Defining parameters
Level: | \( N \) | \(=\) | \( 135 = 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 135.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(135, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 8 | 16 |
Cusp forms | 12 | 8 | 4 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(135, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
135.2.b.a | $4$ | $1.078$ | \(\Q(i, \sqrt{5})\) | \(\Q(\sqrt{-15}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{2}+(-2+\beta _{3})q^{4}+(-\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\) |
135.2.b.b | $4$ | $1.078$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_{2} q^{2}+\beta_{3} q^{5}-\beta_1 q^{7}+2\beta_{2} q^{8}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(135, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(135, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)