Defining parameters
Level: | \( N \) | \(=\) | \( 135 = 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 135.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(135))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 6 | 18 |
Cusp forms | 13 | 6 | 7 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(2\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(135))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | |||||||
135.2.a.a | $1$ | $1.078$ | \(\Q\) | None | \(-2\) | \(0\) | \(-1\) | \(-3\) | $+$ | $+$ | \(q-2q^{2}+2q^{4}-q^{5}-3q^{7}+2q^{10}+\cdots\) | |
135.2.a.b | $1$ | $1.078$ | \(\Q\) | None | \(2\) | \(0\) | \(1\) | \(-3\) | $+$ | $-$ | \(q+2q^{2}+2q^{4}+q^{5}-3q^{7}+2q^{10}+\cdots\) | |
135.2.a.c | $2$ | $1.078$ | \(\Q(\sqrt{13}) \) | None | \(-1\) | \(0\) | \(2\) | \(2\) | $+$ | $-$ | \(q-\beta q^{2}+(1+\beta )q^{4}+q^{5}+(2-2\beta )q^{7}+\cdots\) | |
135.2.a.d | $2$ | $1.078$ | \(\Q(\sqrt{13}) \) | None | \(1\) | \(0\) | \(-2\) | \(2\) | $-$ | $+$ | \(q+\beta q^{2}+(1+\beta )q^{4}-q^{5}+(2-2\beta )q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(135))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(135)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 2}\)