Defining parameters
Level: | \( N \) | \(=\) | \( 135 = 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 135.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(135, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8 | 2 | 6 |
Cusp forms | 2 | 2 | 0 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 2 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(135, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
135.1.d.a | $1$ | $0.067$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-15}) \) | None | \(-1\) | \(0\) | \(1\) | \(0\) | \(q-q^{2}+q^{5}+q^{8}-q^{10}-q^{16}-q^{17}+\cdots\) |
135.1.d.b | $1$ | $0.067$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-15}) \) | None | \(1\) | \(0\) | \(-1\) | \(0\) | \(q+q^{2}-q^{5}-q^{8}-q^{10}-q^{16}+q^{17}+\cdots\) |