Properties

Label 135.3.g.a
Level $135$
Weight $3$
Character orbit 135.g
Analytic conductor $3.678$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,3,Mod(28,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 217x^{12} + 9264x^{8} + 59497x^{4} + 28561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{7} + 2 \beta_{4}) q^{4} - \beta_{13} q^{5} + (\beta_{9} - 1) q^{7} + ( - \beta_{15} - \beta_{14} + \cdots + \beta_{11}) q^{8} + (\beta_{7} + \beta_{5} + \beta_{4} + \cdots - 2) q^{10}+ \cdots + ( - 4 \beta_{15} + 2 \beta_{14} + \cdots + 5 \beta_{10}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} - 32 q^{10} + 28 q^{13} - 20 q^{16} + 176 q^{22} + 64 q^{25} + 80 q^{28} - 208 q^{31} - 176 q^{37} - 252 q^{40} - 188 q^{43} + 188 q^{46} - 188 q^{52} - 136 q^{55} + 504 q^{58} + 296 q^{61}+ \cdots - 284 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 217x^{12} + 9264x^{8} + 59497x^{4} + 28561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 23\nu^{12} + 5326\nu^{8} + 334140\nu^{4} + 5452367 ) / 1000354 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 10883\nu^{13} + 2302656\nu^{9} + 89995272\nu^{5} + 364351187\nu ) / 52018408 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3253\nu^{14} + 709788\nu^{10} + 31035886\nu^{6} + 250013401\nu^{2} ) / 169059826 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 102443 \nu^{14} - 202124 \nu^{12} + 21417072 \nu^{10} - 46804888 \nu^{8} + 797507904 \nu^{6} + \cdots - 9369760868 ) / 1352478608 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 102443 \nu^{14} + 202124 \nu^{12} + 21417072 \nu^{10} + 46804888 \nu^{8} + 797507904 \nu^{6} + \cdots + 9369760868 ) / 1352478608 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -9759\nu^{14} - 2129364\nu^{10} - 93107658\nu^{6} - 665510290\nu^{2} ) / 84529913 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 360147 \nu^{14} + 433147 \nu^{12} - 77438888 \nu^{10} + 92951352 \nu^{8} + \cdots + 11565687211 ) / 1352478608 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 360147 \nu^{14} - 433147 \nu^{12} - 77438888 \nu^{10} - 92951352 \nu^{8} + \cdots - 10213208603 ) / 1352478608 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -3253\nu^{15} - 709788\nu^{11} - 31035886\nu^{7} - 250013401\nu^{3} ) / 169059826 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 1740189 \nu^{15} + 1996904 \nu^{13} - 380220064 \nu^{11} + 433011800 \nu^{9} + \cdots + 77138103120 \nu ) / 17582221904 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 1740189 \nu^{15} + 1996904 \nu^{13} + 380220064 \nu^{11} + 433011800 \nu^{9} + \cdots + 77138103120 \nu ) / 17582221904 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 2140700 \nu^{15} + 359801 \nu^{13} - 462308536 \nu^{11} + 90667824 \nu^{9} + \cdots + 81060375617 \nu ) / 17582221904 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 2140700 \nu^{15} - 359801 \nu^{13} - 462308536 \nu^{11} - 90667824 \nu^{9} + \cdots - 81060375617 \nu ) / 17582221904 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 1753759\nu^{15} + 377360280\nu^{11} + 15600114456\nu^{7} + 82428904231\nu^{3} ) / 8791110952 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} + 6\beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{15} - \beta_{14} - \beta_{13} - \beta_{12} + \beta_{11} - 8\beta_{10} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{6} + \beta_{5} + 13\beta_{2} - 57 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -13\beta_{14} + 13\beta_{13} - 18\beta_{12} - 18\beta_{11} + 17\beta_{3} - 81\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 18\beta_{9} + 18\beta_{8} - 160\beta_{7} + 22\beta_{6} + 22\beta_{5} - 635\beta_{4} - 18 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 248\beta_{15} + 258\beta_{14} + 258\beta_{13} + 156\beta_{12} - 156\beta_{11} + 911\beta_{10} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 92\beta_{9} - 92\beta_{8} + 350\beta_{6} - 350\beta_{5} - 1987\beta_{2} + 7462 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 1895\beta_{14} - 1895\beta_{13} + 3461\beta_{12} + 3461\beta_{11} - 3387\beta_{3} + 10828\beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -3461\beta_{9} - 3461\beta_{8} + 24927\beta_{7} - 4953\beta_{6} - 4953\beta_{5} + 92763\beta_{4} + 3461 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( -44739\beta_{15} - 45216\beta_{14} - 45216\beta_{13} - 23435\beta_{12} + 23435\beta_{11} - 132711\beta_{10} \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -21304\beta_{9} + 21304\beta_{8} - 66520\beta_{6} + 66520\beta_{5} + 314752\beta_{2} - 1136913 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( -293448\beta_{14} + 293448\beta_{13} - 583440\beta_{12} - 583440\beta_{11} + 580832\beta_{3} - 1654681\beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 583440 \beta_{9} + 583440 \beta_{8} - 3989289 \beta_{7} + 870824 \beta_{6} + 870824 \beta_{5} + \cdots - 583440 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 7472585 \beta_{15} + 7481257 \beta_{14} + 7481257 \beta_{13} + 3701905 \beta_{12} + \cdots + 20828168 \beta_{10} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(1\) \(\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
−2.52312 + 2.52312i
−1.85358 + 1.85358i
−1.15623 + 1.15623i
−0.601022 + 0.601022i
0.601022 0.601022i
1.15623 1.15623i
1.85358 1.85358i
2.52312 2.52312i
−2.52312 2.52312i
−1.85358 1.85358i
−1.15623 1.15623i
−0.601022 0.601022i
0.601022 + 0.601022i
1.15623 + 1.15623i
1.85358 + 1.85358i
2.52312 + 2.52312i
−2.52312 + 2.52312i 0 8.73230i 2.81400 + 4.13296i 0 −4.39136 + 4.39136i 11.9402 + 11.9402i 0 −17.5280 3.32790i
28.2 −1.85358 + 1.85358i 0 2.87153i −4.93699 + 0.791263i 0 1.80972 1.80972i −2.09171 2.09171i 0 7.68445 10.6178i
28.3 −1.15623 + 1.15623i 0 1.32628i 0.910983 4.91631i 0 7.71617 7.71617i −6.15839 6.15839i 0 4.63107 + 6.73767i
28.4 −0.601022 + 0.601022i 0 3.27754i 4.98774 0.349865i 0 −7.13454 + 7.13454i −4.37397 4.37397i 0 −2.78747 + 3.20802i
28.5 0.601022 0.601022i 0 3.27754i −4.98774 + 0.349865i 0 −7.13454 + 7.13454i 4.37397 + 4.37397i 0 −2.78747 + 3.20802i
28.6 1.15623 1.15623i 0 1.32628i −0.910983 + 4.91631i 0 7.71617 7.71617i 6.15839 + 6.15839i 0 4.63107 + 6.73767i
28.7 1.85358 1.85358i 0 2.87153i 4.93699 0.791263i 0 1.80972 1.80972i 2.09171 + 2.09171i 0 7.68445 10.6178i
28.8 2.52312 2.52312i 0 8.73230i −2.81400 4.13296i 0 −4.39136 + 4.39136i −11.9402 11.9402i 0 −17.5280 3.32790i
82.1 −2.52312 2.52312i 0 8.73230i 2.81400 4.13296i 0 −4.39136 4.39136i 11.9402 11.9402i 0 −17.5280 + 3.32790i
82.2 −1.85358 1.85358i 0 2.87153i −4.93699 0.791263i 0 1.80972 + 1.80972i −2.09171 + 2.09171i 0 7.68445 + 10.6178i
82.3 −1.15623 1.15623i 0 1.32628i 0.910983 + 4.91631i 0 7.71617 + 7.71617i −6.15839 + 6.15839i 0 4.63107 6.73767i
82.4 −0.601022 0.601022i 0 3.27754i 4.98774 + 0.349865i 0 −7.13454 7.13454i −4.37397 + 4.37397i 0 −2.78747 3.20802i
82.5 0.601022 + 0.601022i 0 3.27754i −4.98774 0.349865i 0 −7.13454 7.13454i 4.37397 4.37397i 0 −2.78747 3.20802i
82.6 1.15623 + 1.15623i 0 1.32628i −0.910983 4.91631i 0 7.71617 + 7.71617i 6.15839 6.15839i 0 4.63107 6.73767i
82.7 1.85358 + 1.85358i 0 2.87153i 4.93699 + 0.791263i 0 1.80972 + 1.80972i 2.09171 2.09171i 0 7.68445 + 10.6178i
82.8 2.52312 + 2.52312i 0 8.73230i −2.81400 + 4.13296i 0 −4.39136 4.39136i −11.9402 + 11.9402i 0 −17.5280 + 3.32790i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 28.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 135.3.g.a 16
3.b odd 2 1 inner 135.3.g.a 16
5.b even 2 1 675.3.g.k 16
5.c odd 4 1 inner 135.3.g.a 16
5.c odd 4 1 675.3.g.k 16
9.c even 3 2 405.3.l.o 32
9.d odd 6 2 405.3.l.o 32
15.d odd 2 1 675.3.g.k 16
15.e even 4 1 inner 135.3.g.a 16
15.e even 4 1 675.3.g.k 16
45.k odd 12 2 405.3.l.o 32
45.l even 12 2 405.3.l.o 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.3.g.a 16 1.a even 1 1 trivial
135.3.g.a 16 3.b odd 2 1 inner
135.3.g.a 16 5.c odd 4 1 inner
135.3.g.a 16 15.e even 4 1 inner
405.3.l.o 32 9.c even 3 2
405.3.l.o 32 9.d odd 6 2
405.3.l.o 32 45.k odd 12 2
405.3.l.o 32 45.l even 12 2
675.3.g.k 16 5.b even 2 1
675.3.g.k 16 5.c odd 4 1
675.3.g.k 16 15.d odd 2 1
675.3.g.k 16 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{16} + 217T_{2}^{12} + 9264T_{2}^{8} + 59497T_{2}^{4} + 28561 \) acting on \(S_{3}^{\mathrm{new}}(135, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + 217 T^{12} + \cdots + 28561 \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( T^{16} + \cdots + 152587890625 \) Copy content Toggle raw display
$7$ \( (T^{8} + 4 T^{7} + \cdots + 3062500)^{2} \) Copy content Toggle raw display
$11$ \( (T^{8} - 478 T^{6} + \cdots + 2500)^{2} \) Copy content Toggle raw display
$13$ \( (T^{8} - 14 T^{7} + \cdots + 376360000)^{2} \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 83\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( (T^{8} + 1386 T^{6} + \cdots + 4283440704)^{2} \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 16\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( (T^{8} + 3174 T^{6} + \cdots + 8593290000)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 52 T^{3} + \cdots - 255749)^{4} \) Copy content Toggle raw display
$37$ \( (T^{8} + 88 T^{7} + \cdots + 3648160000)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} - 7498 T^{6} + \cdots + 154291840000)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + \cdots + 4471533160000)^{2} \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 10\!\cdots\!61 \) Copy content Toggle raw display
$59$ \( (T^{8} + \cdots + 63541623690000)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 74 T^{3} + \cdots + 488272)^{4} \) Copy content Toggle raw display
$67$ \( (T^{8} + \cdots + 6996025000000)^{2} \) Copy content Toggle raw display
$71$ \( (T^{8} + \cdots + 33777019240000)^{2} \) Copy content Toggle raw display
$73$ \( (T^{8} + 28 T^{7} + \cdots + 24790502500)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} + \cdots + 616589288038656)^{2} \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 13\!\cdots\!21 \) Copy content Toggle raw display
$89$ \( (T^{8} + \cdots + 14493249000000)^{2} \) Copy content Toggle raw display
$97$ \( (T^{8} + \cdots + 147923973760000)^{2} \) Copy content Toggle raw display
show more
show less