Newspace parameters
Level: | \( N \) | \(=\) | \( 135 = 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 135.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(0.0673737767055\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{3}\) |
Projective field: | Galois closure of 3.1.135.1 |
Artin image: | $D_6$ |
Artin field: | Galois closure of 6.0.54675.1 |
$q$-expansion
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).
\(n\) | \(56\) | \(82\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
134.1 |
|
1.00000 | 0 | 0 | −1.00000 | 0 | 0 | −1.00000 | 0 | −1.00000 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
15.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-15}) \) |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 135.1.d.b | yes | 1 |
3.b | odd | 2 | 1 | 135.1.d.a | ✓ | 1 | |
4.b | odd | 2 | 1 | 2160.1.c.a | 1 | ||
5.b | even | 2 | 1 | 135.1.d.a | ✓ | 1 | |
5.c | odd | 4 | 2 | 675.1.c.c | 2 | ||
9.c | even | 3 | 2 | 405.1.h.a | 2 | ||
9.d | odd | 6 | 2 | 405.1.h.b | 2 | ||
12.b | even | 2 | 1 | 2160.1.c.b | 1 | ||
15.d | odd | 2 | 1 | CM | 135.1.d.b | yes | 1 |
15.e | even | 4 | 2 | 675.1.c.c | 2 | ||
20.d | odd | 2 | 1 | 2160.1.c.b | 1 | ||
27.e | even | 9 | 6 | 3645.1.n.e | 6 | ||
27.f | odd | 18 | 6 | 3645.1.n.d | 6 | ||
45.h | odd | 6 | 2 | 405.1.h.a | 2 | ||
45.j | even | 6 | 2 | 405.1.h.b | 2 | ||
45.k | odd | 12 | 4 | 2025.1.j.c | 4 | ||
45.l | even | 12 | 4 | 2025.1.j.c | 4 | ||
60.h | even | 2 | 1 | 2160.1.c.a | 1 | ||
135.n | odd | 18 | 6 | 3645.1.n.e | 6 | ||
135.p | even | 18 | 6 | 3645.1.n.d | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
135.1.d.a | ✓ | 1 | 3.b | odd | 2 | 1 | |
135.1.d.a | ✓ | 1 | 5.b | even | 2 | 1 | |
135.1.d.b | yes | 1 | 1.a | even | 1 | 1 | trivial |
135.1.d.b | yes | 1 | 15.d | odd | 2 | 1 | CM |
405.1.h.a | 2 | 9.c | even | 3 | 2 | ||
405.1.h.a | 2 | 45.h | odd | 6 | 2 | ||
405.1.h.b | 2 | 9.d | odd | 6 | 2 | ||
405.1.h.b | 2 | 45.j | even | 6 | 2 | ||
675.1.c.c | 2 | 5.c | odd | 4 | 2 | ||
675.1.c.c | 2 | 15.e | even | 4 | 2 | ||
2025.1.j.c | 4 | 45.k | odd | 12 | 4 | ||
2025.1.j.c | 4 | 45.l | even | 12 | 4 | ||
2160.1.c.a | 1 | 4.b | odd | 2 | 1 | ||
2160.1.c.a | 1 | 60.h | even | 2 | 1 | ||
2160.1.c.b | 1 | 12.b | even | 2 | 1 | ||
2160.1.c.b | 1 | 20.d | odd | 2 | 1 | ||
3645.1.n.d | 6 | 27.f | odd | 18 | 6 | ||
3645.1.n.d | 6 | 135.p | even | 18 | 6 | ||
3645.1.n.e | 6 | 27.e | even | 9 | 6 | ||
3645.1.n.e | 6 | 135.n | odd | 18 | 6 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} - 1 \)
acting on \(S_{1}^{\mathrm{new}}(135, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T - 1 \)
$3$
\( T \)
$5$
\( T + 1 \)
$7$
\( T \)
$11$
\( T \)
$13$
\( T \)
$17$
\( T - 1 \)
$19$
\( T + 1 \)
$23$
\( T - 1 \)
$29$
\( T \)
$31$
\( T + 1 \)
$37$
\( T \)
$41$
\( T \)
$43$
\( T \)
$47$
\( T + 2 \)
$53$
\( T - 1 \)
$59$
\( T \)
$61$
\( T + 1 \)
$67$
\( T \)
$71$
\( T \)
$73$
\( T \)
$79$
\( T + 1 \)
$83$
\( T - 1 \)
$89$
\( T \)
$97$
\( T \)
show more
show less