Defining parameters
| Level: | \( N \) | \(=\) | \( 135 = 3^{3} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 135.p (of order \(18\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 135 \) |
| Character field: | \(\Q(\zeta_{18})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(36\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(135, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 120 | 120 | 0 |
| Cusp forms | 96 | 96 | 0 |
| Eisenstein series | 24 | 24 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(135, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 135.2.p.a | $96$ | $1.078$ | None | \(0\) | \(0\) | \(-9\) | \(0\) | ||