\)
0.370685 + 0.928758i \(0.379123\pi\)
\(374\) 2.42880 + 1.40227i 0.00649412 + 0.00374938i
\(375\) 0 0
\(376\) 40.6724 + 70.4466i 0.108171 + 0.187358i
\(377\) −67.6540 + 67.6540i −0.179453 + 0.179453i
\(378\) 0 0
\(379\) 10.3793i 0.0273860i −0.999906 0.0136930i \(-0.995641\pi\)
0.999906 0.0136930i \(-0.00435875\pi\)
\(380\) −137.896 27.0990i −0.362883 0.0713133i
\(381\) 0 0
\(382\) −2.68637 10.0257i −0.00703238 0.0262452i
\(383\) −124.435 + 33.3422i −0.324895 + 0.0870554i −0.417580 0.908640i \(-0.637122\pi\)
0.0926850 + 0.995695i \(0.470455\pi\)
\(384\) 0 0
\(385\) −526.790 + 353.748i −1.36829 + 0.918827i
\(386\) −38.0686 −0.0986233
\(387\) 0 0
\(388\) −97.8443 97.8443i −0.252176 0.252176i
\(389\) 635.357 366.824i 1.63331 0.942991i 0.650245 0.759724i \(-0.274666\pi\)
0.983063 0.183267i \(-0.0586673\pi\)
\(390\) 0 0
\(391\) −10.3294 + 17.8910i −0.0264178 + 0.0457570i
\(392\) −12.6250 47.1170i −0.0322065 0.120196i
\(393\) 0 0
\(394\) −4.31633 + 2.49203i −0.0109552 + 0.00632496i
\(395\) 312.652 + 272.917i 0.791525 + 0.690930i
\(396\) 0 0
\(397\) 151.257 151.257i 0.381000 0.381000i −0.490463 0.871462i \(-0.663172\pi\)
0.871462 + 0.490463i \(0.163172\pi\)
\(398\) −10.1408 + 37.8459i −0.0254794 + 0.0950903i
\(399\) 0 0
\(400\) −360.246 147.278i −0.900614 0.368194i
\(401\) 3.27254 5.66821i 0.00816096 0.0141352i −0.861916 0.507051i \(-0.830736\pi\)
0.870077 + 0.492916i \(0.164069\pi\)
\(402\) 0 0
\(403\) 90.7225 338.581i 0.225118 0.840151i
\(404\) 235.677i 0.583360i
\(405\) 0 0
\(406\) −12.2328 −0.0301302
\(407\) −442.734 118.630i −1.08780 0.291475i
\(408\) 0 0
\(409\) 639.259 + 369.076i 1.56298 + 0.902387i 0.996953 + 0.0779993i \(0.0248532\pi\)
0.566026 + 0.824387i \(0.308480\pi\)
\(410\) 61.5218 + 30.1632i 0.150053 + 0.0735688i
\(411\) 0 0
\(412\) 301.326 + 80.7400i 0.731373 + 0.195971i
\(413\) −202.652 202.652i −0.490683 0.490683i
\(414\) 0 0
\(415\) 265.350 18.0060i 0.639398 0.0433879i
\(416\) 60.4136 + 104.639i 0.145225 + 0.251537i
\(417\) 0 0
\(418\) 18.3376 4.91354i 0.0438698 0.0117549i
\(419\) 235.376 + 135.894i 0.561756 + 0.324330i 0.753850 0.657047i \(-0.228195\pi\)
−0.192094 + 0.981377i \(0.561528\pi\)
\(420\) 0 0
\(421\) 102.996 + 178.395i 0.244647 + 0.423741i 0.962032 0.272936i \(-0.0879947\pi\)
−0.717386 + 0.696676i \(0.754661\pi\)
\(422\) 32.6344 32.6344i 0.0773327 0.0773327i
\(423\) 0 0
\(424\) 37.0244i 0.0873217i
\(425\) −3.29849 + 25.9789i −0.00776115 + 0.0611269i
\(426\) 0 0
\(427\) 190.011 + 709.133i 0.444992 + 1.66073i
\(428\) −274.453 + 73.5396i −0.641246 + 0.171821i
\(429\) 0 0
\(430\) 11.6349 + 2.28648i 0.0270579 + 0.00531738i
\(431\) 238.470 0.553294 0.276647 0.960972i \(-0.410777\pi\)
0.276647 + 0.960972i \(0.410777\pi\)
\(432\) 0 0
\(433\) 79.6977 + 79.6977i 0.184059 + 0.184059i 0.793122 0.609063i \(-0.208454\pi\)
−0.609063 + 0.793122i \(0.708454\pi\)
\(434\) 38.8122 22.4083i 0.0894291 0.0516319i
\(435\) 0 0
\(436\) 94.8083 164.213i 0.217450 0.376635i
\(437\) 36.1940 + 135.078i 0.0828238 + 0.309103i
\(438\) 0 0
\(439\) 280.123 161.729i 0.638094 0.368404i −0.145786 0.989316i \(-0.546571\pi\)
0.783880 + 0.620912i \(0.213238\pi\)
\(440\) 106.366 7.21774i 0.241741 0.0164039i
\(441\) 0 0
\(442\) 1.88719 1.88719i 0.00426965 0.00426965i
\(443\) −195.518 + 729.682i −0.441349 + 1.64714i 0.284051 + 0.958809i \(0.408322\pi\)
−0.725400 + 0.688328i \(0.758345\pi\)
\(444\) 0 0
\(445\) −106.653 + 36.4779i −0.239669 + 0.0819728i
\(446\) −19.5609 + 33.8805i −0.0438585 + 0.0759652i
\(447\) 0 0
\(448\) 141.245 527.135i 0.315280 1.17664i
\(449\) 514.733i 1.14640i −0.819416 0.573199i \(-0.805702\pi\)
0.819416 0.573199i \(-0.194298\pi\)
\(450\) 0 0
\(451\) 1015.01 2.25057
\(452\) 667.186 + 178.772i 1.47607 + 0.395513i
\(453\) 0 0
\(454\) 30.6524 + 17.6972i 0.0675162 + 0.0389805i
\(455\) 195.418 + 571.356i 0.429491 + 1.25573i
\(456\) 0 0
\(457\) −550.455 147.494i −1.20450 0.322744i −0.399897 0.916560i \(-0.630954\pi\)
−0.804601 + 0.593816i \(0.797621\pi\)
\(458\) 24.3261 + 24.3261i 0.0531137 + 0.0531137i
\(459\) 0 0
\(460\) 26.4629 + 389.977i 0.0575280 + 0.847777i
\(461\) 119.334 + 206.693i 0.258860 + 0.448358i 0.965937 0.258778i \(-0.0833199\pi\)
−0.707077 + 0.707137i \(0.749987\pi\)
\(462\) 0 0
\(463\) −796.822 + 213.508i −1.72100 + 0.461140i −0.978078 0.208239i \(-0.933227\pi\)
−0.742921 + 0.669380i \(0.766560\pi\)
\(464\) −96.2543 55.5724i −0.207445 0.119768i
\(465\) 0 0
\(466\) 16.1635 + 27.9961i 0.0346857 + 0.0600774i
\(467\) −489.265 + 489.265i −1.04768 + 1.04768i −0.0488707 + 0.998805i \(0.515562\pi\)
−0.998805 + 0.0488707i \(0.984438\pi\)
\(468\) 0 0
\(469\) 598.424i 1.27596i
\(470\) 9.84808 50.1127i 0.0209534 0.106623i
\(471\) 0 0
\(472\) 12.4624 + 46.5102i 0.0264033 + 0.0985386i
\(473\) 169.667 45.4623i 0.358705 0.0961147i
\(474\) 0 0
\(475\) 108.561 + 140.138i 0.228549 + 0.295027i
\(476\) −37.4190 −0.0786114
\(477\) 0 0
\(478\) 51.5572 + 51.5572i 0.107860 + 0.107860i
\(479\) −142.795 + 82.4426i −0.298110 + 0.172114i −0.641594 0.767045i \(-0.721726\pi\)
0.343483 + 0.939159i \(0.388393\pi\)
\(480\) 0 0
\(481\) −218.091 + 377.744i −0.453411 + 0.785331i
\(482\) 16.0362 + 59.8478i 0.0332700 + 0.124165i
\(483\) 0 0
\(484\) 265.384 153.220i 0.548314 0.316569i
\(485\) 11.8169 + 174.143i 0.0243647 + 0.359057i
\(486\) 0 0
\(487\) 326.960 326.960i 0.671376 0.671376i −0.286657 0.958033i \(-0.592544\pi\)
0.958033 + 0.286657i \(0.0925441\pi\)
\(488\) 31.9241 119.142i 0.0654183 0.244144i
\(489\) 0 0
\(490\) −13.4819 + 27.4981i −0.0275141 + 0.0561186i
\(491\) 182.011 315.253i 0.370695 0.642063i −0.618977 0.785409i \(-0.712453\pi\)
0.989673 + 0.143346i \(0.0457861\pi\)
\(492\) 0 0
\(493\) −1.93562 + 7.22382i −0.00392620 + 0.0146528i
\(494\) 18.0662i 0.0365713i
\(495\) 0 0
\(496\) 407.193 0.820953
\(497\) 316.796 + 84.8853i 0.637417 + 0.170795i
\(498\) 0 0
\(499\) −353.578 204.138i −0.708573 0.409095i 0.101960 0.994789i \(-0.467489\pi\)
−0.810532 + 0.585694i \(0.800822\pi\)
\(500\) 222.212 + 442.859i 0.444424 + 0.885717i
\(501\) 0 0
\(502\) −78.7732 21.1072i −0.156919 0.0420463i
\(503\) −555.921 555.921i −1.10521 1.10521i −0.993771 0.111440i \(-0.964454\pi\)
−0.111440 0.993771i \(-0.535546\pi\)
\(504\) 0 0
\(505\) −195.497 + 223.960i −0.387123 + 0.443486i
\(506\) −26.4014 45.7286i −0.0521767 0.0903726i
\(507\) 0 0
\(508\) −88.4400 + 23.6974i −0.174095 + 0.0466485i
\(509\) −453.968 262.098i −0.891882 0.514928i −0.0173243 0.999850i \(-0.505515\pi\)
−0.874558 + 0.484922i \(0.838848\pi\)
\(510\) 0 0
\(511\) 18.5432 + 32.1178i 0.0362881 + 0.0628528i
\(512\) −165.919 + 165.919i −0.324061 + 0.324061i
\(513\) 0 0
\(514\) 70.0445i 0.136273i
\(515\) −219.370 326.679i −0.425961 0.634328i
\(516\) 0 0
\(517\) −195.811 730.775i −0.378744 1.41349i
\(518\) −53.8679 + 14.4339i −0.103992 + 0.0278646i
\(519\) 0 0
\(520\) 19.5634 99.5499i 0.0376219 0.191442i
\(521\) 694.042 1.33213 0.666067 0.745892i \(-0.267977\pi\)
0.666067 + 0.745892i \(0.267977\pi\)
\(522\) 0 0
\(523\) 244.233 + 244.233i 0.466985 + 0.466985i 0.900936 0.433951i \(-0.142881\pi\)
−0.433951 + 0.900936i \(0.642881\pi\)
\(524\) −189.524 + 109.422i −0.361687 + 0.208820i
\(525\) 0 0
\(526\) −6.27198 + 10.8634i −0.0119239 + 0.0206528i
\(527\) −7.09137 26.4653i −0.0134561 0.0502189i
\(528\) 0 0
\(529\) −121.283 + 70.0227i −0.229268 + 0.132368i
\(530\) 15.2864 17.5120i 0.0288422 0.0330415i
\(531\) 0 0
\(532\) −179.108 + 179.108i −0.336669 + 0.336669i
\(533\) 249.997 933.001i 0.469037 1.75047i
\(534\) 0 0
\(535\) 321.810 + 157.779i 0.601515 + 0.294913i
\(536\) −50.2711 + 87.0720i −0.0937893 + 0.162448i
\(537\) 0 0
\(538\) −7.22994 + 26.9825i −0.0134386 + 0.0501534i
\(539\) 453.674i 0.841696i
\(540\) 0 0
\(541\) −682.588 −1.26172 −0.630858 0.775899i \(-0.717297\pi\)
−0.630858 + 0.775899i \(0.717297\pi\)
\(542\) −8.26689 2.21511i −0.0152526 0.00408691i
\(543\) 0 0
\(544\) 8.17918 + 4.72225i 0.0150353 + 0.00868061i
\(545\) −226.311 + 77.4042i −0.415250 + 0.142026i
\(546\) 0 0
\(547\) 62.4694 + 16.7386i 0.114204 + 0.0306008i 0.315468 0.948936i \(-0.397838\pi\)
−0.201265 + 0.979537i \(0.564505\pi\)
\(548\) 549.504 + 549.504i 1.00275 + 1.00275i
\(549\) 0 0
\(550\) −53.2896 40.5018i −0.0968901 0.0736396i
\(551\) 25.3122 + 43.8421i 0.0459387 + 0.0795682i
\(552\) 0 0
\(553\) 722.530 193.601i 1.30656 0.350093i
\(554\) 26.1382 + 15.0909i 0.0471809 + 0.0272399i
\(555\) 0 0
\(556\) 188.887 + 327.162i 0.339725 + 0.588421i
\(557\) 66.9124 66.9124i 0.120130 0.120130i −0.644486 0.764616i \(-0.722929\pi\)
0.764616 + 0.644486i \(0.222929\pi\)
\(558\) 0 0
\(559\) 167.156i 0.299028i
\(560\) −582.354 + 391.060i −1.03992 + 0.698322i
\(561\) 0 0
\(562\) 3.25693 + 12.1550i 0.00579525 + 0.0216282i
\(563\) 137.436 36.8258i 0.244113 0.0654099i −0.134688 0.990888i \(-0.543003\pi\)
0.378801 + 0.925478i \(0.376337\pi\)
\(564\) 0 0
\(565\) −485.722 723.322i −0.859686 1.28022i
\(566\) 76.5264 0.135206
\(567\) 0 0
\(568\) −38.9637 38.9637i −0.0685981 0.0685981i
\(569\) −276.828 + 159.827i −0.486517 + 0.280891i −0.723128 0.690714i \(-0.757297\pi\)
0.236611 + 0.971604i \(0.423963\pi\)
\(570\) 0 0
\(571\) −324.309 + 561.720i −0.567967 + 0.983748i 0.428800 + 0.903400i \(0.358937\pi\)
−0.996767 + 0.0803483i \(0.974397\pi\)
\(572\) −193.608 722.555i −0.338475 1.26321i
\(573\) 0 0
\(574\) 106.952 61.7486i 0.186327 0.107576i
\(575\) 298.343 392.540i 0.518858 0.682679i
\(576\) 0 0
\(577\) −519.616 + 519.616i −0.900548 + 0.900548i −0.995483 0.0949353i \(-0.969736\pi\)
0.0949353 + 0.995483i \(0.469736\pi\)
\(578\) −14.1670 + 52.8721i −0.0245104 + 0.0914742i
\(579\) 0 0
\(580\) 45.7923 + 133.886i 0.0789522 + 0.230837i
\(581\) 239.683 415.144i 0.412536 0.714533i
\(582\) 0 0
\(583\) 89.1240 332.615i 0.152871 0.570523i
\(584\) 6.23095i 0.0106694i
\(585\) 0 0
\(586\) 41.2824 0.0704478
\(587\) 797.684 + 213.739i 1.35892 + 0.364120i 0.863418 0.504489i \(-0.168319\pi\)
0.495498 + 0.868609i \(0.334986\pi\)
\(588\) 0 0
\(589\) −160.621 92.7344i −0.272701 0.157444i
\(590\) 13.3083 27.1440i 0.0225564 0.0460068i
\(591\) 0 0
\(592\) −489.432 131.143i −0.826743 0.221525i
\(593\) −329.014 329.014i −0.554829 0.554829i 0.373002 0.927831i \(-0.378329\pi\)
−0.927831 + 0.373002i \(0.878329\pi\)
\(594\) 0 0
\(595\) 35.5587 + 31.0395i 0.0597625 + 0.0521672i
\(596\) −515.699 893.218i −0.865267 1.49869i
\(597\) 0 0
\(598\) −48.5366 + 13.0053i −0.0811648 + 0.0217480i
\(599\) −445.587 257.260i −0.743885 0.429482i 0.0795952 0.996827i \(-0.474637\pi\)
−0.823480 + 0.567345i \(0.807971\pi\)
\(600\) 0 0
\(601\) −19.7478 34.2041i −0.0328582 0.0569121i 0.849129 0.528186i \(-0.177128\pi\)
−0.881987 + 0.471274i \(0.843794\pi\)
\(602\) 15.1122 15.1122i 0.0251033 0.0251033i
\(603\) 0 0
\(604\) 1021.99i 1.69204i
\(605\) −379.287 74.5370i −0.626921 0.123202i
\(606\) 0 0
\(607\) 104.659 + 390.594i 0.172421 + 0.643483i 0.996977 + 0.0777026i \(0.0247585\pi\)
−0.824556 + 0.565781i \(0.808575\pi\)
\(608\) 61.7533 16.5468i 0.101568 0.0272151i
\(609\) 0 0
\(610\) −64.2903 + 43.1720i −0.105394 + 0.0707738i
\(611\) −719.960 −1.17833
\(612\) 0 0
\(613\) −559.593 559.593i −0.912876 0.912876i 0.0836213 0.996498i \(-0.473351\pi\)
−0.996498 + 0.0836213i \(0.973351\pi\)
\(614\) −51.0172 + 29.4548i −0.0830898 + 0.0479719i
\(615\) 0 0
\(616\) 96.0775 166.411i 0.155970 0.270148i
\(617\) −90.4285 337.484i −0.146562 0.546976i −0.999681 0.0252596i \(-0.991959\pi\)
0.853119 0.521716i \(-0.174708\pi\)
\(618\) 0 0
\(619\) −384.591 + 222.044i −0.621311 + 0.358714i −0.777379 0.629032i \(-0.783451\pi\)
0.156068 + 0.987746i \(0.450118\pi\)
\(620\) −390.542 340.908i −0.629907 0.549852i
\(621\) 0 0
\(622\) 18.5115 18.5115i 0.0297613 0.0297613i
\(623\) −52.5825 + 196.241i −0.0844021 + 0.314993i
\(624\) 0 0
\(625\) 156.192 605.169i 0.249907 0.968270i
\(626\) 0.627350 1.08660i 0.00100216 0.00173579i
\(627\) 0 0
\(628\) −47.6857 + 177.965i −0.0759326 + 0.283384i
\(629\) 34.0943i 0.0542040i
\(630\) 0 0
\(631\) −181.428 −0.287524 −0.143762 0.989612i \(-0.545920\pi\)
−0.143762 + 0.989612i \(0.545920\pi\)
\(632\) −121.393 32.5273i −0.192078 0.0514672i
\(633\) 0 0
\(634\) −72.8343 42.0509i −0.114881 0.0663264i
\(635\) 103.700 + 50.8427i 0.163308 + 0.0800673i
\(636\) 0 0
\(637\) 417.019 + 111.740i 0.654661 + 0.175416i
\(638\) −13.5164 13.5164i −0.0211856 0.0211856i
\(639\) 0 0
\(640\) 237.345 16.1056i 0.370851 0.0251650i
\(641\) −44.3645 76.8416i −0.0692114 0.119878i 0.829343 0.558740i \(-0.188715\pi\)
−0.898554 + 0.438862i \(0.855382\pi\)
\(642\) 0 0
\(643\) −414.879 + 111.166i −0.645224 + 0.172887i −0.566568 0.824015i \(-0.691729\pi\)
−0.0786553 + 0.996902i \(0.525063\pi\)
\(644\) 610.125 + 352.256i 0.947399 + 0.546981i
\(645\) 0 0
\(646\) −0.706077 1.22296i −0.00109300 0.00189313i
\(647\) −237.290 + 237.290i −0.366755 + 0.366755i −0.866292 0.499537i \(-0.833503\pi\)
0.499537 + 0.866292i \(0.333503\pi\)
\(648\) 0 0
\(649\) 447.832i 0.690034i
\(650\) −50.3547 + 39.0084i −0.0774687 + 0.0600130i
\(651\) 0 0
\(652\) −111.475 416.030i −0.170974 0.638083i
\(653\) 777.291 208.275i 1.19034 0.318950i 0.391319 0.920255i \(-0.372019\pi\)
0.799020 + 0.601305i \(0.205352\pi\)
\(654\) 0 0
\(655\) 270.868 + 53.2305i 0.413539 + 0.0812680i
\(656\) 1122.07 1.71047
\(657\) 0 0
\(658\) −65.0897 65.0897i −0.0989206 0.0989206i
\(659\) 407.245 235.123i 0.617974 0.356787i −0.158106 0.987422i \(-0.550539\pi\)
0.776080 + 0.630635i \(0.217205\pi\)
\(660\) 0 0
\(661\) 379.580 657.451i 0.574251 0.994631i −0.421872 0.906655i \(-0.638627\pi\)
0.996123 0.0879760i \(-0.0280399\pi\)
\(662\) −12.8778 48.0606i −0.0194528 0.0725990i
\(663\) 0 0
\(664\) −69.7489 + 40.2696i −0.105044 + 0.0606469i
\(665\) 318.775 21.6313i 0.479361 0.0325283i
\(666\) 0 0
\(667\) 99.5643 99.5643i 0.149272 0.149272i
\(668\) −319.967 + 1194.13i −0.478992 + 1.78762i
\(669\) 0 0
\(670\) 59.7272 20.4282i 0.0891450 0.0304899i
\(671\) −573.592 + 993.490i −0.854832 + 1.48061i
\(672\) 0 0
\(673\) −326.337 + 1217.91i −0.484899 + 1.80967i 0.0956152 + 0.995418i \(0.469518\pi\)
−0.580514 + 0.814250i \(0.697148\pi\)
\(674\) 27.7198i 0.0411273i
\(675\) 0 0
\(676\) −41.9700 −0.0620858
\(677\) 96.3967 + 25.8294i 0.142388 + 0.0381528i 0.329309 0.944222i \(-0.393184\pi\)
−0.186921 + 0.982375i \(0.559851\pi\)
\(678\) 0 0
\(679\) 272.449 + 157.298i 0.401250 + 0.231662i
\(680\) −2.56637 7.50345i −0.00377408 0.0110345i
\(681\) 0 0
\(682\) 67.6443 + 18.1252i 0.0991852 + 0.0265766i
\(683\) −366.381 366.381i −0.536430 0.536430i 0.386049 0.922478i \(-0.373840\pi\)
−0.922478 + 0.386049i \(0.873840\pi\)
\(684\) 0 0
\(685\) −66.3650 978.005i −0.0968832 1.42774i
\(686\) −14.3787 24.9047i −0.0209602 0.0363042i
\(687\) 0 0
\(688\) 187.563 50.2575i 0.272621 0.0730486i
\(689\) −283.790 163.846i −0.411887 0.237803i
\(690\) 0 0
\(691\) −298.133 516.381i −0.431451 0.747296i 0.565547 0.824716i \(-0.308665\pi\)
−0.996999 + 0.0774204i \(0.975332\pi\)
\(692\) −558.971 + 558.971i −0.807761 + 0.807761i
\(693\) 0 0
\(694\) 1.92499i 0.00277376i
\(695\) 91.8883 467.581i 0.132213 0.672778i
\(696\) 0 0
\(697\) −19.5411 72.9284i −0.0280360 0.104632i
\(698\) 19.9559 5.34718i 0.0285902 0.00766071i
\(699\) 0 0
\(700\) 885.943 + 112.486i 1.26563 + 0.160695i
\(701\) −147.235 −0.210036 −0.105018 0.994470i \(-0.533490\pi\)
−0.105018 + 0.994470i \(0.533490\pi\)
\(702\) 0 0
\(703\) 163.194 + 163.194i 0.232140 + 0.232140i
\(704\) 738.513 426.381i 1.04902 0.605654i
\(705\) 0 0
\(706\) −45.9731 + 79.6277i −0.0651177 + 0.112787i
\(707\) 138.681 + 517.565i 0.196154 + 0.732058i
\(708\) 0 0
\(709\) −123.232 + 71.1480i −0.173811 + 0.100350i −0.584382 0.811479i \(-0.698663\pi\)
0.410571 + 0.911829i \(0.365330\pi\)
\(710\) 2.34219 + 34.5163i 0.00329886 + 0.0486145i
\(711\) 0 0
\(712\) 24.1362 24.1362i 0.0338992 0.0338992i
\(713\) −133.514 + 498.280i −0.187256 + 0.698849i
\(714\) 0 0
\(715\) −415.385 + 847.232i −0.580958 + 1.18494i
\(716\) −503.648 + 872.343i −0.703418 + 1.21836i
\(717\) 0 0
\(718\) −13.7320 + 51.2486i −0.0191254 + 0.0713769i
\(719\) 1075.81i 1.49626i 0.663555 + 0.748128i \(0.269047\pi\)
−0.663555 + 0.748128i \(0.730953\pi\)
\(720\) 0 0
\(721\) −709.245 −0.983696
\(722\) 57.0627 + 15.2899i 0.0790342 + 0.0211771i
\(723\) 0 0
\(724\) 813.567 + 469.713i 1.12371 + 0.648775i
\(725\) 67.5439 165.215i 0.0931640 0.227882i
\(726\) 0 0
\(727\) 696.238 + 186.556i 0.957687 + 0.256611i 0.703621 0.710576i \(-0.251565\pi\)
0.254066 + 0.967187i \(0.418232\pi\)
\(728\) −129.302 129.302i −0.177613 0.177613i
\(729\) 0 0
\(730\) −2.57259 + 2.94715i −0.00352410 + 0.00403718i
\(731\) −6.53293 11.3154i −0.00893698 0.0154793i
\(732\) 0 0
\(733\) 1179.49 316.043i 1.60913 0.431164i 0.661345 0.750082i \(-0.269986\pi\)
0.947782 + 0.318918i \(0.103319\pi\)
\(734\) −29.4125 16.9813i −0.0400715 0.0231353i
\(735\) 0 0
\(736\) −88.9088 153.995i −0.120800 0.209232i
\(737\) 661.216 661.216i 0.897173 0.897173i
\(738\) 0 0
\(739\) 683.603i 0.925038i −0.886609 0.462519i \(-0.846946\pi\)
0.886609 0.462519i \(-0.153054\pi\)
\(740\) 359.624 + 535.540i 0.485978 + 0.723703i
\(741\) 0 0
\(742\) −10.8438 40.4697i −0.0146143 0.0545413i
\(743\) 763.713 204.636i 1.02788 0.275419i 0.294797 0.955560i \(-0.404748\pi\)
0.733081 + 0.680141i \(0.238081\pi\)
\(744\) 0 0
\(745\) −250.873 + 1276.59i −0.336743 + 1.71354i
\(746\) 16.6900 0.0223727
\(747\) 0 0
\(748\) −41.3454 41.3454i −0.0552746 0.0552746i
\(749\) 559.447 322.997i 0.746925 0.431238i
\(750\) 0 0
\(751\) 326.862 566.142i 0.435236 0.753851i −0.562079 0.827084i \(-0.689998\pi\)
0.997315 + 0.0732329i \(0.0233317\pi\)
\(752\) −216.464 807.855i −0.287851 1.07427i
\(753\) 0 0
\(754\) −15.7535 + 9.09526i −0.0208932 + 0.0120627i
\(755\) 847.754 971.182i 1.12285 1.28633i
\(756\) 0 0
\(757\) 668.868 668.868i 0.883577 0.883577i −0.110319 0.993896i \(-0.535187\pi\)
0.993896 + 0.110319i \(0.0351874\pi\)
\(758\) 0.510741 1.90611i 0.000673800 0.00251466i
\(759\) 0 0
\(760\) −48.1997 23.6316i −0.0634206 0.0310942i
\(761\) −478.705 + 829.141i −0.629047 + 1.08954i 0.358696 + 0.933454i \(0.383221\pi\)
−0.987743 + 0.156087i \(0.950112\pi\)
\(762\) 0 0
\(763\) −111.577 + 416.413i −0.146235 + 0.545757i
\(764\) 216.396i 0.283241i
\(765\) 0 0
\(766\) −24.4926 −0.0319747
\(767\) −411.649 110.301i −0.536700 0.143808i
\(768\) 0 0
\(769\) −435.970 251.708i −0.566932 0.327318i 0.188991 0.981979i \(-0.439478\pi\)
−0.755923 + 0.654661i \(0.772812\pi\)
\(770\) −114.150 + 39.0422i −0.148247 + 0.0507041i
\(771\) 0 0
\(772\) 766.640 + 205.421i 0.993057 + 0.266089i
\(773\) 362.267 + 362.267i 0.468651 + 0.468651i 0.901477 0.432827i \(-0.142484\pi\)
−0.432827 + 0.901477i \(0.642484\pi\)
\(774\) 0 0
\(775\) 88.3390 + 647.918i 0.113986 + 0.836024i
\(776\) −26.4279 45.7745i −0.0340566 0.0589878i
\(777\) 0 0
\(778\) 134.731 36.1011i 0.173176 0.0464024i
\(779\) −442.610 255.541i −0.568177 0.328037i
\(780\) 0 0
\(781\) 256.245 + 443.830i 0.328099 + 0.568284i
\(782\) −2.77732 + 2.77732i −0.00355155 + 0.00355155i
\(783\) 0 0
\(784\) 501.526i 0.639701i
\(785\) 192.939 129.562i 0.245782 0.165047i
\(786\) 0 0
\(787\) 134.565 + 502.205i 0.170985 + 0.638126i 0.997201 + 0.0747716i \(0.0238228\pi\)
−0.826215 + 0.563354i \(0.809511\pi\)
\(788\) 100.371 26.8943i 0.127374 0.0341299i
\(789\) 0 0
\(790\) 43.9876 + 65.5050i 0.0556806 + 0.0829177i
\(791\) −1570.39 −1.98532
\(792\) 0 0
\(793\) 771.945 + 771.945i 0.973449 + 0.973449i
\(794\) 35.2207 20.3347i 0.0443585 0.0256104i
\(795\) 0 0
\(796\) 408.438 707.435i 0.513113 0.888737i
\(797\) −72.1737 269.356i −0.0905567 0.337962i 0.905752 0.423809i \(-0.139307\pi\)
−0.996308 + 0.0858466i \(0.972640\pi\)
\(798\) 0 0
\(799\) −48.7365 + 28.1380i −0.0609968 + 0.0352165i
\(800\) −179.457 136.393i −0.224321 0.170491i
\(801\) 0 0
\(802\) 0.879908 0.879908i 0.00109714 0.00109714i
\(803\) −14.9989 + 55.9768i −0.0186786 + 0.0697096i
\(804\) 0 0
\(805\) −287.592 840.848i −0.357257 1.04453i
\(806\) 33.3216 57.7147i 0.0413419 0.0716063i
\(807\) 0 0
\(808\) 23.3000 86.9569i 0.0288367 0.107620i
\(809\) 423.966i 0.524062i 0.965060 + 0.262031i \(0.0843922\pi\)
−0.965060 + 0.262031i \(0.915608\pi\)
\(810\) 0 0
\(811\) −1163.79 −1.43501 −0.717506 0.696552i \(-0.754716\pi\)
−0.717506 + 0.696552i \(0.754716\pi\)
\(812\) 246.350 + 66.0092i 0.303386 + 0.0812921i
\(813\) 0 0
\(814\) −75.4686 43.5718i −0.0927133 0.0535281i
\(815\) −239.169 + 487.816i −0.293459 + 0.598548i
\(816\) 0 0
\(817\) −85.4317 22.8914i −0.104568 0.0280188i
\(818\) 99.2357 + 99.2357i 0.121315 + 0.121315i
\(819\) 0 0
\(820\) −1076.19 939.413i −1.31242 1.14563i
\(821\) 382.915 + 663.228i 0.466400 + 0.807829i 0.999264 0.0383722i \(-0.0122172\pi\)
−0.532863 + 0.846202i \(0.678884\pi\)
\(822\) 0 0
\(823\) −955.510 + 256.028i −1.16101 + 0.311091i −0.787369 0.616482i \(-0.788557\pi\)
−0.373640 + 0.927574i \(0.621891\pi\)
\(824\) 103.197 + 59.5806i 0.125239 + 0.0723066i
\(825\) 0 0
\(826\) −27.2441 47.1882i −0.0329832 0.0571286i
\(827\) 260.100 260.100i 0.314510 0.314510i −0.532144 0.846654i \(-0.678613\pi\)
0.846654 + 0.532144i \(0.178613\pi\)
\(828\) 0 0
\(829\) 325.275i 0.392370i 0.980567 + 0.196185i \(0.0628553\pi\)
−0.980567 + 0.196185i \(0.937145\pi\)
\(830\) 49.6164 + 9.75055i 0.0597788 + 0.0117476i
\(831\) 0 0
\(832\) −210.035 783.862i −0.252446 0.942142i
\(833\) 32.5965 8.73421i 0.0391315 0.0104852i
\(834\) 0 0
\(835\) 1294.61 869.349i 1.55043 1.04114i
\(836\) −395.803 −0.473449
\(837\) 0 0
\(838\) 36.5387 + 36.5387i 0.0436022 + 0.0436022i
\(839\) 81.4767 47.0406i 0.0971116 0.0560674i −0.450658 0.892697i \(-0.648810\pi\)
0.547769 + 0.836629i \(0.315477\pi\)
\(840\) 0 0
\(841\) −395.014 + 684.184i −0.469695 + 0.813536i
\(842\) 10.1364 + 37.8296i 0.0120385 + 0.0449283i
\(843\) 0 0
\(844\) −833.301 + 481.107i −0.987323 + 0.570031i
\(845\) 39.8834 + 34.8146i 0.0471993 + 0.0412007i
\(846\) 0 0
\(847\) −492.644 + 492.644i −0.581633 + 0.581633i
\(848\) 98.5244 367.698i 0.116184 0.433606i
\(849\) 0 0
\(850\) −1.88412 + 4.60861i −0.00221661 + 0.00542189i
\(851\) 320.958 555.915i 0.377154 0.653249i
\(852\) 0 0
\(853\) 263.924 984.979i 0.309407 1.15472i −0.619678 0.784856i \(-0.712737\pi\)
0.929085 0.369867i \(-0.120597\pi\)
\(854\) 139.579i 0.163442i
\(855\) 0 0
\(856\) −108.534 −0.126793
\(857\) −1522.95 408.073i −1.77707 0.476164i −0.787026 0.616920i \(-0.788380\pi\)
−0.990044 + 0.140756i \(0.955047\pi\)
\(858\) 0 0
\(859\) −507.067 292.755i −0.590299 0.340809i 0.174917 0.984583i \(-0.444034\pi\)
−0.765216 + 0.643774i \(0.777368\pi\)
\(860\) −221.970 108.829i −0.258105 0.126545i
\(861\) 0 0
\(862\) 43.7939 + 11.7345i 0.0508050 + 0.0136132i
\(863\) 550.423 + 550.423i 0.637802 + 0.637802i 0.950013 0.312211i \(-0.101070\pi\)
−0.312211 + 0.950013i \(0.601070\pi\)
\(864\) 0 0
\(865\) 994.853 67.5082i 1.15012 0.0780442i
\(866\) 10.7144 + 18.5579i 0.0123723 + 0.0214294i
\(867\) 0 0
\(868\) −902.531 + 241.833i −1.03978 + 0.278609i
\(869\) 1012.26 + 584.429i 1.16486 + 0.672530i
\(870\) 0 0
\(871\) −444.935 770.650i −0.510833 0.884788i
\(872\) 51.2158 51.2158i 0.0587337 0.0587337i
\(873\) 0 0
\(874\) 26.5875i 0.0304205i
\(875\) −748.589 841.794i −0.855530 0.962050i
\(876\) 0 0
\(877\) 236.500 + 882.630i 0.269669 + 1.00642i 0.959330 + 0.282287i \(0.0910930\pi\)
−0.689661 + 0.724133i \(0.742240\pi\)
\(878\) 59.4017 15.9166i 0.0676557 0.0181283i
\(879\) 0 0
\(880\) −1075.55 211.366i −1.22222 0.240189i
\(881\) 459.689 0.521781 0.260891 0.965368i \(-0.415984\pi\)
0.260891 + 0.965368i \(0.415984\pi\)
\(882\) 0 0
\(883\) 107.163 + 107.163i 0.121362 + 0.121362i 0.765179 0.643817i \(-0.222650\pi\)
−0.643817 + 0.765179i \(0.722650\pi\)
\(884\) −48.1882 + 27.8215i −0.0545116 + 0.0314723i
\(885\) 0 0
\(886\) −71.8119 + 124.382i −0.0810519 + 0.140386i
\(887\) 172.159 + 642.507i 0.194092 + 0.724360i 0.992500 + 0.122244i \(0.0390090\pi\)
−0.798408 + 0.602116i \(0.794324\pi\)
\(888\) 0 0
\(889\) 180.277 104.083i 0.202786 0.117078i
\(890\) −21.3813 + 1.45088i −0.0240239 + 0.00163020i
\(891\) 0 0
\(892\) 576.746 576.746i 0.646576 0.646576i
\(893\) −98.5954 + 367.963i −0.110409 + 0.412053i
\(894\) 0 0
\(895\) 1202.23 411.192i 1.34327 0.459433i
\(896\) 214.387 371.329i 0.239271 0.414430i
\(897\) 0 0
\(898\) 25.3288 94.5284i 0.0282058 0.105266i
\(899\) 186.745i 0.207725i
\(900\) 0 0
\(901\) −25.6142 −0.0284287
\(902\) 186.402 + 49.9463i 0.206654 + 0.0553728i
\(903\) 0 0
\(904\) 228.495 + 131.922i 0.252760 + 0.145931i
\(905\) −383.487 1121.22i −0.423743 1.23892i
\(906\) 0 0
\(907\) −804.640 215.603i −0.887144 0.237710i −0.213657 0.976909i \(-0.568538\pi\)
−0.673487 + 0.739199i \(0.735204\pi\)
\(908\) −521.794 521.794i −0.574663 0.574663i
\(909\) 0 0
\(910\) 7.77262 + 114.543i 0.00854134 + 0.125872i
\(911\) 38.7954 + 67.1955i 0.0425855 + 0.0737602i 0.886533 0.462666i \(-0.153107\pi\)
−0.843947 + 0.536427i \(0.819774\pi\)
\(912\) 0 0
\(913\) 723.538 193.871i 0.792484 0.212345i
\(914\) −93.8309 54.1733i −0.102660 0.0592706i
\(915\) 0 0
\(916\) −358.623 621.153i −0.391510 0.678115i
\(917\) 351.821 351.821i 0.383665 0.383665i
\(918\) 0 0
\(919\) 1478.95i 1.60930i 0.593750 + 0.804650i \(0.297647\pi\)
−0.593750 + 0.804650i \(0.702353\pi\)
\(920\) −28.7909 + 146.505i −0.0312944 + 0.159244i
\(921\) 0 0
\(922\) 11.7443 + 43.8305i 0.0127379 + 0.0475385i
\(923\) 471.083 126.226i 0.510383 0.136757i
\(924\) 0 0
\(925\) 102.492 807.227i 0.110802 0.872678i
\(926\) −156.839 −0.169373
\(927\) 0 0
\(928\) −45.5177 45.5177i −0.0490492 0.0490492i
\(929\) −1381.56 + 797.643i −1.48715 + 0.858604i −0.999893 0.0146572i \(-0.995334\pi\)
−0.487253 + 0.873261i \(0.662001\pi\)
\(930\) 0 0
\(931\) 114.218 197.831i 0.122683 0.212493i
\(932\) −174.439 651.014i −0.187166 0.698513i
\(933\) 0 0
\(934\) −113.927 + 65.7757i −0.121977 + 0.0704237i
\(935\) 4.99338 + 73.5863i 0.00534051 + 0.0787019i
\(936\) 0 0
\(937\) −921.265 + 921.265i −0.983207 + 0.983207i −0.999861 0.0166542i \(-0.994699\pi\)
0.0166542 + 0.999861i \(0.494699\pi\)
\(938\) 29.4471 109.898i 0.0313935 0.117162i
\(939\) 0 0
\(940\) −468.736 + 956.048i −0.498655 + 1.01707i
\(941\) 618.185 1070.73i 0.656945 1.13786i −0.324458 0.945900i \(-0.605182\pi\)
0.981402 0.191961i \(-0.0614849\pi\)
\(942\) 0 0
\(943\) −367.913 + 1373.07i −0.390152 + 1.45607i
\(944\) 495.068i 0.524436i
\(945\) 0 0
\(946\) 33.3958 0.0353021
\(947\) 1561.01 + 418.272i 1.64838 + 0.441681i 0.959158 0.282872i \(-0.0912871\pi\)
0.689219 + 0.724553i \(0.257954\pi\)
\(948\) 0 0
\(949\) 47.7599 + 27.5742i 0.0503265 + 0.0290560i
\(950\) 13.0409 + 31.0777i 0.0137273 + 0.0327134i
\(951\) 0 0
\(952\) −13.8064 3.69940i −0.0145025 0.00388593i
\(953\) −1074.57 1074.57i −1.12756 1.12756i −0.990573 0.136988i \(-0.956258\pi\)
−0.136988 0.990573i \(-0.543742\pi\)
\(954\) 0 0
\(955\) 179.503 205.638i 0.187961 0.215328i
\(956\) −760.073 1316.48i −0.795055 1.37708i
\(957\) 0 0
\(958\) −30.2804 + 8.11362i −0.0316080 + 0.00846933i
\(959\) −1530.10 883.405i −1.59552 0.921173i
\(960\) 0 0
\(961\) 138.418 + 239.748i 0.144036 + 0.249477i
\(962\) −58.6394 + 58.6394i −0.0609557 + 0.0609557i
\(963\) 0 0
\(964\) 1291.77i 1.34001i
\(965\) −558.127 831.144i −0.578370 0.861289i
\(966\) 0 0
\(967\) −46.6332 174.037i −0.0482246 0.179977i 0.937613 0.347682i \(-0.113031\pi\)
−0.985837 + 0.167705i \(0.946364\pi\)
\(968\) 113.066 30.2958i 0.116803 0.0312974i
\(969\) 0 0
\(970\) −6.39905 + 32.5621i −0.00659696 + 0.0335691i
\(971\) 40.8568 0.0420770 0.0210385 0.999779i \(-0.493303\pi\)
0.0210385 + 0.999779i \(0.493303\pi\)
\(972\) 0 0
\(973\) −607.325 607.325i −0.624178 0.624178i
\(974\) 76.1338 43.9558i 0.0781661 0.0451292i
\(975\) 0 0
\(976\) −634.092 + 1098.28i −0.649685 + 1.12529i
\(977\) 202.074 + 754.152i 0.206832 + 0.771906i 0.988883 + 0.148693i \(0.0475065\pi\)
−0.782052 + 0.623213i \(0.785827\pi\)
\(978\) 0 0
\(979\) −274.932 + 158.732i −0.280829 + 0.162137i
\(980\) 419.885 481.018i 0.428454 0.490835i
\(981\) 0 0
\(982\) 48.9385 48.9385i 0.0498355 0.0498355i
\(983\) −133.041 + 496.515i −0.135341 + 0.505101i 0.864655 + 0.502367i \(0.167537\pi\)
−0.999996 + 0.00273477i \(0.999129\pi\)
\(984\) 0 0
\(985\) −117.690 57.7016i −0.119482 0.0585803i
\(986\) −0.710935 + 1.23138i −0.000721030 + 0.00124886i
\(987\) 0 0
\(988\) −97.4863 + 363.824i −0.0986704 + 0.368243i
\(989\) 245.999i 0.248735i
\(990\) 0 0
\(991\) 941.294 0.949843 0.474922 0.880028i \(-0.342476\pi\)
0.474922 + 0.880028i \(0.342476\pi\)
\(992\) 227.798 + 61.0382i 0.229635 + 0.0615304i
\(993\) 0 0
\(994\) 54.0013 + 31.1776i 0.0543272 + 0.0313658i
\(995\) −974.957 + 333.460i −0.979856 + 0.335136i
\(996\) 0 0
\(997\) −1287.52 344.990i −1.29140 0.346029i −0.453206 0.891406i \(-0.649720\pi\)
−0.838191 + 0.545377i \(0.816386\pi\)
\(998\) −54.8879 54.8879i −0.0549979 0.0549979i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.l.a.118.5 40
3.2 odd 2 45.3.k.a.13.6 yes 40
5.2 odd 4 inner 135.3.l.a.37.6 40
9.2 odd 6 45.3.k.a.43.5 yes 40
9.4 even 3 405.3.g.g.163.6 20
9.5 odd 6 405.3.g.h.163.5 20
9.7 even 3 inner 135.3.l.a.73.6 40
15.2 even 4 45.3.k.a.22.5 yes 40
15.8 even 4 225.3.o.b.157.6 40
15.14 odd 2 225.3.o.b.193.5 40
45.2 even 12 45.3.k.a.7.6 40
45.7 odd 12 inner 135.3.l.a.127.5 40
45.22 odd 12 405.3.g.g.82.6 20
45.29 odd 6 225.3.o.b.43.6 40
45.32 even 12 405.3.g.h.82.5 20
45.38 even 12 225.3.o.b.7.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.6 40 45.2 even 12
45.3.k.a.13.6 yes 40 3.2 odd 2
45.3.k.a.22.5 yes 40 15.2 even 4
45.3.k.a.43.5 yes 40 9.2 odd 6
135.3.l.a.37.6 40 5.2 odd 4 inner
135.3.l.a.73.6 40 9.7 even 3 inner
135.3.l.a.118.5 40 1.1 even 1 trivial
135.3.l.a.127.5 40 45.7 odd 12 inner
225.3.o.b.7.5 40 45.38 even 12
225.3.o.b.43.6 40 45.29 odd 6
225.3.o.b.157.6 40 15.8 even 4
225.3.o.b.193.5 40 15.14 odd 2
405.3.g.g.82.6 20 45.22 odd 12
405.3.g.g.163.6 20 9.4 even 3
405.3.g.h.82.5 20 45.32 even 12
405.3.g.h.163.5 20 9.5 odd 6