Properties

Label 1344.4.q
Level $1344$
Weight $4$
Character orbit 1344.q
Rep. character $\chi_{1344}(193,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $192$
Sturm bound $1024$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1344.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(1024\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1344, [\chi])\).

Total New Old
Modular forms 1584 192 1392
Cusp forms 1488 192 1296
Eisenstein series 96 0 96

Trace form

\( 192q - 864q^{9} + O(q^{10}) \) \( 192q - 864q^{9} + 144q^{13} + 240q^{21} - 2400q^{25} + 800q^{29} + 488q^{37} + 752q^{53} - 2160q^{61} + 3504q^{77} - 7776q^{81} + 4704q^{85} + 1848q^{93} - 2976q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(1344, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1344, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1344, [\chi]) \cong \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 2}\)